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SOME INEQUALITIES AND PROPERTIES

CONCERNING CHORDAL POLYGONS

MIRKO RADIĆ

(communicated by V. Volenec)

Abstract. The paper deals with some inequalities and properties concerning chordal polygons.
The Theorems 1–3 are proved.

1. Preliminaries

Apolygonwith vertices A1, A2, . . . , An (in this order)will be denoted by A1 . . . An .
The lengths of its sideswill be denoted by |A1A2|, . . . , |AnA1| or a1, . . . , an . The interior
angle at the vertex Ai will be denoted by αi or <)Ai . Thus

<)Ai = <)Ai−1AiAi+1, i = 1, . . . , n

where A0 = An and An+1 = A1 .
A polygon A1 . . . An is called chordal polygon if there exists a circle K such that

Ai ∈ K , i = 1, . . . , n .

Remark. We shall suppose that chordal polygon under consideration has the
property that a motion from the vertex Ai to the vertex Ai+1 , i = 1, . . . , n , is always
in the same sense.

DEFINITION 1. Let A = A1 . . . An be a chordal polygon and let C be its circum-
cicle. By SAi and ŜAi we denote semicircles such that

SAi ∪ ŜAi = C , Ai ∈ SAi ∩ ŜAi .

The polygon A is said to be of the first kind if the following is fulfiled:
1) all the vertices A1, . . . , An do not lie on the same semicircle,
2) for every three consecutive vertices Ai, Ai+1, Ai+2 it holds

Ai ∈ SAi+1 =⇒ Ai+2 ∈ ŜAi+1 ,

3) any two consecutive vertices Ai, Ai+1 do not lie on the same diameter.
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DEFINITION 2. Let A = A1 . . . An be a chordal polygon and let k be a natural
number. The polygon A is said to be k -circumscribed if it is of the first kind and if it
holds

n∑
i=1

<)AiCAi+1 = k · 360◦, (1)

where C is the centre of the circumscribed circle of the polygon A .
Using (1) it is easy to prove that for a k -circumscribed polygon A1 . . . An we have:

n∑
i=1

<)Ai = (n − 2k)180◦. (2)

DEFINITION 3. Let A = A1 . . .An be a given polygon. If there exists a polygon
B = B1 . . . Bn and a natural number k such that B is k -circumscribed and has sides of
equal lenghts as the polygon A , then B is said to be k -chordal polygon determined by
the polygon A and will be denoted by A(k) .

Of course, if A is a chordal polygon, then A(1) = A .
For example, if A is regular n -gon, then there exist polygons

A(1) = A, A(2), . . . , A(m)

where m = n−1
2

for odd n and m = n−2
2

for even n . The case when n = 6 is

illustrated in Fig. 1. We see that the hexagon A(2) is a “double triangle”. Generally, if
A is a regular n -gon and k|n , then A(k) is (n : k) -gon which is k -fold.
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Fig. 1.

From (2) it follows that the integer k can be at most n−1
2

for odd n and n
2

for
even n . For example, if A is a regular heptagon, then

(7 − 2 · 1)180◦ = 5 · 180◦

(7 − 2 · 2)180◦ = 3 · 180◦

(7 − 2 · 3)180◦ = 1 · 180◦

(7 − 2 · 4)180◦ = −1 · 180◦

(7 − 2 · 5)180◦ = −3 · 180◦

and so one. Accordingly, for k > 3 there is nothing essential new.
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DEFINITION 4. Let A = A1 . . .An be a given polygon. If for some k there exists a
polygon A(k) , but does not exists for k+1 , then the polygon A is said to have a chordal
degree equal to k . The polygon A will be said to have maximum chordal degree if

there are polygons A(1), A(2), . . . , A(m) , where m = n−1
2 for odd n and m = n−2

2 for
even n .

For example, the regular n -gon has the maximal chordal degree. Namely, if
A = A1 . . . An is a regular n -gon, then the polygon

B(k) = A1A1+kA1+2k . . . A1+(n−1)k (3)

is a chordal polygon for every k = 1, . . . , m where m = n−1
2 for odd n and m = n−2

2
for even n .

Let us state some facts by intuition. (We shall give later exact statements.) Let
A = A1 . . . A7 be a regular heptagon (Fig. 2.). We can imagine the procedure described
in Fig. 2. which gives A(2) . A(3) can be obtained similarly.
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Every polygon has the chordal degree at least 1. Thus, every polygon can be
transformed into l -chordal polygon so that the lengths of its sides remain unchanged.

Unfortunately, it is not always possibly to obtain A(2) , A(3) and so on. Something
more about this will be said later.

2. Some inequalities connected with k -chordal polygon

First we shall prove one inequality which is very important in investigation of
k -chordal polygon and some other considerations. Therefore, in some aspect this
inequality and its consequences may be regarded as the main result of this paper.

THEOREM 1. Let k and n be any given positive integers such that n − 2k > 0 ,
and let the angles β1, . . . , βn satisfy

n∑
i=1

βi = (n − 2k)π2 , 0 < βi < π
2 . (4)
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Then
n∑

i=1

cos βi > 2k cosβj, j = 1, . . . , n. (5)

Proof. Since cosπx > 1 − 2x if 0 < x < 1
2

(Fig. 3), putting α = πx we obtain

cosα > 1 − 2
π α, 0 < α < π

2
. (6)

Consequently,
n∑

i=1

cosβi > n − 2
π

n∑
i=1

βi = n − 2
π (n − 2k)π

2
= 2k > 2k cosβj.

π

Fig. 3.

COROLLARY 1.1. Let A = A1 . . . An be any given k -chordal polygon and let

βi = <)CAiAi+1, i = 1, . . . , n (An+1 = A1),

where C is the centre of the circumcircle of A . Then it is valid
n∑

i=1

cos βi > 2k cosβj, j = 1, . . . , n.

Proof. From Definition 2 and (2) it follows
n∑

i=1

βi = (n − 2k)π
2

, 0 < βi < π
2
.

COROLLARY 1.2. If a1, . . . , an are the lengths of the sides of the k -chordal polygon
A , then

n∑
i=1

ai > 2kaj, j = 1, . . . , n. (7)

Proof. It is valid ai = 2r cosβi , i = 1, . . . , n , where r is the radius of the
circumcircle of the polygon A .
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COROLLARY 1.3. Let (i1, i2, . . . , in) be any permutation of the set {1, . . . , n} .
Then

ai1 + . . . + aik < aik+1
+ . . . + ain . (8)

Proof. It can be easily seen that (7) implies (8).

Of course, instead of (8) the following can be written

cosβi1 + . . . + cosβik < cos βik+1
+ . . . + cos βin .

One question arises now: If a1, . . . , an are given lengths such that (7) holds, does
always exists k -chordal polygon with these lengths?

The answer is negative, the counterexample is a pentagon with sides of the lengths
a1 = 10 , a2 = 11 , a3 = 12 , a4 = 13 , a5 = 14 .

We conjecture the following: If the lengths a1, a2, . . . , an satisfy

n∑
i=1

a2k−1
i > 2ka2k−1

j , j = 1, . . . , n,

and k is maximal, then there exists k -chordal polygon with this lengths.

We also state as a hypothesis the following assertion:

If β1 + . . . + βn = (n − 2k)
π
2

, βi >
2k − 1

2k
(n − 2k)

π
2n

, i = 1, . . . , n , then

cosk β1 + . . . + cosk βn > 2k cosk βj, j = 1, . . . , n.

(In the casewhen k ismaximal, we conjucture that the condition βi >
2k − 1

2k
(n−2k)

π
2n

is not necessary.)
The approximation similar to (6) is too weak to prove this hypothesis in the case

k > 2 , but it strongly suggests that this assertion must be true.

3. Determination of chordal polygon and some relations

We shall consider now convex chordal polygon which need not be of the first kind.
Its essential characteristic can be stated as follows.

Let A = A1 . . .An be a convex chordal polygon and let a1, . . . , an be the lengths
of its sides. Further, let C and r be the centre and the radius of the circumcircle of the
polygon A . Finally, let β1, . . . , βn be the angles given by

βi = <)CAiAi+1, i = 1, . . . , n.

Then there are three possibilities: a) the centre C is within the polygon A , b) the centre
C is on a side of the polygon A , c) the centre C is outside of the polygon A .

In the case a) all the angles β1, . . . , βn are acute. In the case b) one angle has 0◦

and all others are acute.
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In both cases it is valid

β1 + . . . + βn = (n − 2)90◦.

It should be remarked that the equation above is not valid in the case c). One angle
must be taken with the negative sign. For example, in Fig. 4 the angle β4 must be taken
with negative sign.

A A

A A

C

Fig. 4.

THEOREM 2. Let B = B1 . . . Bn be any given polygon (convex or not) and let
b1, . . . , bn be the lengths of its sides. Then there exists the unique convex chordal
polygon with sides of those lengths (and in this order).

Proof. It is suficient to show that there exist unique angles β1, . . . , βn such that

cos β1

b1
=

cosβ2

b2
= . . . =

cos βn

bn
, (9)

β1 + β2 + . . . + βn = (n − 2)90◦, (10)

and which satisfy one of the following three statement:
1) all the angles β1, . . . , βn are acute,
2) one of the angles β1, . . . , βn has 0◦ , the others are acute,
3) all the angles β1, . . . , βn are acute and one has a negative sign.
Firstly, we conclude that there are infinitely many possibilities for the angles

β1, . . . , βn which satisfy (9). For example, we may suppose that

b1 = max{b1, . . . , bn}
and take for β1 any acute angle. The angles β2, . . . , βn can be calculated from the
equations

cos β2 =
b2

b1
cosβ1, . . . , cosβn =

bn

b1
cos β1. (11)

If we take for β1 an acute angle close enough to 90◦ , we may obtain that the
angles β2, . . . , βn are also close to 90◦ . Thus, there exist acute angles β2, . . . , βn that
satisfy (9) and the inequality

β1 + . . . + βn > (n − 2)90◦. (12)
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Now, let β1 in (11) decrease to 0◦ . Then the angles β2, . . . , βn will approach to
the angles given by

cosβ2 =
b2

b1
, . . . , cos βn =

bn

b1
.

If in the decreasing we do not get (10) even in the case when β1 is 0◦ , let us
take β1 with the negative sign. Now, let β1 decrease to −90◦ . Then any of the angles
β2, . . . , βn will increase to 90◦ . Eventualy, we must obtain the inequality

β1 + . . . + βn < (n − 2) · 90◦. (13)

Namely, since B1 . . .Bn is a polygon, the length of any its side is less than the sum of
the lengths of all other sides:

b1 < b2 + . . . + bn, (14)

where b1 = max{b1, . . . , bn} . This inequality, as it is easy to see from (13), implies
the inequality

cos β1 < cos β2 + . . . + cos βn.

Thus, in the case when β1 is close enough to −90◦ , there exist angles ε1, . . . , εn such
that

cos(−90◦ + ε1) < cos(90◦ − ε2) + . . . + cos(90◦ − εn)

or
sin ε1 < sin ε2 + . . . + sin εn.

Since sin x ≈ x for small x , we can write the inequality

ε1 < sin ε2 + . . . + sin εn < ε2 + . . . + εn.

Hence,
(−90◦ + ε1) + (90◦ − ε2) + . . . + (90◦ − εn) < (n − 2)90◦

and (13) is proved. It is obvious now that proceeding from (12) to (13) we can obtain
the equality (10), with the angles β1, . . . , βn described in the beginning of the proof.

So, Theorem 2 is proved.

The following theorem concerns the calculation of the radius. If k and m are

positive integers such that k � m , denote by Pm
k the sum of

( m
k

)
products of the form

cos βi1 · . . . · cos bik · sin βik+1
· . . . · sin βim

where (i1, i2, . . . , im) is a permutation of {1, 2, . . . , m} . For example:

P3
1 = cos β1 sin β2 sinβ3 + sinβ1 cos β2 sin β3 + sin β1 sin β2 cosβ3,

P4
3 = cos β1 cos β2 cos β3 sinβ4 + cosβ1 cosβ2 sin β3 cos β4

+ cos β1 sin β2 cosβ3 cosβ4 + sinβ1 cosβ2 cos β3 cos β4.
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THEOREM 3. If β1 + β2 + . . . + βn−1 = (n − 2)90◦ − βn , then

m∑
i=1

(−1)i+1Pn−1
2i−1 = cosβn (15)

where m = n−1
2 for odd n and m = n

2 for even n .

Proof. The equation

cos[(n − 2)90◦ − (β1 + . . . + βn−1)] = cos βn

can be written as

sin(β1 + . . . + βn−1) = cosβn, for n = 3, 7, 11, . . .

− cos(β1 + . . . + βn−1) = cosβn, for n = 4, 8, 12, . . .

− sin(β1 + . . . + βn−1) = cosβn, for n = 5, 9, 13, . . .

cos(β1 + . . . + βn−1) = cosβn, for n = 6, 10, 14, . . . .

So, for n = 3, 4, 5, 6, 7 we have

P2
1 = cosβ3

P3
1 − P3

3 = cos β4

P4
1 − P4

3 = cos β5

P5
1 − P5

3 + P5
5 = cos β6

P6
1 − P6

3 + P6
5 = cos β7,

where

P2
1 = cos β1 sin β2 + sin β1 cosβ2

P3
1 − P3

3 = cos β1 sin β2 sinβ3 + sinβ1 cos β2 sin β3

+ sin β1 sinβ2 cos β3 − cosβ1 cosβ2 cos β3,

P4
1 − P4

3 = cos β1 sin β2 sinβ3 sin β4 + sin β1 cos β2 sin β3 sin β4

+ sin β1 sinβ2 cos β3 sin β4 + sin β1 sin β2 sin β3 cos β4

− cos β1 cos β2 cosβ3 sinβ4 − cosβ1 cosβ2 sin β3 cos β4

− cos β1 sin β2 cosβ3 cosβ4 − sinβ1 cos β2 cos β3 cos β4,

and so on.
Induction by n we obtain (15) for all natural number n � 3 .

COROLLARY 3.1. If the polygon A(k) exists for some k ∈ {1, 2, . . . , m} , where

m = n−1
2 for odd n and m = n−2

2 for even n , then the angles β1, . . . , βn of this
polygon satisfy

m∑
1=1

(−1)i+1Pn−1
2i−1 = (−1)k+1 cos βn. (16)
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Proof. Since A(k) is k -circumscribed polygon, it holds

β1 + . . . + βn = (n − 2k)90◦

and the equation

cos[(n − 2k)90◦ − (β1 + . . . + βn−1)] = cos βn

can be written as

sin(β1 + . . . + βn−1) = (−1)k+1 cos βn, for n = 3, 7, 11, . . .

− cos(β1 + . . . + βn−1) = (−1)k+1 cos βn, for n = 4, 8, 12, . . .

− sin(β1 + . . . + βn−1) = (−1)k+1 cos βn, for n = 5, 9, 13, . . .

cos(β1 + . . . + βn−1) = (−1)k+1 cos βn, for n = 6, 10, 14, . . . .

COROLLARY 3.2. We have

0 <

m∑
i=1

(−1)i+1Pn−1
2i−1 < 1 if k is odd, (17)

− 1 <
m∑

i=1

(−1)i+1Pn−1
2i−1 < 0 if k is even. (18)

From (17) and (18) some other inequalities can be obtained. For example, if n = 5
and k = 1 , then P4

1 > P4
3 i.e.

cosβ1 sinβ2 sin β3 sin β4 + sin β1 cosβ2 sin β3 sin β4

+ sinβ1 sin β2 cos β3 sinβ4 + sin β1 sin β2 sin β3 cosβ4

> cosβ1 cosβ2 cosβ3 sin β4 + cos β1 cos β2 sin β3 cosβ4

+ cosβ1 sin β2 cos β3 cos β4 + sin β1 cos β2 cosβ3 cosβ4.

Let us denote by rk the radius of A(k) . From (16) we obtain the equation in rk ,
using

cosβi =
bi

2rk
, i = 1, . . . , n.

For example, if n = 5 and β1 = β2 = β3 = β4 = β5 (= β ), then (16) can be
written as

4 cosβ sin3 β − 4 cos3 β sinβ = (−1)k+1 cosβ , k = 1, 2.

Since cosβ = 1/2rk (if b1 = . . . = b5 = 1 ), we obtain equations

(2r2
k − 1)

√
4r2

k − 1 = (−1)k+1r3
k , k = 1, 2,

with solutions

r1 =
1

2 sin 36◦
= 0.85065,

r2 =
1

2 cos 18◦
= 0.5257.

Mathematical Inequalities & Applications
www.ele-math.com
mia@ele-math.com



150 MIRKO RADIĆ

ACKNOWLEDGMENT. The autor express the thanks to T. Pogany for helpful sug-
gestions.

(Received August 25, 1998) Mirko Radić
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