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TRIANGLES FROM AREAS

ZVONKO ČERIN

(communicated by V. Volenec)

Abstract. We consider the problem to determine for which central points X of the triangle ABC
will the areas of triangles BCX , CAX , and ABX be sides of a triangle. We shall prove that
only nine out of hundred and one central points from Kimberling’s list have this property. The
algebraic method of proof for this result is also used to obtain some new examples of three areas
that are sides of a triangle and are build from elements of a given triangle.

1. Introduction

The present article is looking for ways of associating to a triangle ABC a point X
of the plane such that areas of triangles BCX , CAX , and ABX are always sides of a
triangle.

The centroid G and the incenter I are easy examples of such points X . Indeed, the
triangles BCG , CAG , and ABG having equal areas are sides of an equilateral triangle
while the areas of the triangles BCI , CAI , and ABI being proportional to the sides a ,
b , and c are obviously sides of a triangle.

Since G and I are just two of central points of a triangle ABC listed in Table 1 of
[1], we can state a problem that we completely answer in this paper.

PROBLEM. For what natural numbers i less than 102 will the central point Xi of
the triangle ABC from the Kimberling’s list have the property that areas of the triangles
BCXi , CAXi , and ABXi are sides of a triangle?

We shall get the solution of this problem with an entirely algebraic proof in an
analytic approach. Our main result is the following theorem.

THEOREM 1. From 101 centres Xi of the triangle ABC from Kimberling’s Table 1,
only values 1, 2, 9, 10, 37, 38, 39, 45, and 86 of the index i have the property that areas
of triangles BCXi , CAXi , and ABXi are sides of a triangle regardless of the shape of
ABC .
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This result is related to the basic problems in triangle geometry which asks when
three given segments are sides of a triangle. The opening chapter of the book Recent
Advances in Geometric Inequalities by Mitrinović, Pečarić, and Volenec [3] gives an
extensive survey of results on this question. Our goal is to further extend the list of
these contributions.

The present article considers first the problem to determine the locus of points X
in the plane of a triangle ABC such that the triangles BCX , CAX , and ABX are sides
of a triangle.

The sidelines BmCm , CmAm , and AmBm of the complementary or medial triangle
AmBmCm (the cevian triangle of the centroid) of ABC provide the solution to this
problem. Indeed, they partition the plane into seven convex regions and the union of
four of them is the required locus. In particular, the interior of the complementary
triangle is precisely the set of points X of the triangle ABC whose areal coordinates
are sides of a triangle.

Then we study when will the triangle from the areas of the triangles BCX , CAX ,
and ABX for a point X in the interior of the complementary triangle be acute, right, or
obtuse. The answer utilises three interesting hyperbolas.

Next is a search for central points X from the Table 1 in [1] which have the property
that the areas of BCX , CAX , and ABX are sides of a triangle regardless of the shape
of the triangle ABC . In other words, we want to see which central points are always
inside the complementary triangle. The answer gives the above Theorem 1.

Our method of proof could be applied to find several new ways of building triangles
from elements of the base triangle.

2. Preliminaries

For an expression f , let [f ] denote a triple (f , ϕ(f ), ψ(f )) , where ϕ(f ) and
ψ(f ) are cyclic permutations of f . For example, if f = sin A and g = b + c , then

[f ] = (sin A, sin B, sin C) and [g] = (b + c, c + a, a + b).

Let us call a triple [a] of real numbers triangular provided a , b , and c are sides of a
triangle. The letter Ω is reserved for the set of all triangular triples.

Let T denote a function that maps each triple [a] of real numbers to a number

2 a2 b2 + 2 a2 c2 + 2 b2 c2 − a4 − b4 − c4.

Since T([a]) = (a + b + c)(b + c − a)(a − b + c)(a + b − c) , it is clear that [a] ∈ Ω
if and only if T([a]) > 0 . Let Ti be a short notation for T(|BCXi|) , where Xi is the
i -th central point of ABC and i = 1, . . . , 101 and |BCXi| denotes the (oriented) area
of the triangle BCXi .
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3. Triangles from areas

Let (α, β , γ ) be the actual areal or barycentric coordinates of a point P in the
plane of the triangle ABC . Then |α| S , |β | S , |γ | S are areas of triangles BCP , CAP ,
and ABP , where S denotes the area of ABC . These products are sides of a triangle
if and only if T([ |α| S ]) > 0 . However, this inequality is easily seen to be equivalent
with the inequality

(α + β + γ )(−α + β + γ )(α − β + γ )(α + β − γ ) > 0

by looking separately at seven regions determined by the sidelines of ABC . But,

−α + β + γ = 0

is the equation of the sideline BmCm of the complementary triangle AmBmCm on
midpoints of sides while α − β + γ = 0 and α + β − γ = 0 are the equations of
CmAm and AmBm . Since α + β + γ = 1 , the lines BmCm , CmAm , and AmBm partition
the plane into seven convex regions and on four of them which do not contain the
vertices of ABC the above inequality holds.

In particular, we proved the following result.

COROLLARY 1. The areals of a point P with respect to a triangle ABC are sides
of a triangle if and only if P lies in the interior of the complementary triangle of ABC .

4. Shape of triangles from areals

We can now easily describe conditions on a point P in the interior of the comple-
mentary triangle of ABC such that the areals α , β , and γ of P are sides of either an
acute, right, or obtuse triangle. Indeed, it is well-known that the triangle ABC is acute,
right, or obtuse if and only if the product (−a2 + b2 + c2)(a2 − b2 + c2)(a2 + b2 − c2)
is positive, zero, or negative. In our situation, this product is

(−α2 + β2 + γ 2)(α2 − β2 + γ 2)(α2 + β2 − γ 2).

But, −α2 + β2 + γ 2 = 0 is the equation of a hyperbola Γa through the vertices Bm and
Cm of the complementary trianglewith centre at the vertex Aa of the anticomplementary
triangle AaBaCa of ABC and sidelines AaBa and CaAa as asymptotes. Hence, for
a point P in the interior of the complementary triangle, the areals of P are sides of
either an acute, right, or obtuse triangle provided P lies either in the "triangular" region
determined by hyperbolas Γa , Γb , and Γc , the point P lies on their union, or P is in
one of the three remaining petals.
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5. Placement of ABC

We shall position the triangle ABC in the following fashion with respect to the
rectangular coordinate system in order to simplify our calculations. The vertex A is
the origin with coordinates (0, 0) , the vertex B is on the x -axis and has coordinates
(r h, 0) , and the vertex C has coordinates (g q r/k, 2 f g r/k) , where h = f + g ,
k = f g − 1 , ϕ = f 2 + 1 , u = f 2 − 1 , ψ = g2 + 1 , v = g2 − 1 , Φ = f 4 + 1 , and
Ψ = g4 + 1 . The three parameters r , f , and g are the inradius and the cotangents of
half of angles at vertices A and B . Without loss of generality, we can assume that both
f and g are larger than 1 (i. e., that angles A and B are acute).

Nice features of this placement are that all central points from Table 1 in [1] have
rational functions in f , g , and r as coordinates and that we can easily switch from f ,
g , and r to side lengths a , b , and c and back with substitutions

a =
r f ψ

k
, b =

r gϕ
k

, c = r h,

f =
(b + c)2 − a2√

T([a])
, g =

(a + c)2 − b2√
T([a])

, r =

√
T([a])

2 (a + b + c)
.

Moreover, since we use the Cartesian coordinate system, computation of distances of
points and all other formulas and techniques of analytic geometry are available and
well-known to widest audience. A price to pay for these conveniences is that symmetry
has been lost.

The third advantage of the above position of the base triangle is that we can easily
find coordinates of a point with given areals. More precisely, if a point P has coordinates
x and y and λ = |BCP|/|CAP| and μ = |CAP|/|ABP| , then

x =
(h kμ + g u) r

k (λ μ + μ + 1)
, y =

2 f g r
k (λ μ + μ + 1)

.

This formulas will greatly simplify our exposition because there will be no need to give
explicitly coordinates of points but only its first barycentric coordinate. For example,
we write X6[a2] to indicate that the symmedian point X6 has areals equal to a2 : b2 : c2 .
Then we use the above formulas with λ = a2/b2 and μ = b2/c2 to get the coordinates(

(f u v + 2 gΦ) g h r
2 (f 2 Ψ+ f g u v + g2 Φ)

,
f g h2 k r

f 2 Ψ+ f g u v + g2 Φ

)

of X6 in our coordinate system.

6. Elimination of 92 central points

An easy task is to eliminate 92 central points Xi by exhibiting a triangle for which
Ti � 0 . In fact, for most cases only five triangles all with r = 1 and

triangle t1 t2 t3 t4 t5
f 2 1.01 2 60 5
g 20 1.02 5 5 5
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will suffice. Indeed, Ti � 0 for the triangle tj and i ∈ Ij , where j = 1, . . . , 5 ,

I0 = {1, . . . , 101}, I2 = {20, 40, 64, 66, 67, 70, 71, 74, 93, 100}, I4 = {21, 55},

I3 = {3, 43, 48, 63, 87, 92}, I5 = {83}, I6 = {1, 2, 9, 10, 37, 38, 39, 45, 86},
and I1 = I0 − I2 − I3 − I4 − I5 − I6 .

The above statement is simple to state but the reader should be aware that there is
a lot of work behind it because we must know coordinates of each central point from
Kimberling’s list. Under the assumption that one believes that the above claim is true,
we can proceed to show that for indices in the set I6 the triangle test Ti is positive
regardless of the shape of ABC .

7. Indices from I7

Let us consider I6 as the union of sets I7 = { 1, 2, 9, 10, 37, 39, 86 } and I8 = { 38, 45 } .
For indices i in I7 we can easily get the conclusion that Ti > 0 from known results
listed in the last section of the first chapter in [3].

For example, since X86[ 1
b+c ] and the triple [ 1

b+c ] is according to item 34 on page
22 of [3] triangular, we get T86 > 0 . Of course, we can arrive to the same conclusion
by direct computation of T86 in terms of f , g , and r . In the usual way we find that

T86 =
(f g h r)4 m1 m2 m3

k4 m3
4

,

where

m1 = (k + 1)(2 k + 1) h2 + (f − g) h k (k + 2) + k2 (k + 1),

m2 = (k + 1)(2 k + 1) h2 − (f − g) h k (k + 2) + k2 (k + 1),

m3 = (k2 + 5 k + 3) h2 − k2 (k + 1),

m4 = (5 k2 + 11 k + 5) h2 + k2 (k + 1).

Since the replacement of f and g with 1 + f and 1 + g in polynomials m1 , ... , m4

gives polynomials with all coefficients positive, we conclude that T86 > 0 and thus get
an alternative proof of item 34.

Similarly, for the Mittenpunkt X9[a (b + c − a)] , we can use item 35 on page 22
of [3] or check directly that T9 = f 6 g6 h6 r8/(h2 k + k3 + k2)3, is obviously always
positive.

For X1[a] (incenter), X2[1] (centroid), X10[b + c] (Spieker centre), X37[a(b+c)] ,
and X39[a2 (b2 + c2)] (Brocard midpoint), argument is even simpler because triples
[a] , [1] , [b + c] , and [a2 (b2 + c2)] are clearly triangular.

In this way we conclude that only the remaining two cases X38 and X45 will give
new interesting examples of triangular triples.
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8. Central points X38[a (b2 + c2)] and X45[a (2 b + 2 c − a)]

An easy calculation shows that T38 = f 2 g2 h2 r8 m1 m+ m− / (4 k2 m3
4), where

m1 = (k2 + k + 2) h2 + k2 (k + 1) (3 k + 2),

m4 = (2 k2 + 3 k + 2) h2 − k2 (k − 2),

m± = 6 f h3 + (3 k + 2)(k − 2) h2 ± (f − g) h k2 − 4 k2 (k + 1).

Since the replacement of f and g with 1 + f and 1 + g in polynomials m1 , m+ , m− ,
and m4 gives polynomials with all coefficients positive, we conclude that T38 > 0 .

COROLLARY 2. For every triangle ABC with sides a , b , and c , the triple
[a (b2 + c2)] is triangular.

As above, we can show that T45 = f 6 g6 h6 r8 m1 m2 m3/(k2 m3
4), where

m1 = f 2 +3, m2 = g2 +3, m3 = h2 +3 k2, m4 = (k2 +5 k+1) h2 +3 k2 (k+1),

are clearly all positive.

COROLLARY 3. For every triangle ABC with sides a , b , and c , the triple
[a (2 b + 2 c− a)] is triangular.

9. X3[ a2 (b2 + c2 − a2) ] - circumcentre

Though we have excluded the central point X3 (circumcentre), it gives an inter-
esting triangular triple. One can easily find that

T3 =
(k2 − h2)2 (f 2 − 1)2 (g2 − 1)2 f 2 g2 h2 r8

64 k6
,

It follows that T3 is always positive except when ABC has an angle of π/2 radians.

COROLLARY 4. For every triangle ABC with sides a , b , and c , and angles A ,
B , and C different from π/2 radians, the triples [ | sin 2 A| ] and [ a2 |b2 + c2 − a2| ]
are triangular.

10. Peculiar property of the circumcentre

In this section we shall search for central points Xi from the Kimberling’s list
which have the property that areas of triangles AXibXic , BXicXia , and CXiaXib are sides
of a triangle, where Xia , Xib , and Xic are projections of Xi onto the side lines BC ,
CA , and AB , respectively.

THEOREM 2. Among 101 central points Xi from Table 1 in [1], the circumcentre
X3 is the only with the property that areas of triangles AXibXic , BXicXia , and CXiaXib

are sides of a triangle regardless of the shape of ABC .
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Proof. Any triangle with f = 101/100, g = 101/100 eliminates the point X21 ,
those with f = 2, g = 20 eliminates the point X18 , while those with f = 2, g = 5
eliminates all other points Xi except X3 . For X3 the triangle test 3

256 (f g h r2)4/k4 is
clearly positive. �

Much more satisfying is the related problem where we look for central points Xi

which have the property that areas of triangles XiXibXic , XiXicXia , and XiXiaXib are
sides of a triangle. Using the same method one can prove the following theorem.

THEOREM 3. From 101 centres Xi of the triangle ABC from Kimberling’s Table
1, only values 1, 6, 42, 57, 58, 81, 82, 83, and 89 of the index i have the property that
areas of triangles XiXibXic , XiXicXia , and XiXiaXib are sides of a triangle for every
triangle ABC .

We can now replace vertices of the pedal triangle of Xi with vertices of its antipedal
triangle in the previous two theorems. It is interesting that only the orthocentre X4 in
the first theorem and only the circumcentre X3 and the orthocentre X4 in the second
theorem lead to triangular triples of areas.

11. Points and their isogonal conjugates

For a central point Xi of ABC , let Yi denote its isogonal conjugate.

THEOREM 4. For triangles ABC that are not isosceles only central points X37 ,
X45 , X81 , and X89 have the property that areas of triangles AXiYi , BXiYi , and CXiYi

are sides of a triangle regardless of the shape of ABC .

Proof. The method of proof is the same only the details are a bit more complicated
to write down. We first check on several concrete triangles to eliminate most of the
points. The four remaining points from the statement have rational functions in f ,
g , and r as triangle tests for areas of three triangles. Since factors in numerators
and denominators of these rational functions are polynomials that have all coefficients
positive following the substitution f = f + 1 and g = g + 1 and factors which vanish
only when ABC is isosceles are complete squares, we conclude that triangle tests of
areas are always positive for triangles that are not isosceles. �

COROLLARY 5. For every triangle ABC which is not isosceles and whose sides
are a , b , and c , the triples

[
(2 a + b + c) |b2 − c2|

a

]
and

[
(4 a + b + c)(2 b + 2 c − a) |b − c|

a

]

are triangular.

Proof. The areas of triangles AX37Y37 and AX81Y81 are proportional to the first
element of the first triple while the areas of triangles AX45Y45 and AX89Y89 are propor-
tional to the first element of the second triple. �
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The triangular triples in the above corollary have led the author to the following
result.

THEOREM 5. For every triangle ABC which is not isosceles and whose sides are
a , b , and c , the triple [ |b − c|/a ] is triangular.

Proof. Let x =
√

(b−c)2

a2 , y =
√

(c−a)2

b2 , and z =
√

(a−b)2

c2 . Then

T(x, y, z) =
(b − c)2 (c − a)2 (a − b)2 (w − a2) (w − b2) (w − c2)

a4 b4 c4
,

where w = a b + a c + b c .
Let us check that w − a2 > 0 . Indeed, since b + c > a and a > 0 we get

a (b + c) > a2 and finally w > a2 because b c > 0 .
In a similar fashion we see that w > b2 and w > c2 so that T(x, y, z) > 0 . �

12. Triangles from products of areals and powers of sides

The Corollary 1 is just one of a whole series of results. More precisely, for each
integer k we can ask for the locus of all points P such that w1 ak , w2 bk , and w3 ck

are sides of a triangle, where w1 , w2 , and w3 are areal coordinates of P with respect
to ABC . We shall see shortly that this locus is the interior of a suitable triangle whose
vertices can be described as follows.

Let Ak , Bk , and Ck be points on the sides BC , CA , and AB of ABC such that

CAk

AkB
=

( c
b

)k
,

ABk

BkC
=

(a
c

)k
,

BCk

CkA
=

(
b
a

)k

.

Notice that AkBkCk for k = −4, −3, −2, −1, 0, 1, 2 are the cevian triangle
of the Third Power point (the central point X32 ), the cevian triangle of the Second
Power point (the central point X31 ), the cevian triangle of the Grebe-Lemoine point
K or X6 , the incentral triangle AIBICI (the cevian triangle of the incentre I or X1 ),
the complementary triangle AmBmCm with vertices at midpoints of sides (the cevian
triangle of the centroid G or X2 ), the cevian triangle of the isogonal conjugate of the
Second Power point (the central point X75 ), and the cevian triangle of the isogonal
conjugate of the Third Power point (the central point X76 – the Third Brocard point).

THEOREM 6. Let k be an integer. The locus of all points P such that w1 ak , w2 bk ,
and w3 ck are sides of a triangle is the interior of the triangle AkBkCk .

Proof. The case k = 0 was proved earlier. We shall now prove the cases k = −1
and k = 1 . The statement for arbitrary k is proved similarly.

The actual areal coordinates of the point P inside the triangle ABC are
w1 = r f (2 r g h − 2 g x − v y)/(2 k) , w2 = r g (2 f x − u y)/(2 k) , and w3 = r h y/2 ,
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where x and y are coordinates of P . It follows that

T([w1/a]) = [2 k (f − g) x − (2ϕ + 2ψ − 3ϕ ψ) y − 2 r g hϕ]

[2 h (k + 2) x − (4 g2 + u v) y− 2 r g hϕ][2 h (k + 2) x − (4 f 2 + u v) y− 2 r g hϕ]

[−2 k (f − g) x − (4 − u v) y− 2 r g hϕ]/(2ϕ ψ)4

and

T([w1 a]) = r8 f 2 g2 h2 k−8 [f g k (f − g) x + k (f 2 v − g h) y + r f 2 g hψ ]

[f (k + 2) x + (f 2 v − k) y − r f 2 ψ ][g (k + 2) x + (k − g2 u) y − r f gψ ]
[k (g − f ) x + k (f h + v) y − r f hψ ].

The first three parenthesis in T([w1/a]) are equations of sidelines of the incentral
triangle AIBICI and the last three parenthesis in T([w1 a]) are equations of sidelines
of A1B1C1 (the cevian triangle of the isogonal conjugate of the Second Power point).
From this our claim follows immediately because the last parenthesis in T([w1/a]) and
the first parenthesis in T([w1 a]) are always positive having positive values in A , B ,
and C . �

13. Triangles from areas of triangles on cevians

Let Pa , Pb , and Pc denote vertices of the cevian triangle of a point P with respect
to the base triangle ABC .

THEOREM 7. The areas of triangles PbPcP , PcPaP , and PaPbP are sides of a
triangle if and only if the point P lies in the four components of the complement of the
sidelines of ABC which does not contain its excircles.

Proof. The areas of triangles PbPcP , PcPaP , and PaPbP are absolute values of
f m/(mb mc) , g m/(mc ma) , and h m/(ma mb) , where m is r q (u q− 2 f p)(v q+ 2 g p
−2 r g h)/2 (the product of equations of sidelines of ABC ) and ma = v q + 2 g p ,
mb = u q − 2 f p + 2 r f h , and mc = 2 r f g − k q are equations of the sidelines of the
anticomplementary triangle AaBaCa .

The triangle test for these areas is T[PbPcP] = 64 f 2 g2 h2 k m5/(ma mb mc)4 . Its
sign depends on the sign of m . But, the factors v q + 2 g p − 2 r g h and u q − 2 f p of
m evaluated at points A and B have negative values while the value of the third factor
r q/2 at point C is positive so that their product m is positive if and only if the point
P is in the subset indicated in the statement of the theorem. �

We can now compute areas from the above theorem and get the following family
of triangular triples that depends on two parameters.

Let s = a + b + c , sa = b + c − a , sb = ϕ(sa) , sc = ψ(sa) , s2a = b2 + c2 − a2 ,
s2b = ϕ(s2a) , and s2c = ψ(s2a) .
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COROLLARY 6. Let [ a ] be a triangular triple, let S = 1
4

√
s sa sb sc , and let x and

y be any real numbers such that y > 0 , 4 S x − s2a y > 0 , and 4 S (c − x) − s2b y > 0 .
Then the following triple is triangular

[ 4 S x + s2b y, 4 S (c − x) + s2a y, 2 c (2 S − c y) ] .

THEOREM 8. The triple [ |PbPcP|/|PbPcA| ] from quotients of areas is triangular
if and only if the point P is from the four components of the complement of the sidelines
of the complementary triangle AmBmCm of ABC that does not contain excircles of
AmBmCm .

Proof. Since the areas |PbPcA| , |PcPaB| , and |PaPbC| are absolute values of

f g h r2 q m7/(mb mc), f g h r2 q m8/(mc ma), and f g h r2 m7 m8/(k ma mb),

the triangle test for the triple of quotients is ka kb kc/(f 2 g2 h2 r3) , where

ka = 2 g p + v q − r g h, kb = r f h − 2 f p + u q, and kc = r f g − k q

are equations of the sidelines of AmBmCm . Their values at its vertices are positive so that
their product is positive only on the set described in the statement of the theorem. �

THEOREM 9. For every point P in the interior of the triangle ABC , the triple

[ |PaPcB|/|PcPaP| + |PbPaC|/|PaPbP| ]
of sums of quotients of oriented areas is triangular.

Proof. The triangle test for sums of quotients of oriented areas is 16f 2g2h2r6m9

/(3m2) , where m9 = 4 (2 f g h r − 4 f g p + (k + 2)(f − g) q)2 − h2 (2 f g r − 3 k q)2

+16 f 2 g2 h2 r2 . It is obvious that m9 is a conic and since it passes through the vertices
A , B , and C , the Steiner point (X99 in [1]), and the Yff parabolic point (X190 in [1]),
we conclude that this is the equation of the Steiner ellipse. Since its value at the centroid
G of ABC is positive, it follows that it is positive in all points of its interior. We must
exclude sidelines of ABC because there the areas in denominators can be zero. But, we
must also find out when the sum [ |PaPcB|/|PcPaP| + |PbPaC|/|PaPbP| ] and the other
two of its cyclic permutations are positive. An easy calculation shows that the sign of
this sum depends on the sign of equations of CA , AB , and the tangent to the Steiner
ellipse at the point A . Since at the centroid this sum is 6 we conclude that it is positive
in the interior of ABC and the conclusion of the theorem has been established. �

COROLLARY 7. Let [ a ] be a triangular triple, let S = 1
4

√
s sa sb sc , and let x and

y be any real numbers such that y > 0 , 4 S x − s2a y > 0 , and 4 S (c − x) − s2b y > 0 .
Then the following triple is triangular[

4 S x + s2b y
4 S x − s2a y

,
4 S (x − c) − s2a y
4 S (x − c) + s2b y

,
2 c3 y (c y − 2 S)

(4 S x − s2a y)(4 S (x − c) + s2b y)

]
.
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THEOREM 10. For every point P in the interior of the triangle ABC , the triple

[ |PcPaP|/|PaPcB| + |PaPbP|/|PbPaC| ]
of sums of quotients of oriented areas is triangular.

Proof. The sign of the triangle test for these sums of quotients of oriented areas
depends only on the sign of the product of values of equations of sidelines evaluated
at the point P . But, |PcPaP|/|PaPcB| + |PaPbP|/|PbPaC| and its cyclic permutations
are positive only inside the anticomplementary triangle of ABC so that the conclusion
of the theorem follows. �

14. Triangles from areas of triangles on orthocentres

For a point P in the plane of the base triangle ABC , let Ha , Hb , and Hc denote
orthocentres of triangles BCP , CAP , and ABP .

THEOREM 11. For every point P from the intersection of the interiors of the triangle
ABC and the circles with centres at midpoints of sides and with half of lengths of sides
as radii, the triple [ |HcHaP| + |HaHbP| ] from sums of oriented areas is triangular.

Proof. The triangle test for this triple is 4 f 2 g2 h2 r4 q2
a q2

b q2
c/m2 , where qc =

p2+q2 − h r p , qb = k (p2 + q2) − r g u p− 2 f g r q , and qa = k (p2 + q2) − r (f v +
2 g u) p − 2 f g r q are equations of the above three circles. From this the conclusion
of the theorem is immediate once we determine conditions for |HcHaP| + |HaHbP| ,
|HaHbP| + |HbHcP| , and |HbHcP| + |HcHaP| to be positive. But,

|HbHcP| + |HcHaP| =
h qc ((g r u − k p)2 + (2 f g r − k q)2)
k (u q − 2 f p)(2 g h r − 2 g p − v q)

is positive at the centre of qc , so that this sum of oriented areas is positive on the
intersection of the interiors of ABC and the circle whose diameter is AB . The other
two sums are positive on analogous sets. Hence, all three are surely positive on the
intersection of interiors of ABC with three circles whose diameters are BC , CA , and
AB . �

Let us observe that the incentre, the Gergonne point, and both isogonic centres of
ABC are in the intersection from the above theorem. In fact, when P is an isogonic cen-
tre of ABC , then |HcHaP| + |HaHbP| , |HaHbP| + |HbHcP| , and |HbHcP| + |HcHaP|
have the same value (two thirds of the area of ABC ).

15. Triangles from areas of triangles on projections

For a point P in the plane of the base triangle ABC , let Pa , Pb , and Pc denote
projections of P into sidelines BC , CA , and AB .
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THEOREM 12. For each point P in the interior of a triangle ABC , the triple

[ |PcPaP| + |PaPbP| ]
of sums of oriented areas is triangular.

Proof. The triangle test for this triple is 128 f 2 g2 h2 k m2 q0/(r2 ϕ6 ψ6) , where

q0 = k (p2 + q2) − r (f v + 2 g u) p − 2 f g r q + r2 g h u

is the equation of the circumcircle. This equation has positive value at its centre, so that
the test is positive if and only if P is the interior point of the circumcircle outside the
sidelines. However,

|PcPaP| + |PaPbP| =
h q jc

(ϕ2 ψ2)
,

where jc is the equation of the tangent to the circumcircle at the vertex C , is positive
on the part of plane determined by the line AB and this tangent which contains the
interior of ABC . Since similar claims hold for the other two sums of oriented areas, we
conclude that our statement in the theorem is true. �

COROLLARY 8. Let [ a ] be a triangular triple, let S = 1
4

√
s sa sb sc , and let x and

y be any real numbers such that y > 0 , 4 S x − s2a y > 0 , and 4 S (c − x) − s2b y > 0 .
Then the following triple is triangular

[(4 S (c − x) − s2b y)(4 S x + s2c y), (4 S (c − x) + s2c y)(4 S x − s2a y),

2 y (4 S (a2 − b2) x + ((a2 − b2)2 − c2 (a2 + b2)) y + 4 S b2 c)
]
.

16. Triangles from areas of triangles on centroids

For a point P in the plane of the base triangle ABC , let Ga , Gb , and Gc denote
centroids of triangles BCP , CAP , and ABP .

THEOREM 13. The triple [ |GbGcP| ] from areas is triangular if and only if the
point P is from the interior of four parts of the plane determined by the sidelines
of the complementary triangle of the complementary triangle of ABC which contain
the centroid and the vertices of ABC . The triple [ |GbGcP| ] from oriented areas is
triangular if and only if the point P is from the interior of the complementary triangle
of the complementary triangle of ABC .

Proof. The triangle test for the triple from both areas and oriented areas is

f 2 g2 h2 r5 q2
a q2

b q2
c/(6561 k4),

where qc = f g r − 2 k q , qb = 4 f p − 2 u q − f h r , and qa = 4 g p + 2 v q − 3 g h r
are equations of the sidelines of the complementary triangle of the complementary
triangle of ABC . From this the conclusion of the theorem is immediate once we
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determine conditions for the oriented areas |GbGcP| , |GcGaP| , and |GaGbP| , to be
positive. But, |GaGbP| = h r (f g r − k q)/(9 k) is a positive constant multiple of the
equation of the sideline of the complementary triangle of ABC . The same is true for
|GbGcP| and |GcGaP| so that all three oriented areas are positive only in the interior of
the complementary triangle of ABC . �

For a triangle ABC , let A0B0C0 denote a triangle such that the centroid G of ABC
divides segments AA0 , BB0 , and CC0 in the ratio 1:5.

THEOREM 14. The triple [ |AGbGc| ] from areas is triangular if and only if the
point P is from the complement of the sidelines of the triangle A0B0C0 in the interior
of four parts of the plane determined by the sidelines of the complementary triangle of
the triangle A0B0C0 which do not contain its vertices.

Proof. The triangle test for the triple from areas is 5 f 2 g2 h2 r5 q2
a q2

b q2
c/(6561 k4),

where qc = f g r + k q , qb = 2 f p − u q + f h r , and qa = 3 g h r − 2 g p − v q are
equations of the sidelines of the complementary triangle of the triangle A0B0C0 . From
this the conclusion of the theorem is immediate once we observe that sidelines of
A0B0C0 are locus of points where one of the areas |AGbGc| , |BGcGa| , and |CGaGb|
is zero. �

Notice that we can never get all three oriented areas |AGbGc| , |BGcGa| , and
|CGaGb| to be positive. This is a reason why there is no version of the above theorem
for oriented areas.
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