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AN OPERATOR INEQUALITY WHICH IMPLIES PARANORMALITY

ARIYADASA ALUTHGE AND DERMING WANG

(communicated by T. Ando)

Abstract. Let T be a bounded linear operator on a Hilbert space. Among other things, it is shown
that (1) if |T2| � |T|2 , then T is paranormal, (2) if T is w -hyponormal, then |T2| � |T|2
and |T∗2 | � |T∗|2 , and (3) if T and T∗ are w -hyponormal, and either ker T ⊆ ker T∗ or
ker T∗ ⊆ ker T , then T is normal.

Introduction

Let T be a bounded linear operator on a Hilbert space H . The polar decomposition
states that the operator T can be uniquely decomposed as T = U|T| where U is a
partial isometry, |T| = (T∗T)1/2 and kerU = ker |T|.

For a given operator T , consider the operators |T2| and |T|2 . How are they
related? If the operator T is hyponormal, it is easily seen that T satisfies both the
inequality

|T2| � |T|2 (1)

and the companion inequality
|T∗2 | � |T∗|2. (2)

This paper studies operators T satisfying either inequality (1) or inequalities (1) and
(2).

In [4], Ando obtained an operator inequality (Theorem B below) involving |T2|
and |T|2 which characterizes the operator T as being paranormal. Using his character-
ization, Ando was able to obtained a theorem [4; Theorem 2] which implies that both
the p - and log-hyponormal operators are paranormal.

In this paper, we first introduce the class of w -hyponormal operators and show that
p - and log-hyponormal operators are w -hyponormal. In Section 2, we show that an
operator T satisfying inequality (1) satisfies Ando’s characterization. Consequently,
such an operator is paranormal. We then prove the main result of the paper that a
w -hyponormal operator T satisfies inequalities (1) and (2). Therefore, w -hyponormal
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operators are paranormal. Applications of the main result to powers of p - and log-
hyponormal operators are given in Section 3. Finally, conditions under which w -
hyponormal operators become normal are given in Section 4.

1. w -hyponormality

In this section, we introduce the classes of p -, log- and w -hyponormal operators
and show that p - and log-hyponormaloperators are w -hyponormal. Let p be a positive
real number. The operator T is said to be p -hyponormal if (T∗T)p � (TT∗)p. A p -
hyponormal operator is called hyponormal if p = 1 , semi-hyponormal if p = 1/2 .
The celebrated Löwner-Heinz inequality implies that every p -hyponormal operator is
q -hyponormal for 0 < q � p . Call an operator T log-hyponormal if T is invertible
and log |T| � log |T∗|. Finally, let T = U|T| be the polar decomposition of T , and
following [1], let ˜T = |T|1/2U|T|1/2 . The operator T is said to be w -hyponormal if

|˜T| � |T| � |˜T
∗
|.

The class of w -hyponormal operators was introduced and its spectral properties
studied in [2]. Of particular interest is the fact, shown in [2], that the class of w -
hyponormal operators contains both the p - and log-hyponormal operators. Since it is
central to this paper, the proof of this fact is presented here.

THEOREM 1. If T is a p -hyponormal operator, then T is w -hyponormal.

Proof. Without loss of generality, assume 0 < p < 1/2 . In the proof of [1;
Theorem 2] it was shown that if T is a p -hyponormal operator with 0 < p < 1/2 ,
then the inequalities

|˜T|1+2p � |T|1+2p � |˜T
∗
|1+2p

hold. Raise each side of the inequalities to the 1/(1 + 2p) -th power, and the result
follows from the Löwner-Heinz inequality.

In order to show that log-hyponormal operators are w -hyponormal, we need a
theorem of Ando’s ([5], [6]) which characterizes the operator chaotic order.

THEOREM A. [5] If A and B are positive invertible operators, then logA � logB
if and only if Ar � (Ar/2BrAr/2)1/2 for all r � 0.

THEOREM 2. If T is a log-hyponormal operator, then T is w -hyponormal.

Proof. Since log |T| � log |T∗| , Theorem A implies that the inequality

|T| � (|T|1/2|T∗||T|1/2)1/2 (3)

holds. Hence,

|˜T
∗
| = (|T|1/2U|T|U∗|T|1/2)1/2 = (|T|1/2|T∗||T|1/2)1/2 � |T|.
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Moreover, since |T| and |T∗| are invertible, inequality (3) is seen to be equivalent to
the inequality

(|T∗|1/2|T||T∗|1/2)1/2 � |T∗|.
Thus,

U∗(U|T|1/2U∗|T|U|T|1/2U∗)1/2U � U∗|T∗|U,

and therefore,
(|T|1/2U∗|T|U|T|1/2)1/2 � |T|.

Since the operator on the left side of the last inequality is equal to the operator |˜T| , we
have |˜T| � |T| .

2. Paranormality

Recall that an operator T is paranormal [7] if T satisfies

‖ T2x ‖�‖ Tx ‖2

for all unit vectors x ∈ H . As an application of Ando’s (Theorem B) characterization
of paranormality, we show that if the operator T satisfies inequality (1), then T is
paranormal.

THEOREM B. [4; Theorem 1] An operator T is paranormal if and only if the
inequality

|T2|2 − 2λ |T|2 + λ 2 � 0

holds for all λ � 0.

THEOREM 3. If the operator T satisfies inequality (1) , then T is paranormal.

Proof. Since T satisfies |T2| � |T|2 , it satisfies the inequality of Theorem B for
all λ � 0 .

In [4; Theorem 2], Ando obtained a sufficient condition for an operator to be
paranormal. He further showed that p - and log-hyponormal operators satisfy this
condition, and hence are paranormal. The next theorem shows that if an operator T is
w -hyponormal, then it satisfies inequality (1) and therefore, in view of Theorem 3, is
paranormal. It follows that p - and log-hyponormal operators are paranormal.

THEOREM 4. If T = U|T| is a w -hyponormal operator, then |T2| � |T|2 and
|T∗2 | � |T∗|2 .

Proof. Let ˜T = V|˜T| be the polar decomposition of ˜T . Then

V∗|˜T
∗
|V = |˜T| � |T| (4)
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Thus,

|T2| = (T2∗T2)1/2

= (T∗|T|2T)1/2

= (|T|U∗|T|2U|T|)1/2

= (|T|1/2
˜T
∗
|T| ˜T |T|1/2)1/2

� (|T|1/2
˜T
∗
|˜T

∗
| ˜T |T|1/2)1/2 since |T| � |˜T

∗
|

= (|T|1/2|˜T|V∗|˜T
∗
|V|˜T||T|1/2)1/2

� (|T|1/2|˜T||T||˜T||T|1/2)1/2 by (4)

= |T|1/2|˜T||T|1/2

� |T|2,

where the last inequality follows since |˜T| � |T| . On the other hand,

|T∗2 | = (T2T∗2

)1/2

= (T|T∗|2T∗)1/2

= (U|T|U|T|2U∗|T|U∗)1/2

= U(|T|1/2
˜T |T| ˜T

∗
|T|1/2)1/2U∗

� U(|T|1/2
˜TV∗|˜T

∗
|V ˜T

∗
|T|1/2)1/2U∗ by (4)

� U(|T|1/2|˜T
∗
||T||˜T

∗
||T|1/2)1/2U∗ since |˜T

∗
| � |T|

= U|T|1/2|˜T
∗
||T|1/2U∗

� U|T|2U∗

= |T∗|2,

where the last inequality follows since |˜T
∗
| � |T| .

COROLLARY 1. If T is w -hyponormal, then T is paranormal.

Proof. The result follows from Theorems 3 and 4.

COROLLARY 2. If T is w -hyponormal, then T satisfies the inequality

|T2| − 2λ |T| + λ 2 � 0

for all λ � 0 .
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3. Powers of p -hyponormal and log-hyponormal operators

It is known [7] that powers of paranormal operators are paranormal. However,
this is not true for p -hyponormal operators. Indeed, Halmos [8; Problem 164] gave an
example of a hyponormal operator A for which A2 is not hyponormal. The operator A2

of Halmos’ example is seen to be semi-hyponormal as the next corollary of Theorem 4
shows.

COROLLARY 3. If T is p -hyponormal with 0 < p � 1 , then T2n
is p/2n -

hyponormal for any positive integer n .

Proof. Since T is p -hyponormal, |T|2p � |T∗|2p. Theorem 4 and the Löwner-
Heinz inequality imply

|T2|p � |T|2p � |T∗|2p � |T∗2 |p = |T2∗ |p,

and hence T2 is p/2 -hyponormal. Retracing the steps of the proof with T2 in place of
T and p/2 in place of p , we conclude that T4 is p/4 -hyponormal. The result follows
by induction.

In fact, a result stronger than that of Corollary 3 is known. Using a different
approach, it was shown in [3] that if the operator T is p -hyponormal with 0 < p � 1 ,
then for any positive integer n , the operator Tn is p/n -hyponormal. As for log-
hyponormal operators we have the following

COROLLARY 4. If T is log-hyponormal, then T2n
is log-hyponormal for any posi-

tive integer n .

Proof. Since log |T| � log |T∗| , it follows that

log |T|2 = 2 log |T| � 2 log |T∗| = log |T∗|2.

Hence

log |T2| � log |T|2 � log |T∗|2 � log |T∗2 | = log |T2∗ |
by Theorem 4. Again, the result follows by induction.

4. Normality

In this section we utilize inequalities (1) and (2) to give conditions under which a
w -hyponormal operator becomes normal.
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THEOREM 5. If the operator T satisfies |T2| = |T|2 and kerT∗ ⊆ kerT , then T
is normal. Similarly, if |T∗2 | = |T∗|2 and kerT ⊆ kerT∗ , then T is normal.

Proof. Since |T2| = |T|2 , squaring both sides of the equality yields

T∗|T|2T = T∗|T∗|2T. (5)

Denote the closure of the range of an operator A by ranA . If kerT∗ ⊆ ker T , then
kerT∗ is invariant under |T|2 . Therefore, both kerT∗ and ranT = (kerT∗)⊥ are
reducing subspaces for |T|2 . Moreover, it is obvious that both kerT∗ and ranT are
reducing subspaces for |T∗|2. Since |T|2 = |T∗|2 = 0 on kerT∗ and |T|2 = |T∗|2 on
ranT by equality (5), |T|2 = |T∗ | 2 on H = kerT∗⊕ ranT . Consequently, T is
normal. The proof of the first part of the theorem is completed. With T∗ in place of
T , the second part of the theorem follows from the first part.

If the operator T is p -hyponormal, it follows that kerT ⊆ kerT∗ . Furthermore,
if both T and its adjoint T∗ are p -hyponormal, then kerT = ker T∗ and T is normal.
In light of these, Ando [4; Theorem 5] obtained the following generalization.

THEOREM C. If the operator T and its adjoint T∗ are paranormal, thenT is
normal if kerT = kerT∗ .

As an application of Theorems 4 and 5, the next corollary shows that the kernel
condition in Theorem C may be relaxed if the paranormality assumption is strengthened
to that of w -hyponormality.

COROLLARY 1. If the operator T and its adjoint T∗ are w -hyponormal, then T
is normal if either ker T ⊆ kerT∗ or kerT∗ ⊆ kerT .

Proof. Since T and T∗ are w -hyponormal, it follows from Theorem4 that |T2| =
|T|2 and |T∗2 | = |T∗|2 . The result follows from Theorem 5.

COROLLARY 2. If the operator T is either p -hyponormal or log-hyponormal and
its adjoint T∗ is w -hyponormal, then T is normal.

Proof. Since ker T ⊆ kerT∗ if T is p -hyponormal, and ker T = kerT∗ if T is
log-hyponormal, it follows from the above corollary that T is normal.

Generalizing a previously known result for p -hyponormal operators, it was shown
in [2] that a w -hyponormal operator T with kerT ⊆ ker T∗ is normal if the associated
˜T is normal. The following corollary provides a further generalization.

COROLLARY 3. Let the operator T be w -hyponormal. If ˜T is normal and either
kerT ⊆ kerT∗ or ker T∗ ⊆ kerT , then T is normal and T = ˜T .

Proof. Since T is w -hyponormal and ˜T is normal, we have

|˜T| = |T| = |˜T
∗
|.
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Thus, all the inequalities which appear in the proof of Theorem 4 become equalities.
Hence, |T2| = |T|2 and |T∗2 | = |T∗|2 . Therefore, T is normal by Theorem 5. Let
T = U|T| be the polar decomposition of T . Since T is normal, U commutes with
|T|1/2 , and hence ˜T = |T|1/2U|T|1/2 = U|T| = T .
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