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INEQUALITIES FOR BRACHISTOCHRONE

A. G. RAMM

(communicated by J. Pečarić)

Abstract. Let A = (0, 1) and B = (b, 0) be the initial and final points, and y = y(x) joins
A with AB , y′′ � 0 , 0 � y(x) � y0(x) , where y0(x) is the straight line joining A and B .
Denote by S the set of such y(x) . Let P be the polygon consisting of two segments of straight
lines: A0 and OB , where 0 = (0, 0) is the origin. Up to a constant factor depending on the
choice of units, the time needed for a particle to get from A to B along y(x) in the gravitational

field is T(y) =
∫ b
0

√
1+y′2√
1−y

dx . Let T0 := T(y0) = 2
√

1 + b2 , TP := T(P) = 2 + b . It is

conjectured that:
1) if 0 < b < 4

3 then T(ybr) � T(y) < TP , y ∈ S ,
2) if 4

3 � b � π
2 then T(ybr) � T(y) � T0 , y ∈ S ,

3) if b > π
2 then T(Pbr) < T(y) � T0 , y ∈ S

where ybr = ybr(x) ∈ S is the classical brachistochrone curve. For b > π
2 this curve probably

degenerates into Pbr , the brachistochrone curve which joins A and (π/2, 0) and the straight
line joining (π/2, 0) and (b, 0) .

1. Introduction

The classical brachistochrone problem is:
Find a curve y(x) which joins two points A = (0, h) and B = (b, 0) such that

t(y) :=
∫ b

0

√
1 + y′2√

2g(h − y)
dx = min (1.1)

Here t(y) is the time needed for a particle moving along the curve y = y(x) in the
gravitational field (with the gravitational acceleration g ) to go from A to B . Indeed,
dt = ds

v , where ds =
√

1 + y′2 dx is the element of the length of the curve, and
v =

√
2g(h − y) is the velocity of the particle,which is calculated from the conservation

of energy law: mv2

2 + mgy = mgh . In what follows, we take h = 1 and choose the
acceleration units in which 2g = 1 . The possiblility to take h = 1 without loss of
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generality, comes from the observation that the change of variables ξ = x
h , η = y

h
reduces the functional (1.1) to

√
h
∫ b

h

0

√
1 + (η′

ξ )
2√

2g(1 − η(ξ))
dξ .

So, the problem formulation, with the above remarks taken into account, is:
Find the minimum of the functional

T(y) :=
∫ b

0

√
1 + [y′(x)]2√
1 − y(x)

dx = min (1.2)

among all y ∈ C2(0, b) , such that

y(0) = 1, y(b) = 0. (1.3)

This problem was posed and solved by Johann Bernoulli in 1696 and by several
other people, including G. Leibniz, Jacob Bernoulli and I. Newton at the same time.
This problem is a cornerstone of the calculus of variations [1], [2]. The solution,
y = y(x) , to (1.2)–(1.3) is called the brachistochrone curve. In the classical solution
it was proved that the brachistochrone (which is understood in this discussion as an
extremal of the functional (1.2)) can join any two points in the vertical plane. This
was so because the Earth was assumed to be nonexistent: only the gravitational field
existed. In our reformulation of the problem not any two points can be joined by an
extremal of the functional (1.2) as shown in section 3 below, see Lemma 3.1. Although
the brachistohrone problem is 300 years old, it is of interst to find out that it is still
not quite well understood and to formulate some questions about brachistohrone the
answers to which seem unknown.

In this note we reconsider problem (1.2)–(1.3) and ask the following question:
Suppose additionally to (1.3) that

y′′ � 0, 0 � y(x) � y0(x), (1.4)

where y0(x) is the straight line joining A and B , that is

y0(x) = 1 − x
b
. (1.5)

Let S be the set

S :=
{
y(x) : (1.3) and (1.4) hold, y ∈ C2(0, b)

}
. (1.6)

Is it true that

T(y) � T0 := T(y0) = 2
√

1 + b2, ∀y ∈ S? (1.7)

We prove that the answer is no.
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However, we conjecture that:
There exists a number b0 = 4

3 such that:

if b � b0 then (1.7) is true, (1.8)

if b < b0 then (1.7) is false. (1.9)

In addition, we give a (hopefully) new method for integration of the Euler’s
equation for the classical functional (1.2) and show, using our solution, that for b > π

2
there is no solution to Euler’s equation for the functional (1.2) which satisfies the
boundary conditions (1.3).

Proofs are given in section 2, in section 3 some auxiliary results are obtained, and
in section 4 the summary of the results is given.

We conjecture that for b > π
2 the brachistochrone is the curve Pbr consisting of

two parts: one is the classical brachistochrone curve which joins A with (π/2, 0) and
the second is the segment of the straight line which joins (π/2, 0) with (b, 0) .

2. Proofs and discussions

2.1. Let us first prove (1.9). Let Pa be a polygon joining A and B and consisting
of two segments: one joins A with the point (a, 0) , 0 < a < b , and the second joins
(a, 0) and (b, 0) . This curve is not a C2 curve, but can be smoothed to become C2

with an arbitrary small change of the functional Ta := T(Pa) . The smoothed curve
belongs to S (see (1.6)). It is easy to check that

T(Pa) = 2
√

1 + a2 + b − a. (2.1)

We claim that if 0 < b < 4
3 , then, for sufficiently small a > 0 , one has

T(Pa) > T0. (2.2)

Indeed, if a is sufficiently small, then

T(Pa) = 2 + b + O(a), a → 0, (2.3)

and the inequality

2 + b > 2
√

1 + b2 if 0 < b <
4
3

(2.4)

is checked easily. Thus, claim (1.9) is proved. �
2.2. Let us now discuss claim (1.8). The functional (1.2) has not more than one

critical point, (see section 3), and if it has critical point, this point is a point of minimum
of T(y) , the brachistochrone, which is a C2(0, b)∩H1[0, b] function, where H1 is the
Sobolev space. We postpone a verification of this statement, which can be found in
section 3. There is at most one critical point of the functional (1.2) in S , and if a critical
point exists, it is an element of S (see section 3). Therefore, maximum of the functional
(1.2) can be attained only at the boundary points of the set S . The boundary points of
the set S are the points which are not interior. One such a point is y0(x) . The other
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should have been the polygon P consisting of two straight line segments: one joins S
and the origin (0, 0) , and the second joins (0, 0) and (b, 0) . This polygon does not
belong to S , but can be considered as a limiting point for S since there is a sequence
yn(x) of the elements of S which converges to P in the following sense: ρ(yn, P) → 0
as n → ∞ . Here ρ(y1, y2) = inf

ξ1∈C1

sup
ξ2∈C2

|ξ1 − ξ2| , where Cj is the set of points which

lie on the j -th curve Cj , j = 1, 2 . In our case C1 = {x, yn(x)}0�x�b , and C2 = P .
One can easily check that

T(P) = 2 + b, (2.5)

where, by definition,
T(P) := lim

a↓0
T(Pa), (2.6)

(see equation (2.3)). It is also easy to check that

2 + b � 2
√

1 + b2 if b � 4
3
. (2.7)

For b > 4
3 , we would like to conclude that

T0 = max {T0, T(P)} � T(y) ∀y ∈ S. (2.8)

One can also check, using formula (3.14) of section 3, that if b > π/2 then T(Pbr) <
T(P) < T0 . �

3. Integration of the Euler’s equation

The derivation here differs from the usual one and is included by this reason. It
also allows one to see for what b there is no solution to the Euler’s equation which
satisfies the boundary conditions (1.3). The Euler’s equation for (1.2) is

1
2
(1 + y

′2)
1
2 (1 − y)−

3
2 − d

dx

[
(1 − y)−

1
2 (1 + y

′2)−
1
2 y′

]
= 0. (3.1)

Let us use the standard change of variables: p = p(y) = y′(x) . Then (3.1)
becomes

1
2
(1 + p2)

1
2 (1 − y)−

3
2 − p

d
dy

[
(1 − y)−

1
2 (1 + p2)−

1
2 p

]
= 0. (3.2)

Denote
z := z(y) := (1 − y)−

1
2 (1 + p2)−

1
2 p. (3.3)

Then (3.2) becomes

2z
dz
dy

= (1 − y)−2, z2(y) = c0(1 − y)−1, (3.4)

or

(1 − y)−1 p2

1 + p2
= c0 + (1 − y)−1,

p2

1 + p2
= c0(1 − y) + 1, (3.5)
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where c0 is an integration constant. From (3.5) it follows that:

− 1
1 + p2

= c0(1 − y), p2 =
−1

c0(1 − y)
− 1. (3.6)

Since 0 < y < 1 , it is clear from (3.6) that c0 < 0 . Thus we denote − 1
c0

= c1 > 0
and write (3.6), taking into account that y′(x) � 0 , as

dy
dx

= −
√

c1 − 1 + y
1 − y

:= −
√

c + y
1 − y

, c := c1 − 1 > 0. (3.7)

The boundary condition y(0) = 1 and equation (3.7) imply:

x =
∫ 1

y

√
1 − y
c + y

dy. (3.8)

The constant c in (3.8) is to be determined from the condition y(b) = 0 :

b =
∫ 1

0

√
1 − y
c + y

dy := I. (3.9)

The integral in (3.9) is calculated by the standard substitution: 1−y
c+y = t2 , which yields

y =
1 − ct2

1 + t2
, dy = −2(c + 1)

t dt
(1 + t2)2

, I = 2(c + 1)
∫ c−

1
2

0

t2 dt
(1 + t2)2

. (3.10)

Let t = tan s . Then∫
t2 dt

(1 + t2)2
=

∫
sin2 s cos4 s

cos2 s
ds

cos2 s
=

∫
sin2 s ds

=
s
2
− 1

2
sin s cos s =

s
2
− tan s

2[1+(tan s)2]
.

Therefore

I = (c + 1) arc tan
1√
c
−√

c, (3.11)

and (3.9) becomes

b = (c + 1) arc tan
1√
c
−√

c := g(c), (3.12)

where c � 0 since in (3.9) c + y > 0 for all y ∈ [0, 1] . The function g(c) decays on
[0,∞) since g′ < 0 for c > 0 . Therefore

max
c�0

g(c) = g(0) =
π
2

. (3.13)

We have proved the following:

LEMMA 3.1. Equation (3.12) is not solvable if b > π
2 .

Therefore, if b > π
2 the Euler’s equation (3.1) has no solution satisfying the

boundary condition (1.3).
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This means that for b > π
2 the functional T(y) defined in (1.2) does not have

critical points.
Therefore if b > π

2 then T(y) attains its minimum at a boundary point, maybe at
Pbr .

Note that (3.8) can be written as

x = (c + 1)

[
arc tan

√
1 − y
c + y

−
√

1 − y
c + y

c + y
c + 1

]
, (3.14)

and using the condition y(b) = 0 , one obtains from (3.14) equation (3.12) once again.
Using (3.14), one calculates T(Pbr) = b + π

2 < 2
√

1 + b2 = T0 provided that
b > π

2 , as was claimed in section 2.
It follows from (3.14) that the functions y = y(x) and x = x(y) defined by

(3.14) are not in C2 in the closed intervals [0, b] and [0, 1] respectively. Indeed, in a
neighborhood of y = 1 , the function x = x(y) behaves like const · (1 − y)

3
2 and in

a neighborhood of x = 0 the function y = y(x) is a smooth function of x
2
3 such that

y′(x) ∈ L2(0, b) , y �∈ C2[0, b] , but y ∈ C2(0, b) ∩ H1[0, b] .

Finally, one can check that x′y = − 1
2(c+1)

√
1−y
c+y < 0 , and y′′xx = − x′′

x′3 > 0 , and

therefore y ∈ S , as was mentioned in section 2.

4. Conclusions

Let us summarize:
1) if b < 4

3 then there exists y ∈ S such that T(y) > T(y0) ;
if ybr is given by equation (3.14) in which c > 0 is the unique solution to (3.12),
then:
T(ybr) = min

y∈S
T(y) = min

y∈C2
T(y) and

T(P) > T(y) � T(ybr) , y ∈ S ;
2) if 4

3 � b � π
2 , then T(ybr) � T(y) � T0 , y ∈ S ;

T(ybr) = min
y∈S

T(y) if ybr is given by (3.14) with c > 0 by (3.12);

3) if b > π
2 , then T(Pbr) � T(y) � T0 , y ∈ S ; equation (3.12) has no solution for

b > π
2 .
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