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Abstract. Results are obtained on existence theorems of generalized quasi-variational inequal-
ities with monotone and lower hemi-continuous operators, or semi-monotone and upper hemi-
continuous operators on paracompact sets.

1. Preliminaries

If X is a non-empty set, we shall denote by 2X the family of all non-empty subsets
of X .

Let X be a non-empty subset of a topological vector space E . Given the maps
S : X → 2X and T : X → E∗ , the quasi-variational inequality problem (QVI) is to
find a point ŷ ∈ S(ŷ) such that Re〈T(ŷ), ŷ − x〉 � 0 for all x ∈ S(ŷ) . The QVI was
introduced by Bensoussan and Lions in 1973 (see, e.g., [3]) in connection with impulse
control. Again, if we consider a set-valued map T : X → 2E∗

, then the generalized
quasi-variational inequality problem (GQVI) is to find a point ŷ ∈ S(ŷ) and a point
ŵ ∈ T(ŷ) such that Re〈 ŵ, ŷ − x〉 � 0 for all x ∈ S(ŷ) . The GQVI was introduced by
Chan and Pang [4] in 1982 if E = R

n and by Shih and Tan [8] in 1985 if E is infinite
dimensional.

If X is a topological space and {Uα : α ∈ A} is an open cover for X , then a
partition of unity subordinated to the open cover {Uα : α ∈ A} is a family {βα : α ∈
A} of continuous real-valued functions βα : X → [0, 1] such that

(1) βα(y) = 0 for all y ∈ X \ Uα ,
(2) { support βα : α ∈ A} is locally finite and
(3) Σα∈Aβα(y) = 1 for each y ∈ X .
The following result is Lemma 1 of Shih and Tan in [8, pp.334-335]:
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LEMMA A. Let X be a non-empty subset of a Hausdorff topological vector space
E and S : X → 2E be an upper semicontinuous map such that S(x) is a bounded subset
of E for each x ∈ X . Then for each continuous linear functional p on E , the map
f p : X → R defined by f p(y) = supx∈S(y) Re〈 p, x〉 is upper semicontinuous; i.e., for
each λ ∈ R , the set {y ∈ X : f p(y) = supx∈S(y) Re〈 p, x〉 < λ} is open in X .

The following result is Lemma 3 of Takahashi in [10, p.177] (see also Lemma 3 in
[9, pp.71-72]:

LEMMA B. Let X and Y be topological spaces, f : X → R be non-negative and
continuous and g : Y → R be lower semicontinuous. Then the map F : X × Y → R ,
defined by F(x, y) = f (x)g(y) for all (x, y) ∈ X × Y , is lower semicontinuous.

The following result is essentially Theorem 1 Bae-Kim-Tan in [2, p.231]:

THEOREM A. Let E be a topological vector space, X be a non-empty convex
subset of E and f , g : X × X → R ∪ {−∞, +∞} be such that

(a) g(x, x) � 0 for all x ∈ X and f (x, y) � g(x, y) for all x, y ∈ X ;
(b) for each fixed x ∈ X , y �−→ f (x, y) is lower semicontinuous on non-empty

compact subsets of X ;
(c) for each fixed y ∈ X , the set {x ∈ X : g(x, y) > 0} is convex;
(d) there exist a non-empty compact convex subset X0 of X and a non-empty

compact subset K of X such that for each y ∈ X \ K , there is an x ∈ co(X0 ∪ {y})
with f (x, y) > 0.
Then there exists ŷ ∈ K such that f (x, ŷ) � 0 for all x ∈ X .

We shall need the following Kneser’s minimax theorem in [7, pp.2418-2420] (see
also Aubin [1, pp.40-41]):

THEOREM B. Let X be a non-empty convex subset of a vector space and Y be a
non-empty compact convex subset of a Hausdorff topological vector space. Suppose
that f is a real-valued function on X × Y such that for each fixed x ∈ X, the map
y �→ f (x, y) is lower semicontinuous and convex on Y and for each fixed y ∈ Y, the
map x �→ f (x, y) is concave on X . Then

min
y∈Y

sup
x∈X

f (x, y) = sup
x∈X

min
y∈Y

f (x, y).

2. Generalized quasi-variational inequalities for lower
hemi-continuous operators on non-compact sets.

In this section we shall obtain some existence theorems for generalized quasi-
variational inequalities for monotone and lower hemi-continuous operators on para-
compact sets.

The following definition is Definition 2.1(a) in [5, pp.28-29]:
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DEFINITION 1. Let E be a topological vector space, X be a non-empty subset of
E and T : X → 2E∗

. Then T is said to be lower hemi-continuous on X if and only if
for each p ∈ E , the function f p : X → R ∪ {+∞} , defined by

f p(z) = sup
u∈T(z)

Re〈 u, p〉 for each z ∈ X,

is lower semicontinuous on X (if and only if for each p ∈ E , the function gp : X →
R ∪ {−∞} , defined by

gp(z) = inf
u∈T(z)

Re〈 u, p〉 for each z ∈ X,

is upper semicontinuous on X );

The following proposition is Proposition 2.2 in [5, p.29]:

PROPOSITION 1. Let E be a topological vector space and X be a non-empty subset
of E . Let T : X → 2E∗

be lower semicontinuous from relative topology on X to the
weak ∗ topology σ〈E∗, E〉 on E∗ . Then T is lower hemi-continuous on X .

The following result is Lemma 4.1 in [5, pp.37-38]:

LEMMA 1. Let E be a topological vector space, X be a non-empty convex subset
of E , h : X → R be convex and T : X → 2E∗

be lower hemi-continuous along
line segments in X . Suppose ŷ ∈ X is such that supu∈T(x) Re〈 u, ŷ − x〉 � h(x) −
h(ŷ) for all x ∈ X. Then

sup
w∈T(ŷ)

Re〈w, ŷ − x〉 � h(x) − h(ŷ) for all x ∈ X.

We shall first establish the following result:

THEOREM 1. Let E be a locally convex Hausdorff topological vector space and
X be a non-empty paracompact convex subset of E . Let S : X → 2X be upper
semicontinuous such that each S(x) is compact convex and T : X → 2E∗

be monotone
and be lower hemi-continuous along line segments in X to the weak ∗ -topology on E∗ .
Let h : X → R be convex and continuous. Suppose that the set

Σ = {y ∈ X : sup
x∈S(y)

sup
u∈T(x)

Re〈 u, y− x〉 + h(y) − h(x) > 0}

is open in X . Suppose further that there exist a non-empty compact convex subset X0

of X and a non-empty compact subset K of X such that for each y ∈ X \ K , there
exists a point x ∈ co(X0 ∪ {y})∩ S(y) with supu∈T(x) Re〈 u, y− x〉 + h(y)− h(x) > 0 .
Then there exists a point ŷ ∈ K such that

(i) ŷ ∈ S(ŷ) and
(ii) supw∈T(ŷ) Re〈w, ŷ − x〉 � h(x) − h(ŷ) for all x ∈ S(ŷ) .

Proof. We shall prove this theorem in two steps:

Step 1. There exists a point ŷ ∈ X such that ŷ ∈ S(ŷ) and

sup
x∈S(ŷ)

[ sup
u∈T(x)

Re〈 u, ŷ− x〉 + h(ŷ) − h(x)] � 0.



124 MOHAMMAD S. R. CHOWDHURY AND KOK-KEONG TAN

Suppose the contrary. Then for each y ∈ X , either y 
∈ S(y) or there exist x ∈ S(y)
and u ∈ T(x) such that Re〈 u, y− x〉 + h(y)− h(x) > 0; that is, for each y ∈ X , either
y 
∈ S(y) or y ∈ Σ . If y 
∈ S(y) , then by Hahn-Banach separation theorem, there exists
p ∈ E∗ such that Re〈 p, y〉 − supx∈S(y) Re〈 p, x〉 > 0. For each y ∈ X , set

γ (y) := sup
x∈S(y)

[ sup
u∈T(x)

Re〈 u, y− x〉 + h(y) − h(x)].

Let V0 := {y ∈ X|γ (y) > 0} = Σ and for each p ∈ E∗ , set

Vp := {y ∈ X : Re〈 p, y〉 − sup
x∈S(y)

Re〈 p, x〉 > 0}.

Then X = V0∪
⋃

p∈E∗ Vp. Since each Vp is open in X byLemmaA and V0 is open in X
by hypothesis, {V0, Vp : p ∈ E∗} is an open covering for X . Since X is paracompact,
there is a continuous partition of unity {β0, βp : p ∈ E∗} for X subordinated to the
open cover {V0, Vp : p ∈ E∗} (see, e.g., Theorem VIII.4.2 of Dugundji in [6]); that is
for each p ∈ E∗ , βp : X → [0, 1] and β0 : X → [0, 1] are continuous functions such
that for each p ∈ E∗ , βp(y) = 0 for all y ∈ X \ Vp and β0(y) = 0 for all y ∈ X \ V0

and { support β0, support βp : p ∈ E∗} is locally finite and β0(y) + Σp∈E∗βp(y) = 1
for each y ∈ X . Define φ,ψ : X × X → R by

φ(x, y) = β0(y)[ sup
u∈T(x)

Re〈 u, y− x〉 + h(y) − h(x)] + Σp∈E∗βp(y)Re〈 p, y − x〉 ,

and

ψ(x, y) = β0(y)[ inf
w∈T(y)

Re〈w, y− x〉 + h(y) − h(x)] + Σp∈E∗βp(y)Re〈 p, y− x〉 ,

for each x, y ∈ X . Then we have the following.
(1) For each x, y ∈ X , since T is monotone, φ(x, y) � ψ(x, y) and ψ(x, x) = 0

for all x ∈ X .
(2) For each fixed x ∈ X and each fixed u ∈ T(x) , the map

y �−→ Re〈 u, y− x〉 + h(y) − h(x)

is continuous on X and therefore the map

y �−→ β0(y)[ sup
u∈T(x)

Re〈 u, y− x〉 + h(y) − h(x)]

is lower semicontinuous on X by Lemma B. Also for each fixed x ∈ X ,

y �→ Σp∈E∗βp(y)Re〈 p, y − x〉
is continuous on X . Hence, for each fixed x ∈ X , the map y �→ φ(x, y) is lower
semicontinuous on X .

(3) Clearly, for each y ∈ X , the set {x ∈ X : ψ(x, y) > 0} is convex.
(4) By hypothesis, there exists a non-empty compact convex subset X0 of X and

a non-empty compact subset K of X such that for each y ∈ X \ K , there exists a
point x ∈ co(X0 ∪ {y}) ∩ S(y) such that supu∈T(x) Re〈 u, y − x〉 + h(y) − h(x) > 0 .
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Thus β0(y)[supu∈T(x) Re〈 u, y − x〉 + h(y) − h(x)] > 0 whenever β0(y) > 0 . Also
Re〈 p, y − x〉 > 0 whenever βp(y) > 0 for p ∈ E∗ . Consequently, φ(x, y) =
β0(y)[supu∈T(x) Re〈 u, y− x〉 + h(y) − h(x)] +Σp∈E∗βp(y)Re 〈 p, y − x〉 > 0 .

Then φ and ψ satisfy all the hypotheses of Theorem A. Thus by Theorem A,
there exists ŷ ∈ K such that φ(x, ŷ) � 0 for all x ∈ X , i.e.,

β0(ŷ)[ sup
u∈T(x)

Re〈 u, ŷ− x〉 + h(ŷ) − h(x)] + Σp∈E∗βp(ŷ)Re〈 p, ŷ − x〉 � 0 (2.1)

for all x ∈ X .
If β0(ŷ) > 0 , then ŷ ∈ V0 = Σ so that γ (ŷ) > 0. Choose x̂ ∈ S(ŷ) ⊂ X such that

sup
u∈T(x̂)

Re〈 u, ŷ− x̂〉 + h(ŷ) − h(x̂) � γ (ŷ)
2

> 0;

it follows that
β0(ŷ)[ sup

u∈T(x̂)
Re〈 u, ŷ− x̂〉 + h(ŷ) − h(x̂)] > 0.

If βp(ŷ) > 0 for some p ∈ E∗ , then ŷ ∈ Vp and hence

Re〈 p, ŷ〉 > sup
x∈S(ŷ)

Re〈 p, x〉 � Re〈 p, x̂〉

so that Re〈 p, ŷ− x̂〉 > 0. Then note that

βp(ŷ)Re〈 p, ŷ− x̂〉 > 0 whenever βp(ŷ) > 0 for p ∈ E∗.

Since β0(ŷ) > 0 or βp(ŷ) > 0 for some p ∈ E∗ , it follows that

φ(x̂, ŷ) = β0(ŷ)[ sup
u∈T(x̂)

Re〈 u, ŷ− x̂〉 + h(ŷ) − h(x̂)] + Σp∈E∗βp(ŷ)Re〈 p, ŷ − x̂〉 > 0,

which contradicts (2.1) . This contradiction proves Step 1.

Step 2.
sup

w∈T(ŷ)
Re〈w, ŷ− x〉 � h(x) − h(ŷ) for all x ∈ S(ŷ).

Indeed, from Step 1, ŷ ∈ S(ŷ) which is a convex subset of X , and

sup
u∈T(x)

Re〈 u, ŷ− x〉 � h(x) − h(ŷ) for all x ∈ S(ŷ).

Hence by Lemma 1, we have

sup
w∈T(ŷ)

Re〈w, ŷ − x〉 � h(x) − h(ŷ) for all x ∈ S(ŷ). �

If X is compact, Theorem 1 reduces to the following:
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THEOREM 2. Let E be a locally convex Hausdorff topological vector space and X
be a non-empty compact convex subset of E . Let S : X → 2X be upper semicontinuous
such that each S(x) is closed convex and T : X → 2E∗

be monotone and be lower hemi-
continuous along line segments in X to the weak ∗ -topology on E∗ . Let h : X → R be
convex and continuous. Suppose that the set

Σ = {y ∈ X : sup
x∈S(y)

sup
u∈T(x)

Re〈 u, y− x〉 + h(y) − h(x) > 0}

is open in X . Then there exists a point ŷ ∈ X such that
(i) ŷ ∈ S(ŷ) and
(ii) supw∈T(ŷ) Re〈w, ŷ − x〉 � h(x) − h(ŷ) for all x ∈ S(ŷ) .

REMARK 1. Theorem 1 and Theorem 2 generalize Theorem 1 of Shih-Tan in [8,
p.335].

Note that if X is also bounded in Theorem1 and themap S : X → 2X is, in addition,
lower semicontinuous and for each y ∈ Σ = {y ∈ X : supx∈S(y)[supu∈T(x) Re〈 u, y −
x〉 + h(y) − h(x)] > 0} , T is lower semicontinuous at some point x in S(y) with
supu∈T(x) Re〈 u, y− x〉 + h(y)− h(x) > 0 , then the set Σ in Theorem 1 is always open
in X . Thus we obtain the following result:

THEOREM 3. Let E be a locally convex Hausdorff topological vector space and
X be a non-empty paracompact convex and bounded subset of E . Let S : X → 2X

be continuous such that each S(x) is compact convex and T : X → 2E∗
be monotone

and be lower hemi-continuous along line segments in X to the weak ∗ -topology on E∗ .
Let h : X → R be convex and continuous. Suppose that for each y ∈ Σ = {y ∈ X :
supx∈S(y)[supu∈T(x) Re〈 u, y − x〉 + h(y) − h(x)] > 0} , T is lower semicontinuous at
some point x in S(y) with supu∈T(x) Re〈 u, y− x〉 + h(y)− h(x) > 0 . Suppose further
that there exist a non-empty compact convex subset X0 of X and a non-empty compact
subset K of X such that for each y ∈ X\K , there exists a point x ∈ co(X0∪{y})∩S(y)
with supu∈T(x) Re〈 u, y − x〉 + h(y) − h(x) > 0 . Then there exists a point ŷ ∈ K such
that

(i) ŷ ∈ S(ŷ) and
(ii) supw∈T(ŷ) Re〈w, ŷ − x〉 � h(x) − h(ŷ) for all x ∈ S(ŷ) .

Proof. Note that Theorem 3 follows from Theorem 1 if we show that the set

Σ := {y ∈ X : sup
x∈S(y)

[ sup
u∈T(x)

Re〈 u, y− x〉 + h(y) − h(x)] > 0}

is open in X . Indeed, let y0 ∈ Σ ; then by hypothesis, T is lower semicontinuous at
some point x0 in S(y0) with supu∈T(x0) Re〈 u, y0 − x0〉 + h(y0) − h(x0) > 0 . Hence
there exists u0 ∈ T(x0) such that Re〈 u0, y0 − x0〉 + h(y0) − h(x0) > 0 . Let

α := Re〈 u0, y0 − x0〉 + h(y0) − h(x0).

Then α > 0 . Also let

U1 := {u ∈ E∗ : sup
z1,z2∈X

|〈 u − u0, z1 − z2〉 | <
α
6
}.
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Then U1 is a strongly open neighborhood of u0 in E∗ . Since T is lower semicontinuous
at x0 and U1 ∩ T(x0) 
= ∅ , there exists an open neighborhood V1 of x0 in X such that
T(x) ∩ U1 
= ∅ for all x ∈ V1 .

As the map x �−→ Re〈 u0, x0 − x〉 + h(x0)− h(x) is continuous at x0 , there exists
an open neighborhood V2 of x0 in X such that

|Re〈 u0, x0 − x〉 + h(x0) − h(x)| <
α
6

for all x ∈ V2.

Let V0 := V1 ∩ V2 ; then V0 is an open neighborhood of x0 in X . Since x0 ∈
V0∩S(y0) 
= ∅ and S is lower semicontinuous at y0 , there exists an open neighborhood
N1 of y0 in X such that S(y) ∩ V0 
= ∅ for all y ∈ N1 .

Since the map y �−→ Re〈 u0, y − y0〉 + h(y) − h(y0) is continuous at y0 , there
exists an open neighborhood N2 of y0 in X such that

|Re〈 u0, y − y0〉 + h(y) − h(y0)| <
α
6

for all y ∈ N2.

Let N0 := N1 ∩ N2 . Then N0 is an open neighborhood of y0 in X such that for each
y1 ∈ N0 , we have

(i) S(y1) ∩ V0 
= ∅ as y1 ∈ N1; so we can choose any x1 ∈ S(y1) ∩ V0;
(ii) |Re〈 u0, y1 − y0〉 + h(y1) − h(y0)| < α

6 as y1 ∈ N2 ;
(iii) T(x1) ∩ U1 
= ∅ as x1 ∈ V1 ; choose any u1 ∈ T(x1) ∩ U1 so that

sup
z1,z2∈X

|〈 u1 − u0, z1 − z2〉 | <
α
6

;

(iv) |Re〈 u0, x0 − x1〉 + h(x0) − h(x1)| < α
6 as x1 ∈ V2.

It follows that

Re〈 u1, y1 − x1〉 + h(y1) − h(x1)
= Re〈 u1 − u0, y1 − x1〉 + Re〈 u0, y1 − x1〉 + h(y1) − h(x1)

� −α
6

+ Re〈 u0, y1 − y0〉 + h(y1) − h(y0)

+ Re〈 u0, y0 − x0〉 + h(y0) − h(x0)
+ Re〈 u0, x0 − x1〉 + h(x0) − h(x1)( by (iii)),

� −α
6
− α

6
+ α − α

6
=

α
2

> 0 ( by (ii) and (iv));

therefore

sup
x∈S(y1)

[ sup
u∈T(x)

Re〈 u, y1 − x〉 + h(y1) − h(x)] > 0

as x1 ∈ S(y1) and u1 ∈ T(x1) . This shows that y1 ∈ Σ for all y1 ∈ N0, so that Σ is
open in X . This completes the proof. �

If X is compact, Theorem 3 reduces to the following:
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THEOREM 4. Let E be a locally convex Hausdorff topological vector space and
X be a non-empty compact convex subset of E . Let S : X → 2X be continuous
such that each S(x) is closed convex and T : X → 2E∗

be monotone and be lower
hemi-continuous along line segments in X to the weak ∗ -topology on E∗ . Let h :
X → R be convex and continuous. Suppose that for each y ∈ Σ = {y ∈ X :
supx∈S(y)[supu∈T(x) Re〈 u, y − x〉 + h(y) − h(x)] > 0} , T is lower semicontinuous at
some point x in S(y) with supu∈T(x) Re〈 u, y− x〉 + h(y)− h(x) > 0 . Then there exists
a point ŷ ∈ X such that

(i) ŷ ∈ S(ŷ) and
(ii) supw∈T(ŷ) Re〈w, ŷ − x〉 � h(x) − h(ŷ) for all x ∈ S(ŷ) .

REMARK 2. Theorem 3 and Theorem 4 generalize Theorem 2 of Shih-Tan in [8,
p.338].

3. Generalized quasi-variational inequalities for upper
hemi-continuous operators on non-compact sets.

In this section we shall obtain some existence theorems for generalized quasi-
variational inequalities for semi-monotone and upper hemi-continuous operators on
paracompact sets.

The following definition is Definition 2.1(b) in [5, pp.28-29]:

DEFINITION 2. Let E be a topological vector space, X be a non-empty subset of
E and T : X → 2E∗

. Then T is said to be upper hemi-continuous on X if and only if
for each p ∈ E , the function f p : X → R ∪ {+∞} , defined by

f p(z) = sup
u∈T(z)

Re〈 u, p〉 for each z ∈ X,

is upper semicontinuous on X (if and only if for each p ∈ E , the function gp : X →
R ∪ {−∞} , defined by

gp(z) = inf
u∈T(z)

Re〈 u, p〉 for each z ∈ X,

is lower semicontinuous on X ).

The following proposition is Proposition 2.4 in [5, p.30]:

PROPOSITION 2. Let E be a topological vector space and X be a non-empty subset
of E . Let T : X → 2E∗

be upper semicontinuous from relative topology on X to the
weak ∗ topology σ〈E∗, E〉 on E∗ . Then T is upper hemi-continuous on X .

Note that there is a typo in Proposition 2.4 in [5, p.30]. The set X is not required
to be convex.

The following simple result is Lemma 2.1.6 in [11]:
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LEMMA 2. Let E be a topological vector space and A be a non-empty bounded
subset of E . Let C be a non-empty strongly compact subset of E∗ . Define f : A → R

by f (x) = minu∈C Re〈 u, x〉 for all x ∈ A . Then f is weakly continuous on A .

The following result is Lemma 4.2 in [5, p.38]:

LEMMA 3. Let E be a topological vector space, X be a non-empty convex subset
of E , h : X → R be convex and T : X → 2E∗

be upper hemi-continuous along
line segments in X . Suppose ŷ ∈ X is such that infu∈T(x) Re〈 u, ŷ − x〉 � h(x) −
h(ŷ) for all x ∈ X. Then

inf
w∈T(ŷ)

Re〈w, ŷ − x〉 � h(x) − h(ŷ) for all x ∈ X.

We shall now establish the following result:

THEOREM 5. Let E be a locally convex Hausdorff topological vector space and
X be a non-empty paracompact convex and bounded subset of E . Let S : X → 2X

be upper semicontinuous such that each S(x) is compact convex and T : X → 2E∗
be

semi-monotone and be upper hemi-continuous along line segments in X to the weak ∗ -
topology on E∗ such that each T(x) is strongly compact convex. Let h : X → R be
convex and continuous. Suppose that the set

Σ = {y ∈ X : sup
x∈S(y)

[ inf
u∈T(x)

Re〈 u, y− x〉 + h(y) − h(x)] > 0}

is open in X . Suppose further that there exist a non-empty compact convex subset X0

of X and a non-empty compact subset K of X such that for each y ∈ X \ K , there
exists a point x ∈ co(X0 ∪ {y})∩ S(y) with infu∈T(x) Re〈 u, y− x〉 + h(y)− h(x) > 0 .
Then there exists a point ŷ ∈ K such that

(i) ŷ ∈ S(ŷ) and
(ii) there exist a point ŵ ∈ T(ŷ) with Re〈 ŵ, ŷ−x〉 � h(x)−h(ŷ) for all x ∈ S(ŷ) .

Proof. We shall prove this theorem in three steps:

Step 1. There exists a point ŷ ∈ X such that ŷ ∈ S(ŷ) and

sup
x∈S(ŷ)

[ inf
u∈T(x)

Re〈 u, ŷ− x〉 + h(ŷ) − h(x)] � 0.

Suppose the contrary. Then for each y ∈ X , either y 
∈ S(y) or there exists
x ∈ S(y) such that infu∈T(x) Re〈 u, y − x〉 + h(y) − h(x) > 0; that is, for each y ∈ X ,
either y 
∈ S(y) or y ∈ Σ . If y 
∈ S(y) , then by Hahn-Banach separation theorem, there
exists p ∈ E∗ such that Re〈 p, y〉 − supx∈S(y) Re〈 p, x〉 > 0. For each y ∈ X , set

γ (y) := sup
x∈S(y)

[ inf
u∈T(x)

Re〈 u, y− x〉 + h(y) − h(x)].

Let V0 := {y ∈ X|γ (y) > 0} = Σ and for each p ∈ E∗ , set

Vp := {y ∈ X : Re〈 p, y〉 − sup
x∈S(y)

Re〈 p, x〉 > 0}.
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Then X = V0∪
⋃

p∈E∗ Vp. Since each Vp is open in X byLemmaA and V0 is open in X
by hypothesis, {V0, Vp : p ∈ E∗} is an open covering for X . Since X is paracompact,
there is a continuous partition of unity {β0, βp : p ∈ E∗} for X subordinated to the
open cover {V0, Vp : p ∈ E∗} . Define φ,ψ : X × X → R by

φ(x, y) = β0(y)[ inf
u∈T(x)

Re〈 u, y− x〉 + h(y) − h(x)] + Σp∈E∗βp(y)Re〈 p, y − x〉 ,

and

ψ(x, y) = β0(y)[ inf
w∈T(y)

Re〈w, y − x〉 + h(y) − h(x)] + Σp∈E∗βp(y)Re〈 p, y− x〉

for each x, y ∈ X . Then we have the following.
(1) For each x, y ∈ X , since T is semi-monotone, φ(x, y) � ψ(x, y) and

ψ(x, x) = 0 for all x ∈ X .
(2) For each fixed x ∈ X , the map

y �−→ inf
u∈T(x)

Re〈 u, y− x〉 + h(y) − h(x)

is weakly lower semicontinuous (and therefore lower semi-continuous)on X byLemma
2 and the fact that h is continuous; therefore the map

y �−→ β0(y)[ inf
u∈T(x)

Re〈 u, y− x〉 + h(y) − h(x)]

is lower semicontinuous on X by Lemma B. Also for each fixed x ∈ X ,

y �→ Σp∈E∗βp(y)Re〈 p, y − x〉
is continuous on X . Hence, for each fixed x ∈ X , the map y �→ φ(x, y) is lower
semicontinuous on X .

(3) Clearly, for each y ∈ X , the set {x ∈ X : ψ(x, y) > 0} is convex.
(4) By hypothesis, there exists a non-empty compact convex subset X0 of X and

a non-empty compact subset K of X such that for each y ∈ X \ K , there exists a
point x ∈ co(X0 ∪ {y}) ∩ S(y) such that infu∈T(x) Re〈 u, y − x〉 + h(y) − h(x) > 0 .
Thus β0(y)[infu∈T(x) Re〈 u, y − x〉 + h(y) − h(x)] > 0 whenever β0(y) > 0 . Also
Re〈 p, y − x〉 > 0 whenever βp(y) > 0 for p ∈ E∗ . Consequently, φ(x, y) =
β0(y)[infu∈T(x) Re〈 u, y− x〉 + h(y) − h(x)] +Σp∈E∗βp(y)Re 〈 p, y − x〉 > 0 .

Then φ and ψ satisfy all the hypotheses of Theorem A. Thus by Theorem A,
there exists ŷ ∈ K such that φ(x, ŷ) � 0 for all x ∈ X , i.e.,

β0(ŷ)[ inf
u∈T(x)

Re〈 u, ŷ− x〉 + h(ŷ) − h(x)] + Σp∈E∗βp(ŷ)Re〈 p, ŷ − x〉 � 0 (3.1)

for all x ∈ X .
If β0(ŷ) > 0 , then ŷ ∈ V0 = Σ so that γ (ŷ) > 0. Choose x̂ ∈ S(ŷ) ⊂ X such that

inf
u∈T(x̂)

Re〈 u, ŷ− x̂〉 + h(ŷ) − h(x̂) � γ (ŷ)
2

> 0;
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it follows that
β0(ŷ)[ inf

u∈T(x̂)
Re〈 u, ŷ− x̂〉 + h(ŷ) − h(x̂)] > 0.

If βp(ŷ) > 0 for some p ∈ E∗ , then ŷ ∈ Vp and hence

Re〈 p, ŷ〉 > sup
x∈S(ŷ)

Re〈 p, x〉 � Re〈 p, x̂〉

so that Re〈 p, ŷ− x̂〉 > 0. Then note that

βp(ŷ)Re〈 p, ŷ− x̂〉 > 0 whenever βp(ŷ) > 0 for p ∈ E∗.

Since β0(ŷ) > 0 or βp(ŷ) > 0 for some p ∈ E∗ , it follows that

φ(x̂, ŷ) = β0(ŷ)[ inf
u∈T(x̂)

Re〈 u, ŷ− x̂〉 + h(ŷ) − h(x̂)] + Σp∈E∗βp(ŷ)Re〈 p, ŷ − x̂〉 > 0,

which contradicts (3.1) . This contradiction proves Step 1.

Step 2.
inf

w∈T(ŷ)
Re〈w, ŷ− x〉 � h(x) − h(ŷ) for all x ∈ S(ŷ).

Indeed, from Step 1, ŷ ∈ S(ŷ) which is a convex subset of X , and

inf
u∈T(x)

Re〈 u, ŷ− x〉 � h(x) − h(ŷ) for all x ∈ S(ŷ).

Hence by Lemma 3, we have

inf
w∈T(ŷ)

Re〈w, ŷ − x〉 � h(x) − h(ŷ) for all x ∈ S(ŷ). (3.2)

Step 3. There exist a point ŵ ∈ T(ŷ) with Re〈 ŵ, ŷ − x〉 � h(x) − h(ŷ) for all x ∈
S(ŷ).

Indeed, from Step 2 we have

sup
x∈S(ŷ)

[ inf
w∈T(ŷ)

Re〈w, ŷ− x〉 + h(ŷ) − h(x)] � 0, (3.3)

where T(ŷ) is a strongly compact convex subset of the Hausdorff topological vector
space E∗ and S(ŷ) is a convex subset of X .

Now, define f : S(ŷ) × T(ŷ) → R by f (x, w) = Re〈w, ŷ − x〉 + h(ŷ) − h(x)
for each x ∈ S(ŷ) and each w ∈ T(ŷ). Note that for each fixed x ∈ S(ŷ) , the map
w �−→ f (x, w) is convex and continuous on T(ŷ) and for each fixed w ∈ T(ŷ) , the
map x �−→ f (x, w) is concave on S(ŷ) . Thus by Theorem B, we have

min
w∈T(ŷ)

sup
x∈S(ŷ)

[Re〈w, ŷ − x〉 + h(ŷ) − h(x)] = sup
x∈S(ŷ)

min
w∈T(ŷ)

[Re〈w, ŷ − x〉 + h(ŷ) − h(x)].

Hence
min

w∈T(ŷ)
sup

x∈S(ŷ)
[Re〈w, ŷ − x〉 + h(ŷ) − h(x)] � 0, by (3.3).

Since T(ŷ) is compact, there exists ŵ ∈ T(ŷ) such that

Re〈 ŵ, ŷ − x〉 � h(x) − h(ŷ) for all x ∈ S(ŷ). �

If X is compact, Theorem 5 reduces to the following:
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THEOREM 6. Let E be a locally convex Hausdorff topological vector space and X
be a non-empty compact convex subset of E . Let S : X → 2X be upper semicontinuous
such that each S(x) is closed convex and T : X → 2E∗

be semi-monotone and be upper
hemi-continuous along line segments in X to the weak ∗ -topology on E∗ such that each
T(x) is strongly compact convex. Let h : X → R be convex and continuous. Suppose
that the set

Σ = {y ∈ X : sup
x∈S(y)

[ inf
u∈T(x)

Re〈 u, y− x〉 + h(y) − h(x)] > 0}

is open in X . Then there exists a point ŷ ∈ K such that
(i) ŷ ∈ S(ŷ) and
(ii) there exist a point ŵ ∈ T(ŷ) with Re〈 ŵ, ŷ−x〉 � h(x)−h(ŷ) for all x ∈ S(ŷ) .

Note that if the map S : X → 2X is, in addition lower semicontinuous, and for each
y ∈ Σ , T is upper semicontinuous at some point x in S(y) with infu∈T(x) Re〈 u, y −
x〉 + h(y) − h(x)] > 0 , then the set Σ in Theorem 5 is always open in X . Thus we
obtain the following result:

THEOREM 7. Let E be a locally convex Hausdorff topological vector space and
X be a non-empty paracompact convex and bounded subset of E . Let S : X → 2X be
continuous such that each S(x) is compact convex and T : X → 2F be semi-monotone
and be upper hemi-continuous along line segments in X to the weak ∗ -topology on
E∗ such that each T(x) is strongly compact convex. Let h : X → R be convex and
continuous. Suppose that for each y ∈ Σ = {y ∈ X : supx∈S(y)[infu∈T(x) Re〈 u, y −
x〉 + h(y) − h(x)] > 0} , T is upper semi-continuous at some point x in S(y) with
infu∈T(x) Re〈 u, y − x〉 + h(y) − h(x) > 0. Suppose further that there exist a non-
empty compact convex subset X0 of X and a non-empty compact subset K of X
such that for each y ∈ X \ K , there exists a point x ∈ co(X0 ∪ {y}) ∩ S(y) with
infu∈T(x) Re〈 u, y− x〉 + h(y) − h(x) > 0 . Then there exists ŷ ∈ K such that

(i) ŷ ∈ S(ŷ) and
(ii) there exist a point ŵ ∈ T(ŷ) with Re〈 ŵ, ŷ−x〉 � h(x)−h(ŷ) for all x ∈ S(ŷ) .

Proof. Note that Theorem 7 follows from Theorem 5 if we show that the set

Σ = {y ∈ X : sup
x∈S(y)

[ inf
u∈T(x)

Re〈 u, y− x〉 + h(y) − h(x)] > 0}

is open in X . Indeed, let y0 ∈ Σ ; then by hypothesis, T is upper semicontinuous at
some point x0 in S(y0) with infu∈T(x0) Re〈 u, y0 − x0〉 + h(y0) − h(x0) > 0 . Let

α := inf
u∈T(x0)

Re〈 u, y0 − x0〉 + h(y0) − h(x0).

Then α > 0. Also let

W := {w ∈ E∗ : sup
z1,z2∈X

|〈w, z1 − z2〉 | < α/6}.
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Then W is a strongly open neighborhood of 0 in E∗ so that U1 := T(x0) + W is
an open neighborhood of T(x0) in E∗ . Since T is upper semicontinuous at x0 , there
exists an open neighborhood V1 of x0 in X such that T(x) ⊂ U1 for all x ∈ V1 .

As the map x �−→ infu∈T(x0) Re〈 u, x0 − x〉 + h(x0) − h(x) is continuous at x0 ,
there exists an open neighborhood V2 of x0 in X such that

| inf
u∈T(x0)

Re〈 u, x0 − x〉 + h(x0) − h(x)| < α/6 for all x ∈ V2.

Let V0 := V1 ∩ V2 ; then V0 is an open neighborhood of x0 in X . Since x0 ∈
V0∩S(y0) 
= ∅ and S is lower semicontinuous at y0 , there exists an open neighborhood
N1 of y0 in X such that S(y) ∩ V0 
= ∅ for all y ∈ N1 .

Since the map y �−→ infu∈T(x0) Re〈 u, y− y0〉 + h(y)− h(y0) is continuous at y0 ,
there exists an open neighborhood N2 of y0 in X such that

| inf
u∈T(x0)

Re〈 u, y− y0〉 + h(y) − h(y0)| < α/6 for all y ∈ N2.

Let N0 := N1 ∩ N2 . Then N0 is an open neighborhood of y0 in X such that for each
y1 ∈ N0 , we have

(i) S(y1) ∩ V0 
= ∅ as y1 ∈ N1; so we can choose any x1 ∈ S(y1) ∩ V0;
(ii) | infu∈T(x0) Re〈 u, y1 − y0〉 + h(y1) − h(y0)| < α/6 as y1 ∈ N2 ;
(iii) T(x1) ⊂ U1 = T(x0) + W as x1 ∈ V1;
(iv) | infu∈T(x0) Re〈 u, x0 − x1〉 + h(x0) − h(x1)| < α/6 as x1 ∈ V2.

It follows that

inf
u∈T(x1)

Re〈 u, y1 − x1〉 + h(y1) − h(x1)

� inf
[u∈T(x0)+W]

Re〈 u, y1 − x1〉 + h(y1) − h(x1) ( by (iii)),

� inf
u∈T(x0)

Re〈 u, y1 − x1〉 + h(y1) − h(x1) + inf
u∈W

Re〈 u, y1 − x1〉
� inf

u∈T(x0)
Re〈 u, y1 − y0〉 + h(y1) − h(y0)

+ inf
u∈T(x0)

Re〈 u, y0 − x0〉 + h(y0) − h(x0)

+ inf
u∈T(x0)

Re〈 u, x0 − x1〉 + h(x0) − h(x1) + inf
u∈W

Re〈 u, y1 − x1〉

� −α
6

+ α − α
6
− α

6
=

α
2

> 0 ( by (ii) and (iv));

therefore
sup

x∈S(y1)
[ inf
u∈T(x)

Re〈 u, y1 − x〉 + h(y1) − h(x)] > 0

as x1 ∈ S(y1). This shows that y1 ∈ Σ for all y1 ∈ N0, so that Σ is open in X . This
completes the proof. �

If X is compact, Theorem 7 reduces to the following:
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THEOREM 8. Let E be a locally convex Hausdorff topological vector space and X
be a non-empty compact convex subset of E . Let S : X → 2X be continuous such that
each S(x) is closed convex and T : X → 2E∗

be semi-monotone and be upper hemi-
continuous along line segments in X to the weak ∗ -topology on E∗ such that each T(x)
is strongly compact convex. Let h : X → R be convex and continuous. Suppose that for
each y ∈ Σ = {y ∈ X : supx∈S(y)[infu∈T(x) Re〈 u, y−x〉 +h(y)−h(x)] > 0} , T is upper
semi-continuous at some point x in S(y) with infu∈T(x) Re〈 u, y−x〉 +h(y)−h(x) > 0 .
Then there exists ŷ ∈ X such that

(i) ŷ ∈ S(ŷ) and
(ii) there exists a point ŵ ∈ T(ŷ) with Re〈 ŵ, ŷ − x〉 � h(x) − h(ŷ) for all

x ∈ S(ŷ) .
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