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A NOTE OF A ROUGH SINGULAR INTEGRAL OPERATOR

DASHAN FAN, KANGHUI GUO AND YIBIAO PAN'!

(communicated by J. Marshall Ash)

Abstract. P mapping properties will be established in this paper for singular Radon transforms
with rough kernels, extending the results of Grafakos and Stefanov.

1. Introduction

Let R", n > 2, be the n-dimensional Euclidean space and S"=1 be the unit sphere
in R” equipped with normalized Lebesgue measure do = do(x’). Let Q(x)|x|™" be
a homogeneous function of degree —n, with Q € L'($"~!) and

/S o) =0, (1)

where x’ = x/|x| forany x # 0.
The Calderén-Zygmund singular integral operator 7 is defined by

TE)@ = pv. [ QO (e )y @)
the truncated maximal operator 7* is defined by
T*(f)(x) = sup | QI (x = )y 3)
>0 Jly|>e

where y = y/|y| € $"! and f € S(R"), the space of Schwartz functions.

By introducing the method of rotations, Calderén-Zygmund proved that if Q €
Llog® L, thenboth T and T* are bounded operatorsin 17(R") [2, 3]. Some years later,
the condition Q € Llog* L was independently improved by Connett [4] and Ricci and
Weiss [11] who showed that if

QeH' (s (4)
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then 7 maps L”(R") into itself for all p € (1,00). Here H'(S"~!) denotes the Hardy
space on the sphere in the sense of Coifman and Weiss [6]. More details of H!($"~1)
can be found in Colzoni’s thesis [3].

Recently Grafakos and Stefanov [10] considered a family of new conditions

, 1 1+o ,
sup /Snl 10" <ln m) do(y') < oo, >0, (5)

éﬁ csn— 1
and they proved the following two L” boundedness theorems:

THEOREM A. Let o@ > 0. Then T is bounded in [P (R") for 2+ a)/(1 4+ a) <
p<(2+a).

THEOREM B. Let o0 > 1. Then T* is boundedin P (R") for 1 +3/(1 +2a) <
p<22+a)/3.

More significantly, Grafakos and Stefanov showed that condition (5) for all o > 0
is indeed disjoint from the H' condition (4).

The main purpose of this paper is to investigate a more general operator Tp defined
by

Tef (x) = p.v. /R QYT (x = Pu(ly)y)dy (6)
and its truncated maximal operator
Tpf (x) = sup | ) QO[T (x = Pu(lyl)y)dy, (7)
€ y|>€e

where Py(7) is areal polynomial on R of degree N and satisfies Py(0) = 0. Clearly,
if Py is the identity function 7 then 7; =T .

The operator Tp was first studied by Fan and Pan [8] and its L boundedness was
known in [1] under condition (4). Thus, naturally, it would be interesting to know the
I? boundedness of Tp and T under the new condition (5).

The following two theorems are the main results in this paper.

THEOREM 1. Let o > 0 and Q(Y') satisfy (5). Then Tp is bounded in L?(R")

for p € (ﬁ%g, 2+ 205) . The bound of Tp is independent of the coefficients of P.

THEOREM 2. Let o > 3, and Q(Y') satisfy (5). Then T} is bounded in L (R")
for p € (HZO‘ 1+ 205) . The bound of Ty is independent of the coefficients of P.

200

It should be noted that the ranges of p in Theorems 1-2 are strictly larger than
those in Theorems A and B, respectively.
The proof of the theorems are based on the technique used in [9].
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2. Boundedness of Singular Integrals

N
For the given polynomial Py(t) = > B,,¢", we denote

m=1

Py(1) :Zﬁmt’" for r=0,1,2,---,N, where fy=0.

m=0

For all integers k € Z and r =0,1,2,--- N, we define

6(&) = [ blraw)e I g,
’ 2k<‘y‘<2k+1

[ (8) = / Mf”\g(y')|e*"Pf(\,V\)<,V',§) dy.
2k]y| <2kt

Also we define
o, f (x) = sup |ue, * f (x)] .
kez

oo
Thenitis easy tosee Tpf = >, Oy *f .
k=—o00

The following lemma is Theorem 7.4 in [9].

LEMMA 2.1.. For r=1,2,--- N and p € (1,00), if Q € L'(S""!) then

”ijHU’(Rn) Sc¢ “f”y’(Rn)
where c is a constant independent of the coefficients of P,.
We also need the following lemma:

LEMMA 2.2. For all integers k € Z and r = 1,2,--- |N,
(i) 16er(8) = Ber-1(8)] < c[27BE]
1A —l-a
(ii) |61r(E)] < c(In[2UEB)) ™ if [2EB,| > 1.

Proof. (i) is obvious. To prove (ii), we note

2
/ o~ iPrDIEN(E ) ?1 do(y).

1

6,8 = [ au)

By Van der Corput lemma, the integral inside the bracket in (10) is bounded by

c (IENB2ICE Y )

On the other hand, it is trivial to see that

2
/ o—iPrENIENE ) 4
1 t

~i—

< log2.
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Thus it must satisfy the estimate

2
/ o—iPrEDIEN(E ) 1
1 t

(n (31(&"5) 7))
(In27&] 1)

Therefore, by (5), (ii) is proved. We now choose and fix a function ¢ € C§°(R") such
that ¢(r) =1 for |¢f| < 1 and ¢(r) =0 for || > 2.
Let ¢(t) = ¢(#*) and define the measures {7 y_1} by

%k,Nf)L(’g,) = 6k,N7)L(é) H (P(ZlkﬁNfzé)

<c

N—A<ILKN
a8 [ e@*Bvad)
N—A—1<I<N
forke€eZ and A =0,1,--- ,N — 1, where we use the convention [[a; =1.
jeo
N—1
Noting » Tyn—_j = Oy, we have
A=0
[e) N—1 oo
Tof = Y Gnsf = Y Tna*f
k=—o00 A=0 k=—oc0
Thus,
N—1 e’}
[ Tof Nl (rey < Z Z Ten—a ¥
A=0 llk=—o0 1P (R")
Therefore, to prove Theorem 1, it suffices to show
> tnaxf < cllf lrwn) (11)
k=—o00 1P (R")
_ 242
for A =0,1,2,--- ,N—1and p € (£3%,2+2a).

Itis easy to see that 7, y_; = 0 if By_; = 0. Thus without loss of generality, we
assume By_, #0 for A =0,1,--- ,N—1.
By the definition of 7; 5, and Lemma 2.2, it is easy to see

- (E)] < 2V FH By, (12)
tona (@)l < e (2 Pepy )7 (13)

A=0,1,--- ,N—1.
Also, by Lemma 2.1 and the definition of 7 y_, , we findfor A =0,1,--- ,N—1,

sup ‘Tk,N—)L *f| g CHf”U’(R") (14)

kEZ H[}’(Rn)
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forall p € (1,00).

It should be pointed out that the constants c in (12)—(14) are independent of the
coefficients of P.
By (14), we obtain the following lemma in [9].

LEMMA 2.3. ([9] Theorem 7.5) Let p € (1,00). For arbitrary functions qi, and

A=0,1,--- ,N—1,
o0 o0 %
( Z | Tk N—2 *Qk2> ( Z 6]k|2>
LP(R") ke L’(R")

1

&1

k=—00

where the constant c is independent of the coefficients of the polynomial P.

Now we are in the position to prove Theorem 1. As we mentioned before, it
suffices to show (11). By duality, we may assume p € (2,2 4 2a).
Let {®;}>° be a smooth partition of unity in (0, c0) adapted to the interval

(2-W=migt 2=(N=Air g ) | To be precise, we require the following:

D, €C®, 0< Zcp

supp(@;) € (27N ggL, 2 VEANt BTl ).
Define the multiplier operators S; in R" by
(Sif )" (&) =" (E)Ps(|E)).
We have

(e e)
Z Tn—2 *f

k=—o0

Z T N—2 * (Z Sj+ij+kf>
k j
Z (Z Sjvk(Tan—2 * Sj+kf)> = lef
k

J 7

Thus

< D IEf ll

j==o0

Z TN—2 *f

k=—o0

From classical Littlewood-Paley theory and Lemma 2.3, we know that ||If]],, <
C|If ||y, with C independent of j, for any p, € (1, c0). By the Plancherel theorem

718 < €3 / 2 [ (E)2dE

/+kN /l
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where

Ejins = {& 1 27 (RURIBIL < () < g RUn gt

Thus by the estimate (ii) in Lemma 2.2, we obtain that for j < 0

£ 113 < el =V IF13,
which implies
1122 < el 77"
Noting 2 < p < 2 + o, by interpolation between ||j]|;2—.;> < c[j|~*"' and
|| 2ro — 100 < ¢ forany p, € (1,00), we obtaina § > 1 such that

12 ||y < il P IF 1l (o

Similarly, using (i) in Lemma 2.2, we can obtaina 6 > 0 such that

1Lf ey < 27 llpwey, if j=0.

Therefore, we have
oo

Z I [l vy < c|lf [lp ey

j==o0

The theorem is proved.

3. Proof of Theorem 2

For any € > 0 there is an integer k such that 2¥~! < e < 2%. So we have
oo
Tif < oy(f)+sup|d o *f
kez |
j=k

Let {7y y_4} be the family defined in §2, we know

N—1 oo
sup Zcr,zv*f =sup|> > Tmnoaxf
keZAOjk
<3 sup|S s
a=0k Jj=k

By Lemma 2.1, ||oyf ||p(r) < c||f [|r(rr) forany p € (1,00). So it suffices to show
forany A =1,2,--- N

sup ZTM *f < |l | .- (15)
kez |

LP(R")
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Take a radial function ¢ € S(R") such that @(§) =1 when |£| < 1 and @(&) =0
when |&| > 2*. Let (&) = @(2%|B.E|) and let D (E) = @(E). Now let

Ji(f) =>> 75 «f . Then
=k

0o k—1
J(f) = (S—CIDk)*ZTM*f+(I)k*Tp(f)—<Dk* Z T xf

j=k j=—00
= Jui(f) +Ji2(f) + Je3(f),

where 0 is the Dirac delta function. Let M be the standard Hardy-Littlewood maximal
operator. By Theorem 1,

sup 2| < e IM(T)]l, < ellf llp-
€

p

Next,

supJis(f)| = sup|>  wjux Puxf
kez k

j=1

<3 <:ug|fk_m LDy f> =3 Gi).
j=1 M€ j=1

By (14), we have [|G;(f)|, < c|[|Mf |, < c|/f]|, for any p € (1,00). On the other
hand,

1

G](f) S{ Z |Tk_j’1*q)k*f|2} .

k=—o0

Thus

Gl < Y /RnI%k—m(5)I2|<pk(5)lzbf(§)\2d§

k=—o0

< csup Z [%—ia (E)PIIF 113

¢#0 k=—o0

< csup Z 2HBEN ) 27FHF 13 < 27 ¥ |3
§70 \avr <1118, 1122

Thus, by interpolation, we have

< CHpr-
P

sup [Ji3(f)|
kel
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Finally, we estimate sup |Ji1(f)|. Similar to J3(f ), we have

keZ
suplea () < 3 (sup T # (5 — @) *f>
keZ o7 \kez

= Y A(f), and ()]l < cllf [, forany p € (1,00).
j=1

By Plancherel Theorem and the choice of @y,

1817 < / B (E)PIf (E) g
k;oo HEARES
_ 21 £(£Y 2
- Yy / (B2 (E)PIF (&) P
[ — :/1<‘ﬁlé‘<2/lz+1
>/ FOP (nR*ep) " ag
< ¢ (n
P— 2M<|Bl§|<2l(l+l)
&S] &S] 2420
< / (©)Pa
ZOOZZ:k( +J+’> 2'*<|Bré\<21<f+l>lf( )
&S] 9] 2+2a
EN2
= C d
;kzoo(”) kK\BréKW"“*“V(g)‘ :
oo 1 2420
<
Z(+]> 1713
< —1— 205Hf||2
Thus,
1) 12 < =2 IIf |-
Since p € (1;§“,1+2a) and [|A(f)|lp, < cllf|lp, forany p, € (1,00), one

can finda 0 > 1 via interpolation such that

1Al < e °1f N

< ¢||f || - This finishes the proof of Theorem 2.
P

which implies ||sup |Ji,1(f)|
k
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