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STUDY OF GENERALIZED QUASI-VARIATIONAL
INEQUALITIES FOR LOWER AND UPPER
HEMI-CONTINUOUS OPERATORS ON NON-COMPACT SETS

MOHAMMAD S. R. CHOWDHURY AND KOK-KEONG TAN *

(communicated by J. Pecaric)

Abstract. Results are obtained on existence theorems of generalized quasi-variational inequal-
ities with monotone and lower hemi-continuous operators, or semi-monotone and upper hemi-
continuous operators on paracompact sets.

1. Preliminaries

If X is a non-empty set, we shall denote by 2* the family of all non-empty subsets
of X.

Let X be a non-empty subset of a topological vector space E. Given the maps
S:X — 2% and T : X — E*, the quasi-variational inequality problem (QVI) is to
find a point § € S(§) such that Re(T(),9 — x) < 0 forall x € S(9). The QVI was
introduced by Bensoussan and Lions in 1973 (see, e.g., [3]) in connection with impulse
control. Again, if we consider a set-valued map 7 : X — 2E" | then the generalized
quasi-variational inequality problem (GQVI) is to find a point y € S(§) and a point
Ww € T(9) such that Re( W,y —x) < 0 forall x € S(§). The GQVI was introduced by
Chan and Pang [4] in 1982 if E = R" and by Shih and Tan [8] in 1985 if E is infinite
dimensional.

If X is a topological space and {U,, : a € A} is an open cover for X, then a
partition of unity subordinated to the open cover {Uy : o € A} is a family {f, : o €
A} of continuous real-valued functions fy : X — [0, 1] such that

(1) Ba(y) =0 forall y € X\ Uq,

(2) { support By : a € A} is locally finite and

(3) ZaeaPu(y) =1 foreach y € X.

The following result is Lemma 1 of Shih and Tan in [8, pp.334-335]:
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LEMMA A. Let X be a non-empty subset of a Hausdorff topological vector space
E and S : X — 2F be an upper semicontinuous map such that S(x) is a bounded subset
of E for each x € X. Then for each continuous linear functional p on E, the map
fp : X — R defined by f,(y) = sup,cg,) Re(p,x) is upper semicontinuous; i.e., for
each A € R, the set {y € X : f,(y) = sup,eg(,) Re(p,x) <A} isopenin X.

The following result is Lemma 3 of Takahashi in [10, p.177] (see also Lemma 3 in
[9, pp.71-72]:

LEMMA B. Let X and Y be topological spaces, f : X — R be non-negative and
continuous and g : Y — R be lower semicontinuous. Then the map F : X x Y — R,
defined by F(x,y) =f(x)g(y) forall (x,y) € X x Y, is lower semicontinuous.

The following result is essentially Theorem 1 Bae-Kim-Tan in [2, p.231]:

THEOREM A. Let E be a topological vector space, X be a non-empty convex
subset of E and f,g: X x X — RU{—00,400} be such that

(a) g(x,x) <O forall x € X and f(x,y) < g(x,y) forall x,y € X;

(b) for each fixed x € X, y — f(x,y) is lower semicontinuous on non-empty
compact subsets of X ;

(c) for each fixed y € X, the set {x € X : g(x,y) > 0} is convex;

(d) there exist a non-empty compact convex subset Xy of X and a non-empty
compact subset K of X such that for each y € X \ K, there is an x € co(Xo U {y})
with f (x,y) > 0.

Then there exists $ € K such that f (x,9) <0 forall x € X.

We shall need the following Kneser’s minimax theorem in [7, pp.2418-2420] (see
also Aubin [1, pp.40-41]):

THEOREM B. Let X be a non-empty convex subset of a vector space and Y be a
non-empty compact convex subset of a Hausdorff topological vector space. Suppose
that f is a real-valued function on X X Y such that for each fixed x € X, the map
y — f(x,y) is lower semicontinuous and convex on Y and for each fixed y € Y, the
map x — f (x,y) is concave on X. Then

minsupf (x,y) = supminf (x,y).
minsupf (x,y) = supmin f (x, y)

2. Generalized quasi-variational inequalities for lower
hemi-continuous operators on non-compact sets.

In this section we shall obtain some existence theorems for generalized quasi-
variational inequalities for monotone and lower hemi-continuous operators on para-
compact sets.

The following definition is Definition 2.1(a) in [5, pp.28-29]:
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DEFINITION 1. Let E be a topological vector space, X be a non-empty subset of
E and T : X — 25" Then T is said to be lower hemi-continuous on X if and only if
for each p € E, the function f,, : X — RU {400}, defined by

fp(z) = sup Re(u,p) foreachz e X,
u€T(z)

is lower semicontinuous on X (if and only if for each p € E, the function g, : X —
R U {—o0}, defined by

g(2) = uér}fz) Re(u,p) foreachz € X,

is upper semicontinuous on X );
The following proposition is Proposition 2.2 in [5, p.29]:

PROPOSITION 1. Let E be a topological vector space and X be a non-empty subset
of E. Let T : X — 2E" be lower semicontinuous from relative topology on X to the
weak ™ topology 6(E*,E) on E*. Then T is lower hemi-continuous on X .

The following result is Lemma 4.1 in [5, pp.37-38]:

LEMMA 1. Let E be a topological vector space, X be a non-empty convex subset
of E, h : X - R be convexand T : X — 2E" be lower hemi-continuous along
line segments in X. Suppose § € X is such that sup,cr, Re{u,9 — x) < h(x) —
h(9) for all x € X. Then

sup Re(w,$ —x) < h(x) — h(P) forall x € X.
weT(9)

We shall first establish the following result:

THEOREM 1. Let E be a locally convex Hausdorff topological vector space and
X be a non-empty paracompact convex subset of E. Let S : X — 2X be upper
semicontinuous such that each S(x) is compact convexand T : X — 2E" be monotone
and be lower hemi-continuous along line segments in X to the weak * -topology on E* .
Let h : X — R be convex and continuous. Suppose that the set

Y={y€eX: sup sup Re{u,y—x) +h(y) —h(x) >0}
x€S8(y) ueT(x)

is open in X. Suppose further that there exist a non-empty compact convex subset X
of X and a non-empty compact subset K of X such that for each y € X \ K, there
exists a point x € co(Xo U {y}) N S(y) with sup,cr,) Re(u,y —x) +h(y) —h(x) > 0.
Then there exists a point y € K such that

(i) 3 €50) and

(i) sup,ere Re(w, 9 —x) < h(x) —h(P) forall x € S(3).

Proof. We shall prove this theorem in two steps:
Step 1. There exists a point § € X such that $ € S(§) and

sup [ sup Re{u,$—x) + h(P) — h(x)] <O0.
x€S(P) ueT(x)
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Suppose the contrary. Then foreach y € X, either y & S(y) or there exist x € S(y)
and u € T(x) such that Re(u,y —x) + h(y) — h(x) > 0; thatis, for each y € X, either
y¢ZS(y) oryeX. If y € S(y), then by Hahn-Banach separation theorem, there exists
p € E” such that Re(p,y) — sup,cg,) Re(p,x) > 0. Foreach y € X, set

y(y) :== sup [ sup Re(u,y —x) + h(y) — h(x)].
x€S(y) ueT(x)

Let Vo := {y € X|y(y) > 0} = X and for each p € E*, set

Vo :={y € X:Re(p,y) — sup Re(p,x) >0}.
xeS(y)

Then X = VoUU, ¢+ Vp- Sinceeach V, isopenin X by Lemma A and Vj is openin X
by hypothesis, {Vo,V, : p € E*} is an open covering for X. Since X is paracompact,
there is a continuous partition of unity {fy, 8, : p € E*} for X subordinated to the
open cover {Vo,V, : p € E*} (see, e.g., Theorem VIIL.4.2 of Dugundji in [6]); that is
foreach p € E*, B, : X — [0,1] and By : X — [0, 1] are continuous functions such
that for each p € E*, B,(y) =0 forall y € X\ V, and By(y) =0 forall y € X\ Vp
and { support By, support B, : p € E*} is locally finite and By(y) + Zpecp=fp(y) = 1
foreach y € X. Define ¢,y : X x X — R by

o(x,y) = Bo(y)l 2‘;1(’) Re(u,y — x) + h(y) — h(x)] + Zpep=Bp(y)Re(p,y — x) ,

and
Wxy) = Bov)[ inf Rew,y—x) +h(y) = hx)] + Zpep- By (y)Re(p,y =2,

for each x,y € X. Then we have the following.

(1) For each x,y € X, since T is monotone, ¢(x,y) < y(x,y) and y(x,x) =0
forall x € X.

(2) For each fixed x € X and each fixed u € T(x), the map

y — Re(u,y —x) +h(y) — h(x)
is continuous on X and therefore the map

y+— Bo(y)[ sup Re(u,y—x) + h(y) —h(x)]

u€T(x)

is lower semicontinuous on X by Lemma B. Also for each fixed x € X,

y = ZpeE*ﬁp(y)Re<p7y - x>

is continuous on X. Hence, for each fixed x € X, the map y — ¢(x,y) is lower
semicontinuous on X .

(3) Clearly, for each y € X, the set {x € X : w(x,y) > 0} is convex.

(4) By hypothesis, there exists a non-empty compact convex subset X, of X and
a non-empty compact subset K of X such that for each y € X \ K, there exists a
point x € co(Xo U {y}) N S(y) such that sup,cr(, Re(u,y —x) + h(y) — h(x) > 0.
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Thus Bo(y)[sup,er(y Re(u,y — x) + h(y) — h(x)] > O whenever fo(y) > 0. Also
Re(p,y —x) > 0 whenever fB,(y) > 0 for p € E*. Consequently, ¢(x,y) =
Bo(y)[sup,er(r) Re(u,y = x) + h(y) — h(x)] +Zpep=Bp(y)Re (p, y —x) >0.

Then ¢ and y satisfy all the hypotheses of Theorem A. Thus by Theorem A,
there exists § € K such that ¢(x,$) <O forall x € X, i.e.,

Bo(¥)] Zl;%))&f( w, 9 = x) +h(9) = h(x)] + Zpep-Bp(F)Re(p, § — x) <O (2.1)

forall x € X.
If Bo(9) > 0, then § € Vy = X so that y(§) > 0. Choose & € S(§) C X such that

sup Re(u,y—3%) +h(@®) —h(®) > —= > 0;
ueT(%) 2

it follows that

Bo(¥)] Zl;%Re(uvﬁ — %) + () —hE)] > 0.

If B,(9) > 0 for some p € E*, then § € V,, and hence

Re(p,9) > sup Re(p,x) = Re(p,%)
x€S(P)

A

so that Re(p,$ — &) > 0. Then note that
By,(9)Re(p,y —X) >0 whenever B,(y) > 0for p € E*.
Since Bo($) > 0 or B,(9) > 0 for some p € E*, it follows that

¢(%,9) = Bo()] Q%Rd u, 9 = %) +h(9) = k@] + Zpepfp,(§)Re(p, 3 — %) >0,

which contradicts (2.1). This contradiction proves Step 1.
Step 2.

sup Re(w,$ —x) < h(x) —h(P) forall x e S().
weT(9)

Indeed, from Step 1, § € S(§) which is a convex subset of X, and

sup Re{u,y—x) < h(x) —h(¥) forall xe S(3).
ueT(x)

Hence by Lemma 1, we have

sup Re(w,9 —x) < h(x) —h() forall xe SF). O
weT(9)

If X is compact, Theorem 1 reduces to the following:
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THEOREM 2. Let E be alocally convex Hausdorff topological vector space and X
be a non-empty compact convex subset of E. Let S : X — 2% be upper semicontinuous
such that each S(x) is closed convexand T : X — 2E" be monotone and be lower hemi-
continuous along line segments in X to the weak* -topology on E*. Let h : X — R be
convex and continuous. Suppose that the set

Y={yeX: sup sup Re{u,y—x) +h(y) — h(x) > 0}
X€S(y) ueT(x)

is open in X . Then there exists a point y € X such that
() 9 €S(9) and
(i) sup,ere Re(w,9 —x) < h(x) —h(P) forall x € S(3).

REMARK 1. Theorem 1 and Theorem 2 generalize Theorem 1 of Shih-Tan in [8,
p.335].

Note thatif X isalsobounded in Theorem 1 and themap S : X — 2% is, in addition,
lower semicontinuous and for each y € £ = {y € X : SUP,cs(y) [supueT(X) Re{u,y —
x) + h(y) — h(x)] > 0}, T is lower semicontinuous at some point x in S(y) with
SUpP,cr(y) Re(u, y —x) +h(y) — h(x) > 0, then the set X in Theorem 1 is always open
in X. Thus we obtain the following result:

THEOREM 3. Let E be a locally convex Hausdorff topological vector space and
X be a non-empty paracompact convex and bounded subset of E. Let S : X — 2%
be continuous such that each S(x) is compact convex and T : X — 2E" be monotone
and be lower hemi-continuous along line segments in X to the weak * -topology on E* .
Let h : X — R be convex and continuous. Suppose that for each y € L = {y € X :
SUP, ¢ s(y) [SUP,er() Re(u, y — x) + h(y) — h(x)] > 0}, T is lower semicontinuous at
some point x in S(y) with sup,cr(y Re{u,y —x) +h(y) — h(x) > 0. Suppose further
that there exist a non-empty compact convex subset Xy of X and a non-empty compact
subset K of X such that foreach y € X\ K, there exists a point x € co(XoU{y})NS(y)
with sup,cr(,) Re{u,y —x) + h(y) — h(x) > 0. Then there exists a point § € K such
that

(i) §€5() and

(ii) sup,er Re(w,9 —x) < h(x) —h(9) forall x € S(9).

Proof. Note that Theorem 3 follows from Theorem 1 if we show that the set

X:={yeX: sup[sup Re{u,y—x) + h(y) — h(x)] > 0}
x€S(y) ueT(x)

is open in X. Indeed, let yo € Z; then by hypothesis, T is lower semicontinuous at
some point xo in S(yo) with sup,cr(,,) Re{u,y0 —x0) + h(yo) — h(xo) > 0. Hence
there exists ug € T(xp) such that Re{uo,yo — x0) + h(yo) — h(xo) > 0. Let

o := Re(uo,yo — x0) + h(yo) — h(xo).
Then o > 0. Also let

a
U :={ueE: sup {u—up,z1 —22)| <=}
21,2€X 6
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Then U, isastrongly open neighborhood of ug in E*. Since T is lower semicontinuous
at xop and U; NT(xg) # 0, there exists an open neighborhood V| of xy in X such that
T(x)NU, # 0 forall x € Vy.

As the map x — Re{uo,xo — x) + h(xo) — h(x) is continuous at xo, there exists
an open neighborhood V, of xy in X such that

IRe(uo, x0 — %) + h(x0) — h(x)] < % forall x € Vi.

Let Vo := V; N V,; then Vp is an open neighborhood of xo in X. Since xy €
VoNS(yp) # 0 and S is lower semicontinuous at yy , there exists an open neighborhood
Ni of yo in X such that S(y) N Vy # 0 forall y € Ny.

Since the map y — Re(uo,y — yo) + h(y) — h(yo) is continuous at yg, there
exists an open neighborhood N, of yy in X such that

o
|Re{up,y — yo) + h(y) — h(yo)| < F forall y € N;.

Let Ny := N; N N,. Then N is an open neighborhood of yy in X such that for each
y1 € No, we have

(i) S(y1)NVy# D as y; € Ny; so we can choose any x; € S(y;) N Vo;

(it) |Re(uo,y1 —yo) +h(y1) —h(yo)| < § as y1 € Na;

(iii) T(x;)NU; # 0 as x; € V;; choose any u; € T(x;) N U; so that

(04
sup |[(ur —ug,z1 —22) | < i
21,22€X

(iv) |Re(uo,xo — x1) + h(xo) — h(x1)| < € as x; € V,.
It follows that

Re{uy,yy —x1) + h(y1) — h(x;)
= Re{uy — uo,y1 — x1) + Re{uo,yr —x1) + h(y1) — h(x;)

a
> —¢ +Re(uo,y1 = yo) +h(yi) = h(y)

+ Re(ug,yo — x0) + h(yo) — h(xo)
+Re<u0,xo - x1> + h(xO) - h(xl)( by (iii))7
>8-S =2 =2 >0 (by (i) and (i)

therefore

sup [ sup Re(u,y; —x) +h(y1) —h(x)] >0
x€S(y1) u€T(x)

as x; € S(y1) and u; € T(x;). This shows that y; € X for all y; € Ny, so that X is
open in X . This completes the proof. [J

If X is compact, Theorem 3 reduces to the following:
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THEOREM 4. Let E be a locally convex Hausdorff topological vector space and
X be a non-empty compact convex subset of E. Let S : X — 2% be continuous
such that each S(x) is closed convex and T : X — 2E" be monotone and be lower
hemi-continuous along line segments in X to the weak™ -topology on E*. Let h :
X — R be convex and continuous. Suppose that for each y € £ = {y € X :
SUPes(y) [SUPLer () Re(u,y — x) + h(y) — h(x)] > O}, T is lower semicontinuous at
some point x in S(y) with sup,cr, Re(u,y —x) +h(y) —h(x) > 0. Then there exists
a point y € X such that

(i) §€S() and

(ii) sup,er Re(w,9 —x) < h(x) —h(9) forall x € S(9).

REMARK 2. Theorem 3 and Theorem 4 generalize Theorem 2 of Shih-Tan in 8,
p-338].

3. Generalized quasi-variational inequalities for upper
hemi-continuous operators on non-compact sets.

In this section we shall obtain some existence theorems for generalized quasi-
variational inequalities for semi-monotone and upper hemi-continuous operators on
paracompact sets.

The following definition is Definition 2.1(b) in [5, pp.28-29]:

DEFINITION 2. Let E be a topological vector space, X be a non-empty subset of
Eand T:X — 25" Then T is said to be upper hemi-continuous on X if and only if
for each p € E, the function f,, : X — RU {400}, defined by

f»(z) = sup Re(u,p) foreachz € X,
u€T(z)

is upper semicontinuous on X (if and only if for each p € E, the function g, : X —
R U {—o0}, defined by

gp(2) = uér}fz) Re(u,p) foreachz € X,

is lower semicontinuous on X ).
The following proposition is Proposition 2.4 in [5, p.30]:

PROPOSITION 2. Let E be a topological vector space and X be a non-empty subset
of E. Let T : X — 2E" be upper semicontinuous from relative topology on X to the
weak* topology o{E*,E) on E*. Then T is upper hemi-continuous on X .

Note that there is a typo in Proposition 2.4 in [5, p.30]. The set X is not required
to be convex.

The following simple result is Lemma 2.1.6 in [11]:
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LEMMA 2. Let E be a topological vector space and A be a non-empty bounded
subset of E. Let C be a non-empty strongly compact subset of E*. Define f : A — R
by f(x) = min,cc Re{u,x) forall x € A. Then f is weakly continuous on A.

The following result is Lemma 4.2 in [5, p.38]:

LEMMA 3. Let E be a topological vector space, X be a non-empty convex subset
of E, h : X — R be convexand T : X — 2E" be upper hemi-continuous along
line segments in X. Suppose y € X is such that inf ey Re{u,y —x) < h(x) —
h(9) for all x € X. Then

inf Re(w,y —x) < h(x) —h(®) forall x € X.
weT($)

We shall now establish the following result:

THEOREM 5. Let E be a locally convex Hausdorff topological vector space and
X be a non-empty paracompact convex and bounded subset of E. Let S : X — 2%
be upper semicontinuous such that each S(x) is compact convexand T : X — 2E" pe
semi-monotone and be upper hemi-continuous along line segments in X to the weak ™ -
topology on E* such that each T(x) is strongly compact convex. Let h : X — R be
convex and continuous. Suppose that the set

Y={yeX: sup [ inf Re(u,y—x) +h(y)— h(x)] > 0}
xeS(y) u€eT(x)

is open in X. Suppose further that there exist a non-empty compact convex subset X
of X and a non-empty compact subset K of X such that for each y € X \ K, there
exists a point x € co(Xo U {y}) N S(y) with inf,cr(y) Re(u,y —x) + h(y) —h(x) > 0.
Then there exists a point y € K such that

(i) § € S(5) and

(ii) there exist apoint w € T(9) with Re(Ww,$—x) < h(x)—h(P) forall x € S(9).

Proof. We shall prove this theorem in three steps:

Step 1. There exists a point § € X such that § € S(9) and

sup [ inf Re(u,$—x) + h(P) — h(x)] <O0.
x€S(5) ueT(x)
Suppose the contrary. Then for each y € X, either y & S(y) or there exists
x € S(y) such that inf,cz( Re{u,y —x) + h(y) — h(x) > 0; thatis, for each y € X,
either y & S(y) or y € Z. If y &€ S(y), then by Hahn-Banach separation theorem, there
exists p € E* such that Re(p,y) — sup,cg(,) Re(p,x) > 0. Foreach y € X, set

y(y) := sup [ inf Re(u,y—x) +h(y) — h(x)].
x€S(y) u€eT(x)

Let Vo := {y € X|y(y) > 0} = X and for each p € E*, set

V,:={y€X:Re(p,y) — sup Re(p,x) >0}.
x€S(y)
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Then X = VoUU,c+ Vp- Sinceeach V, isopenin X by LemmaA and Vj is openin X
by hypothesis, {Vo,V, : p € E*} is an open covering for X. Since X is paracompact,
there is a continuous partition of unity {fy, 8, : p € E*} for X subordinated to the
open cover {Vo,V, :p € E*}. Define ¢,y : X x X — R by

¢(x,y) = Bo(y)[uei%) Re{u,y — x) + h(y) — h(x)] + Zpep=Bp(y)Re(p,y — x) ,

and
v(x,y) = Bo(y)[wg}fv> Re(w,y —x) +h(y) — h(x)] + Zpep= B, (y)Re(p,y — x)

for each x,y € X. Then we have the following.

(1) For each x,y € X, since T is semi-monotone, ¢(x,y) < y(x,y) and
y(x,x) =0 forall x € X.

(2) For each fixed x € X, the map

yi— inf Re(u,y—x) +h(y) = h(x)
u€eT(x)
is weakly lower semicontinuous (and therefore lower semi-continuous) on X by Lemma
2 and the fact that % is continuous; therefore the map

yr— o) inf Re(w.y—x) +h() ~ h(v)]

is lower semicontinuous on X by Lemma B. Also for each fixed x € X,

y = ZpersBp(y)Re(p,y — x)

is continuous on X. Hence, for each fixed x € X, the map y — ¢(x,y) is lower
semicontinuous on X .

(3) Clearly, for each y € X, the set {x € X : w(x,y) > 0} is convex.

(4) By hypothesis, there exists a non-empty compact convex subset X of X and
a non-empty compact subset K of X such that for each y € X \ K, there exists a
point x € co(Xo U {y}) N S(y) such that inf,cr) Re(u,y — x) + h(y) — h(x) > 0.
Thus Bo(y)[inf,er() Re(u,y — x) + h(y) — h(x)] > 0 whenever By(y) > 0. Also
Re(p,y —x) > 0 whenever B,(y) > 0 for p € E*. Consequently, ¢(x,y) =
Bo(y)[infuerx) Re(u,y — x) + h(y) — h(x)] +Zpep+By(v)Re (p, y—x) > 0.

Then ¢ and y satisfy all the hypotheses of Theorem A. Thus by Theorem A,
there exists § € K such that ¢(x,$) <O forall x € X, i.e.,

Bo9)]inf Re.5—2) +h(5) ~ )] + Dyeg BRe(p§ —2) <O (3.1
forall x € X.
If Bo(9) > 0, then § € Vy = X so that y(§) > 0. Choose & € S(§) C X such that

inf Re(u,y—X) +h(9) —h(X) > r0) > 0;
u€T(%) 2
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it follows that
BoP)[ inf Re{u,y—23) + h(P) — h(X)] > 0.

ueT (%)
If B,(9) > 0 for some p € E*, then § € V, and hence

Re(p,9) > sup Re(p,x) = Re(p,%)
x€S(P)

so that Re(p,$ — &) > 0. Then note that
By(¥)Re(p,y —%) >0 whenever B,(y) > 0for p € E*.
Since Bo($) > 0 or B,(9) > 0 for some p € E*, it follows that

0(%9) = Bo(V)[ inf Re{w,§ = %) +h(9) = h(®)] + Zper-By(F)Re(p,§ — %) >0,
which contradicts (3.1) . This contradiction proves Step 1.

Step 2.

u}f )Re(w,ﬁ —x) < h(x) —h(@)forall xe S().
weT(y

Indeed, from Step 1, $ € S(§) which is a convex subset of X, and

ir;t(")Re(u,j) —x) < h(x) —h(P) forall xe S().
uel(x

Hence by Lemma 3, we have
1r;t; )Re(w .9 —x) <h(x)—h(@) forall xe S(). (3.2)
we

Step 3. There exist a point w € T(§) with Re{Ww,$ —x) < h(x) — h(§) forall x €
5(9)-

Indeed, from Step 2 we have

sup [ inf Re{w,y—x) +h(P) — h(x)] <O, (3.3)
xes() weT(®)
where T(§) is a strongly compact convex subset of the Hausdorff topological vector
space E* and S(J) is a convex subset of X.

Now, define f : S(J) x T(§) — R by f(x,w) = Re{w,$ — x) + h(J) — h(x)
for each x € S(§) and each w € T(J). Note that for each fixed x € S(§), the map
w — f(x,w) is convex and continuous on 7(¥) and for each fixed w € T(§), the
map x — f (x,w) is concave on S(9). Thus by Theorem B, we have

min sup [Re{(w,$ —x) +h(P) — h(x)] = sup min [Re{w,$ —x) + k() — h(x)].
weT(9) xes() xes() weTl)

Hence

min sup [Re{w,$ —x) + h(¥) — h(x)] <0, by (3.3).
weT(d )xES( )

Since T(9) is compact, there exists w € T(9) such that
Re(Ww,9 —x) < h(x) —h(p) forallx e SF). O

If X is compact, Theorem 5 reduces to the following:
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THEOREM 6. Let E be a locally convex Hausdorff topological vector space and X
be a non-empty compact convex subset of E. Let S : X — 2% be upper semicontinuous
such that each S(x) is closed convexand T : X — 2E" be semi-monotone and be upper
hemi-continuous along line segments in X to the weak™* -topology on E* such that each
T(x) is strongly compact convex. Let h : X — R be convex and continuous. Suppose
that the set

Y={yeX: sup[ inf Re(u,y—x) +h(y)— h(x)] >0}
xeS(y) u€T(x)

is open in X. Then there exists a point ¥ € K such that
(i) $€SO) and
(ii) there exist apoint w € T(9) with Re(Ww,$—x) < h(x)—h(P) forall x € S(9).

Note thatifthemap S : X — 2X is, in addition lower semicontinuous, and for each
y € X, T is upper semicontinuous at some point x in S(y) with inf,cz() Re{u,y —
x) + h(y) — h(x)] > 0, then the set £ in Theorem 5 is always open in X. Thus we
obtain the following result:

THEOREM 7. Let E be a locally convex Hausdorff topological vector space and
X be a non-empty paracompact convex and bounded subset of E. Let S : X — 2% be
continuous such that each S(x) is compact convex and T : X — 2F be semi-monotone
and be upper hemi-continuous along line segments in X to the weak™ -topology on
E* such that each T(x) is strongly compact convex. Let h : X — R be convex and
continuous. Suppose that for each y € £ = {y € X : sup,cg,)|infuer() Re(u,y —
x) + h(y) — h(x)] > 0}, T is upper semi-continuous at some point x in S(y) with
infyer) Re(u,y — x) + h(y) — h(x) > 0. Suppose further that there exist a non-
empty compact convex subset Xy of X and a non-empty compact subset K of X
such that for each y € X \ K, there exists a point x € co(Xo U {y}) N S(y) with
inf (v Re(u,y — x) + h(y) — h(x) > 0. Then there exists § € K such that

(i) 9 €S(9) and

(ii) there exist apoint w € T(9) with Re(Ww,$—x) < h(x)—h(P) forall x € S(9).

Proof. Note that Theorem 7 follows from Theorem 5 if we show that the set

Y={yeX: sup [ inf Re(u,y—x) +h(y)— h(x)] > 0}
x€S(y) u€eT(x)

is open in X. Indeed, let yo € Z; then by hypothesis, T is upper semicontinuous at
some point xo in S(yo) with inf,cr(y,) Re(u,yo — xo0) + h(yo) — h(xo) > 0. Let

o := inf Re{u,yo—x0) + h(yo) — h(xo).
u€T(xo)

Then o > 0. Also let

W:={weE": sup {w,z1 —2)| < t/6}.
21,22€X
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Then W is a strongly open neighborhood of 0 in E* so that U; := T(xg) + W is
an open neighborhood of T(xy) in E*. Since T is upper semicontinuous at x , there
exists an open neighborhood V; of xo in X such that T(x) C U; forall x € V;.

As the map x —— inf,cr(y,) Re(u, xo — x) + h(xo) — h(x) is continuous at x,
there exists an open neighborhood V, of xo in X such that

| e11T1(f )Re(u,xo —x) + h(xo) —h(x)| < a/6 forall x € V.
u X0
Let Vo := Vi N V,; then Vj is an open neighborhood of xp in X. Since xy €
VoNS(yo) # 0 and S is lower semicontinuous at yg , there exists an open neighborhood
Ny of yo in X such that S(y) N Vo # 0 forall y € Ny.
Since the map y —— inf,c7(y,) Re(u,y — yo) + h(y) — h(yo) is continuous at yq,
there exists an open neighborhood N, of yg in X such that

1;1(f )Re(u,yfyo> +h(y) —h(yo)| < o/6 forall y € N,.
ucT(xo

Let Ny := N; N N,. Then N is an open neighborhood of yy in X such that for each
y1 € Ny, we have

(i) S(y1)NVy+#0D as y; € Ny; so we can choose any x; € S(y;) N Vo;

(it) |inf,er(y,) Re(u,y1 —yo) +h(y1) —h(yo)| < /6 as y; € Ny;

(lll) ( ) cU = (X()) + W as x; € Vi;

(v) |infyer(x) Reu, xo — x1) + h(xo) — h(x1)| < ot /6 as x; € Va.

It follows that
inf Re(u,yi —x1) +h(y1) — h(x1)
u€T(x))
> inf  Re(u,yy —x1) +h(y1) — h(x)) ( by (iii)),
WET (x0)+W]
> inf Re(u,y; —x1) +h(y1) —h(x1) + inf Re(u,y; —x1)
u€T(xo) wew
> inf Re(u,yi —yo) +h(yi1) — h(yo)
u€T(xo)
+ inf Re{u,yo —x0) + h(yo) — h(xo)
u€T(xo)
+ inf Re{u,xo—x1) + h(xo) — h(x;) + inf Re(u Y1 —x1)
u€T(xo) wew
27%+af%f%:%>o (by (ii) and (iv));

therefore

sup [ inf Re(u,y; —x) +h(y1) —h(x)] >0
x€S(y1) ueT(x)

as x; € S(y1). This shows that y; € X for all y; € Ny, so that X is open in X. This
completes the proof. [

If X is compact, Theorem 7 reduces to the following:
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THEOREM 8. Let E be a locally convex Hausdorff topological vector space and X
be a non-empty compact convex subset of E. Let S : X — 2% be continuous such that
each S(x) is closed convex and T : X — 2E" be semi-monotone and be upper hemi-
continuous along line segments in X to the weak* -topology on E* such that each T(x)
is strongly compact convex. Let h : X — R be convex and continuous. Suppose that for
each 'y € 2= {y € X : sup, gy [infucr(x) Re(u, y—x) +h(y) —h(x)] > 0}, T isupper
semi-continuous at some point x in S(y) with inf,cr Re{u,y—x) +h(y) —h(x) > 0.
Then there exists y € X such that

(i) § € S() and

(ii) there exists a point W € T(9) with Re{(Ww,$ — x) < h(x) — h(P) for all
x e S@).
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