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Abstract. In this paper we prove several sharp growth estimates for rational functions with
prescribed poles in the Chebyshev norm on the unit circle in the complex plane. In particular,
our results generalize and sharpen certain polynomial inequalities due to Rahman, Ankeny and
Rivlin for such rational functions with restricted zeros.

1. Introduction and statement of results

Let Pn denote the class of all complex algebraic polynomials of degree at most n .
For k > 0 , let Dk− = {z; |z| < k} , Dk+ = {z; |z| > k} and Tk = {z; |z| = k} . For f
defined on the circle Tk , we set

M(f , k) = sup
z∈Tk

|f (z)| and m(f , k) = inf
z∈Tk

|f (z)|.

For aj ∈ C with j = 1, 2, . . . , n , we write

W(z) =
n∏

j=1

(z − aj) and B(z) =
n∏

j=1

(1 − ajz
z − aj

)
(1)

and

Rn = Rn(a1, a2, . . . , an) =
{ P(z)

W(z)
; p ∈ Pn

}
.

Then Rn is the set of all rational functions with at most n poles a1, a2, . . . , an and
with finite limit at ∞ . We observe that B(z) ∈ Rn . Throughout our discussion, we
shall always assume that all poles a1, a2, . . . , an lie in D1+ . Analogous results can be
obtained when we assume all poles lie in D1− .

If P ∈ Pn , then we have

M(P′, 1) � nM(P, 1) (2)

and
M(P, R � 1) � RnM(P, 1). (3)
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Inequality (2) is an immediate consequence of S . Bernstein’s theorem on the derivative
of a trigonometric polynomial (for reference see [12]). Inequality (3) is a simple
deduction from the maximum modulus principle [(see 11, P. 346) or (8, vol. I, p. 132)].

In both (2) and (3) equality holds only for P(z) = αzn , α �= 0 is any real or
complex number. If P ∈ Pn and P∗(z) = znP(1/z) is the conjugate transpose of P ,
then

|P(Rz)| + |P∗(Rz)| � (Rn + 1)M(P, 1) for z ∈ T1 and R � 1. (4)

Inequality (4) is essentially due to Rahman [10, inequality (5.3) for the special operator
B(P(z)) = P(z) ]. Inequalities (2) and (3) can be sharpened if we restrict ourselves to
the class of polynomials having no zero in D1− . In fact, if P ∈ Pn does not vanish in
D1− , then (2) and (3) can be respectively replaced by

M(P′, 1) � n
2M(P, 1), (5)

M(P, R � 1) �
(Rn + 1

2

)
M(P, 1). (6)

Inequality (5) was conjectured by Erdös and later proved by Lax [6] (see also [3])
whereas Ankeny and Rivlin [5] used (5) to prove inequality (6). In both (5) and (6)
equality holds for P(z) = αzn + β where α, β ∈ T1 .

Recently Li, Mahapatra and Rodriguez [7] have proved Bernstein-type inequalities
similar to (2) and (4) for rational functions r ∈ Rn with poles a1, a2, . . . , an all lying
in D1+ and replaced zn by Blashke product B(z) . If r ∈ Rn , then for z ∈ T1 and
R � 1 ,

|r(Rz)| � |B(Rz)|M(r, 1). (7)

Equality in (7) holds for r(z) = λB(z) where λ ∈ T1 . The inequality (7) is due to
Walsh [13, P. 236, Lemma II].

The purpose of this paper is to obtain several sharp inequalities similar to (4)
and (6) for rational functions with prescribed poles. Here we first prove the following
generalization of (4) for rational functions r ∈ Rn , which is a refinement of (7), from
which one can easily deduce that the inequality (4) remains true for 0 � R < 1 as well.

THEOREM 1. If r ∈ Rn and z ∈ T1 , then for every R � 0 ,

|r(Rz)| + |r∗(Rz)| � (|B(Rz)| + 1)M(r, 1) (8)

where r∗(z) = B(z)r(1/z) . Equality in (8) holds for r(z) = λB(z) where λ ∈ T1 .

Next we establish the following results for rational functions with restricted zeros
which generalize polynomial inequalities ofAnkenyandRivlin [5] andAziz [1, Theorem
4].

THEOREM 2. Suppose r ∈ Rn and all the zeros r lie in T1 ∪D1+ , then for z ∈ T1

and R � 1 , we have

|r(Rz)| �
( |B(Rz)| + 1

2

)
M(r, 1). (9)

Equality in (9) holds for r(z) = B(z) + λ where λ ∈ T1 is choosen suitably.



GROWTH OF MAXIMUM MODULUS OF RATIONAL FUNCTIONS WITH PRESCRIBED POLES 167

THEOREM 3. Suppose r ∈ Rn and all the zeros of r lie in T1 ∪ D1+ , then for
z ∈ T1 and R � 1 , we have

|r(Rz)| �
( |B(Rz)| + 1

2

)
M(r, 1) −

( |B(Rz)| − 1
2

)
m(r, 1). (10)

Equality in (10) holds for r(z) = B(z) + λk where k � 1 and λ ∈ T1 is choosen
suitably.

If P ∈ Pn is self-inversive polynomial, that is, if p∗(z) = βP(z) , β ∈ T1 and
P∗(z) = znP(1/z) , then it is known [9] that

M(P, R � 1) �
(Rn + 1

2

)
M(P, 1). (11)

Analogously, a rational function r ∈ Rn is called self-inversive if r∗(z) = βr(z)
for some β ∈ T1 where r∗(z) = B(z)r(1/z) . Here we prove the following gneralization
of (11) for self-inversive rational functions.

THEOREM 4. If r ∈ Rn is self-inversive and z ∈ T1 , then for R � 0 , we have

|r(Rz)| �
( |B(Rz)| + 1

2

)
M(r, 1). (12)

Equality in (12) holds for r(z) = B(z) + λ where λ ∈ T1 is choosen suitably.

Finally, we present following result which generalizes a polynomial inequality due
to Aziz and Dawood [2].

THEOREM 5. If r ∈ Rn and all the zeros of the r lie in T1 ∪D1− , then for z ∈ T1

and R � 1 , we have
|r(Rz)| � |B(Rz)|m(r, 1). (13)

Equality in (13) holds for r(z) = uB(z) where u ∈ T1 .

REMARK. By Theorem 1, we have for z ∈ T1 , R � 0 and aj = a > 1 ,
j = 1, 2, . . . , n ,

∣∣∣ P(Rz)
W(Rz)

∣∣∣ +
∣∣∣P

∗(Rz)
W(Rz)

∣∣∣ �
{∣∣∣

(1 − aRz
Rz − a

)n∣∣∣ + 1
}

sup
z∈T1

∣∣∣ P(z)
(z − a)n

∣∣∣,

or,

|P(Rz)| + |P∗(Rz)| � {|(1 − aRz)n| + |(Rz − a)n|} sup
z∈T1

∣∣∣ P(z)
(z − a)n

∣∣∣. (14)

If sup
z∈T1

|P(z)/(z − a)n| on T1 is attained at z = eiα , 0 � α � 2π , then clearly

sup
z∈T1

∣∣∣ P(z)
(z − a)n

∣∣∣ =
∣∣∣ P(eiα)
(eiα − a)n

∣∣∣ �
sup
z∈T1

|P(z)|
|(eiα − a)n|

and from (14), we get for z ∈ T1 ,

|P(Rz)| + |P∗(Rz)| �
{∣∣∣

(1 − aRz
Rz − a

)n∣∣∣ + 1
} ∣∣∣

( Rz − a
eiα − a

)n∣∣∣M(P, 1).
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Letting a → ∞ , we obtain for z ∈ T1 and R � 0 ,

|P(Rz)| + |P∗(Rz)| � (Rn + 1)M(P, 1),

which in particular includes (4). Similarly all other polynomial inequalities mentioned
in this paper are limiting casses of our results.

2. Lemmas

To show the equality holds in Theorem 3, we need following lemmas. The first
result was recently proved by Aziz and Shah [4].

LEMMA 1. If B(z) is defined by (1) and α real, 0 � α � 2π , then
(i) B(z) + keiα has all its zeros in T1 ∪ D1+ for every k � 1 ;
(ii) B(z) + keiα has all its zeros in T1 ∪ D1− for every k � 1 .

LEMMA 2. If B(z) is defined by (1) and α real, 0 � α � 2π , then for k � 1 ,
we have

(i) sup
z∈T1

|B(z) + keiα | = k + 1 ;

(ii) inf
z∈T1

|B(z) + keiα | = k − 1 .

Proof of Lemma 2. By Lemma 1 (with k = 1 ), it follows that all the zeros of
rational function B(z)− eiα , 0 � α � 2π , lie on T1 , therefore, if z = t is any zero of
B(z) − eiα , then

|B(t) + keiα | = |eiα + keiα | = k + 1, t ∈ T1. (15)

Now by (1), it follows that |B(z)| = 1 for z ∈ T1 , which gives

|B(z) + keiα | � 1 + k, for every z ∈ T1. (16)

From (15) and (16), we conclude that

sup
z∈T1

|B(z) + keiα | = |B(t) + keiα | = k + 1.

This proves (i) . To establish (ii) , we observe by Lemma 1 that all the zeros of
B(z) + eiα also lie on T1 . Therefore, if z = s is a zero of B(z) + eiα , 0 � α � 2π ,
then for k � 1 ,

|B(s) + keiα | = | − eiα + keiα | = k − 1, s ∈ T1.

Since |B(z) + keiα | � k − |B(z)| = k − 1 for every z ∈ T1 , it follows as before that

inf
z∈T1

|B(z) + keiα | = |B(z) + keiα | = k − 1.

This completes the proof of Lemma 2

Proof of Theorem 1. We first suppose that R � 1 . Since all the poles of r(z) lie
in D1+ , it follows that r(z) is analytic for T1 ∪ D1− . Moreover |r(z)| � M(r, 1) for
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z ∈ T1 , therefore, for every complex number α ∈ D1+ , we have |r(z)| < |αM(r, 1)|
for z ∈ T1 . Applying Rouche’s theorem, it follows that the analytic function F(z) =
r(z) + αM(r, 1) does not vanish for z ∈ T1 ∪ D1− . If F∗(z) = B(z)F(1/z) , then

|F∗(z)| = |B(z)F(1/z) = |F(z)| for z ∈ T1

and

F∗(z)| = B(z)
(
r(1/z) + αM(r, 1)

)
,

= B(z)r(1/z) + αB(z)M(r, 1),
= r∗(z) + αB(z)M(r, 1),
= (P∗(z)/W(z)) + αB(z)M(r, 1),
= (P∗(z) + αB(z)W(z)M(r, 1))/W(z),
= (P∗(z) + αW∗(z)M(r, 1))/W(z)

so that F∗(z) is analytic for z ∈ T1 ∪ D1− . Therefore, F∗(z)/F(z) is also analytic for
z ∈ T1 ∪ D1− and

|F∗(z)/F(z)| = 1 for z ∈ T1.

Hence by the Maximum Modulus Principle, it follows that

|F∗(z) � |F(z)| for z ∈ T1 ∪ D1−.

Replacing z by 1/z , it can be easily seen that

|F(z) � |F∗(z)| for z ∈ T1 ∪ D1+.

That is, for z ∈ T1 ∪ D1+ , we have

|r(z) + αM(r, 1)| � |r∗(z) + αB(z)M(r, 1)|. (17)

Choosing the argument α such that

|r∗(z) + αB(z)M(r, 1)| = |α| |B(z)|M(r, 1) − |r∗(z)|,
for z ∈ T1 (which is possible by inequality (7)), from (17) we obtain

|r(z)| − |α|M(r, 1) � |α| |B(z)|M(r, 1) − |r∗(z)|
for z ∈ T1 ∪ D1+ and α ∈ D1+ . This gives

|r(z)| + |r∗(z)| � |α|{|B(z)| + 1}M(r, 1).

Letting |α| → 1 , we get

|r(z)| + |r∗(z)| � {|B(z)| + 1}M(r, 1) for z ∈ T1 ∪ D1+. (18)

Equivalently,
|r(Rz)| + |r∗(Rz)| � {|B(Rz) + 1}M(r, 1) (19)

for every R � 1 and z ∈ T1 .
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Next we suppose R � 1 and z ∈ T1 . Replacing z by 1/z in (18), we get for
z ∈ T1 ∪ D1−

|r(1/z)| + |r∗(1/z)| � {|B(1/z)| + 1}M(r, 1),

which implies, for z ∈ T1 ∪ D1−

|B(z)r(1/z) + |B(z)r∗(1/z) � {|B∗(z)| + |B(z)|}M(r, 1).

That is,
|r∗(z)| + |r(z)| � {|B(z)| + 1}M(r, 1) for z ∈ T1 ∪ D1−.

Equivalently, for z ∈ T1 and R � 1 , we have

|r(Rz)| + |r∗(Rz)| � {|B(Rz)| + 1}M(r, 1). (20)

Combining (19) and (20), we get the desired result. This completes the proof of
Theorem 1.

Proof of Theorem 2. Since r(z) = P(z)/W(z) and r∗(z) = P∗(z)/W(z) , we have

|r(z)/r∗(z)| = |P(z)/P∗(z)|. (21)

By hypothesis all the zeros of r(z) = P(z)/W(z) lie in T1 ∪D1+ and |P∗(z)/P(z)| = 1
for z ∈ T1 , it follows that the function P∗(z)/P(z) is analytic in T1 ∪ D1− . By the
Maximum Modulus Principle, we have

|P∗(z)/P(z)| � 1 for z ∈ T1 ∪ D1−.

Replacing z by 1/z , we conclude with the help of (21) that

|r(z)/r∗(z)| = |P(z)/P∗(z)| � 1 for z ∈ T1 ∪ D1+.

This implies
|r(z)| � |r∗(z)| for z ∈ T1 ∪ D1+.

Equivalently,

|r(Rz)| � |r∗(Rz)| for z ∈ T1 and for every R � 1.

Combining this with the conclusion of Theorem 1, we obtain

2|r(Rz)| � (|B(Rz)| + 1)M(r, 1)

for z ∈ T1 and every R � 1 , which is equivalent to (9) and this completes the proof of
Theorem 2.

Proof of Theorem 3. We have m(r, 1) = inf
z∈T

|r(z)| , so that m(r, 1) � |r(z)|
for z ∈ T1 . If r(z) has a zero on T1 , then m(r, 1) = 0 and the result follows from
Theorem2. Henceforth, we suppose all the zeros of r(z) lie in D1+ , so that m(r, 1) > 0
and all the zeros of r∗(z) = B(z)r(1/z) lie in D1− . Hence, if α is any complex number
such that α ∈ D1− , then for z ∈ T1

|r∗(z)| � m(r, 1) > |α|m(r, 1),
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therefore, it follows by Rouche’s theorem that all the zeros of rational function F(z) =
r∗(z) + αm(r, 1) lie in D1− , so that the rational function

F∗(z) = B(z)F(1/z) = B(z)
(
r∗(1/z) + αm(r, 1)

)
,

= B(z)r∗(1/z) + αm(r, 1)B(z),
= r(z) + αm(r, 1)B(z)

has all its zeros in D1+ . Hence the function F(z)/F∗(z) is analytic in T1 ∪ D1− and
|F(z)/F∗(z)| = 1 for z ∈ T1 . Therefore, by the Maximum Modulus Principle, we have

|F(z)| � |F∗(z)| for z ∈ T1 ∪ D1−.

Replacing z by 1/z , we get

|F∗(z)| � |F(z)| for z ∈ T1 ∪ D1+.

Equivalently,
|r(z) + αm(r, 1)B(z)| � |r∗(z) + αm(r, 1)|

for z ∈ T1 ∪ D1+ . This gives for every R � 1 and z ∈ T1 ,

|r(Rz) + αm(r, 1)B(Rz)| � |r∗(Rz) + αm(r, 1)|. (22)

Choosing argument of α such that

|r(Rz) + αm(r, 1)B(Rz)| = |r(Rz)| + |α|m(r, 1)|B(Rz)|,
we obtain from (22), for z ∈ T1 and R � 1

|r(Rz)| + |α|m(r, 1)|B(rz)| � |r∗(Rz) + αm(r, 1)|
� |r∗(Rz)| + |α|m(r, 1),

or,
|r(Rz)| + |α|(|B(Rz)| − 1

)
m(r, 1) � |r∗(Rz)|

for z ∈ T1 and R � 1 . Letting |α| → 1 , we get for z ∈ T1 and R � 1 ,

|r(Rz)| + (|B(Rz) − 1
)
m(r, 1) � |r∗(Rz)|,

which gives with the help of Theorem 1, for z ∈ T1 and R � 1

2|r(Rz)| + (|B(Rz) − 1
)
m(r, 1) �

(|B(Rz)| + 1
)
M(r, 1) � |r∗(Rz)| + |r(Rz)|.

This implies for z ∈ T1 and R � 1 ,

|r(Rz)| �
( |B(Rz)| + 1

2

)
M(r, 1) −

( |B(Rz) − 1
2

)
m(r, 1).

This proves inequality (10). To show that equality in (10) holds for r(z) = B(z) + λk ,
k � 1 for suitably choosen λ ∈ T1 , we observe by Lemma 1 that all the zeros of
B(z) + λk , k � 1 lie in T1 ∪ D1+ . Also by Lemma 2, we have

M(r, 1) = sup
z∈T1

|B(z) + λk| = k + 1
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and
m(r, 1) = inf

z∈T1

|B(z) + λk| = k − 1

so that for fixed θ = θ0 , 0 � θ0 < 2π and for

λ = B(Reiθ0)/|B(Reiθ0)|,
we have

|r(Reiθ0)| =
∣∣B(Reiθ0) + k

(
B(Reiθ0)/|B(Reiθ0)|)∣∣ = |B(Reiθ0)| + k.

Also,

( |B(Reiθ0)| + 1
2

)
M(r, 1) −

( |B(Reiθ0)| − 1
2

)
m(r, 1)

=
( |B(Reiθ0)| + 1

2

)
(k + 1) −

( |B(Reiθ0)| − 1
2

)
(k − 1) = |B(Reiθ0)| + k.

Hence two sides of (10) are equal. This completes the proof of Theoem 3.

Proof of Theorem 4. Since r(z) is self-inversive rational function, it follows that

|r∗(Rz)| = |r(Rz)| for z ∈ T1 and R � 0.

Combining this with the conclusion of Theorem 1, we readily obtain (12) and this
proves Theorem 4.

Proof of Theorem 5. If r(z) has a zero on T1 , then m(r, 1) = 0 and inequality
(13) is trivial. Henceforth, we suppose r(z) has all its zeros in D1− . Therefore
r∗(z) = B(z)r(1/z) has all its zeros in D1+ and

m(r, 1) � |r(z)| = |r∗(z)| for z ∈ T1,

so that m(r, 1)/r∗(z) is analytic for z ∈ T1 ∪ D1− and by the Maximum Modulus
Principle, it follows that

m(r, 1) � |r∗(z)| = |P∗(z)/W(z)|
for z ∈ T1 ∪ D1− . Replacing z by 1/z , we get

m(r, 1) � |P(z)/W∗(z)| = |r(z)/B(z)| for z ∈ T1 ∪ D1+.

Equivalently
|r(z)| � |B(z)|m(r, 1) for z ∈ T1 ∪ D1+,

which implies for z ∈ T1 and for every R � 1 ,

|r(Rz)| � |B(Rz)|m(r, 1).

This completes the proof of Theorem 5.



GROWTH OF MAXIMUM MODULUS OF RATIONAL FUNCTIONS WITH PRESCRIBED POLES 173

RE F ER EN C ES

[1] A. AZIZ, Growth of polynomials whose zeros are within or outside a circle, Bull. Austral. Math. Soc.
35 (1987), 247–256.

[2] A. AZIZ AND Q. M. DAWOOD, Inequalities for a polynomial and its derivative, J. Approx. Theory 54
(1988), 303–313.

[3] A. AZIZ AND Q. G. MOHAMMAD, Simple proof of a theorem of Erdös and Lax, Proc. Amer. Math. Soc.
80 (1980), 119–122.

[4] A. AZIZ AND W. M. SHAH, Some refinements of Bernstein-type inequalities for rational functions,
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