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AN INEQUALITY FOR MIXED POWER MEANS

CHRISTOS D. TARNAVAS AND DIMITRIOS D. TARNAVAS

(communicated by J. Pecaric)

Abstract. In 1992 Frank Hollad [1] stated the following inequality
1
(Aids . Ap)7 > %(Gng...Gn) (1)

where Ay, Gy, k = 1,2,...,n are arithmetic and geometric means, respectively, of positive
numbers aj,az,, ... L ag
In 1994 Kiran Kedlaya [2] gave a combinatorial proof of (1). In 1995 Takashi Matsuda [3]
gave another proof of (1).
In 1996 B. Mond and J. Pecari¢ [5] proved the following generalization of inequality (1)
involving power means:
if s>r then myg(a) >mg,(a), (2)

where mys(a) is defined by the following definition (1.2).
In this article a more general inequality, which concern weighted power means, is proved.

1. Introduction

Let a = (a,a2,...,a,) and w = (wy,wa,...,w,) be positive n-tuples,
then the arithmetic, geometric and harmonic means of a with weights w are defined
by:

k
We=> wi, k=12,....n
i=1

When all weights are equal we write respectively A,, G, and H, .
If r is a real number, then the weighted power mean of order r is defined as

M (aw) = ( Zwkak) , r#0 (1.1)
MY (a;w) = G,(a;w)

Mathematics subject classification (1991): 26D15, 26D20.
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176 CHRISTOS D. TARNAVAS AND DIMITRIOS D. TARNAVAS

When all weights are equal we write M, (a) or M) .
We enter the following definition analogue of (1.1).
If r,s is arbitrary real numbers we define

mys(a; w) { Zwk }r. (1.2)

When all weights are equal we write m,.5(a) .

We need the following Minkowski’s inequality, which can be found in [4, p. 170-
171].

Let a = (ai,as,...,a,), b = (b1,by,...b,) and w = (wi,wa,...,w,) be
positive n-tuples, and define the n-tuple a+b = (a1 +by,ay+ by, . ..,a,+b,). Then

MP(a;w) + MP (b w) > MPl(a+ byw) (p > 1) (1.3)
G,(a;w) + G,(b;w) < Gyla+b;w) (p=0)

if p < 1 then the inequality (1.3) is reversed.

2. The Main Result

REMARK 1. The following simple identities can be easily established [4, p. 132~
134]

a) Gy(a';w) = {Gu(asw)}’,

b) M,[f](a,w {Au(a®sw }i, s#0,

)M[”}(aw {M )}%, s#0,
where o' = (a}, a3, ...,d)).

»'n

First we prove the following Lemma

LEMMA. Let f : R — R be a convex function and a = (ay,ay,...,a,), w =
(w1, wa, ..., wy) be two positive n-tuples (n > 2) such that
Wowi — Wiw, >0 for 2<k<n-—1 (2.1)
then
n—1 n
1 1 .
W ;wkf[ w—1Ar(a;w)] = A ;wkf (WA (a; w) — wyag]. (2.2)

The equality holds in case n =2 orif f (x) is strictly convex in case aj = a, = -+ =
ay. If f (x) is concave then the inequality (2.2) is reversed.

REMARK 2. In the special case where all weights are equal the condition (2.1) is
satisfied and (2.2) is written

n—1

LS fA-Ay > 1 Zf (nAy — ap).
1

o~
Il
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Proof of Lemma. For n =2 (2.2) is equality.
Let n > 3. Since

Wik Wn ank — Wp Wk Wn Wk
= — k=23,...,n—1
anl Wik WkW,171 + Wit1 5y , 1

Wit W1
the left hand of (2.2) is equal to

—{WLf w—1A1(a;w)] + S+ wof [Wao1Au—1(a; w)]}

= WL{WLf WAL (a;w) — waar] + S + waf [WaAy(a; w) — waay) }

where
n—1
S = kZ:; Wk{%f [Wo—1 A1 (azw)] + Wf [Wa1Au(a;w)]}.
Since
R
and

Wn kal ank — Wn Wk
+
wiWy wiWy—1

=1, 2<k<n—1,

we apply the convexity of f inside the braces of sum S, we get

ﬂW Wn - nW
Z kf(w - 1 n lAk 1((1 W)+MW1171AIC(Q;W))

WieWa_1 WiWh—1
n—1
= Zwkf [WnAk(a;w) — Wpa|.
k=2

This proves the lemma. The case of equality is a simple consequence of the
convexity of f .

COROLLARY. If we choose f(x) =x” (x>0, p > 1 or p <0), we obtain

n—1 n

Zwk M) > — T W@ — el (23)

I’l nkl

If 0 < p < 1 then the inequality (2.3) is reversed.
For f (x) =Inx, x > 0 from (2.2) we obtain

{nli[l[Wn—lAk(a;W)]wk}ﬁ < {ﬁ[W Ac(a;w) — waai]” }WL. (2.4)

The equality for (2.4) and (2.3) holds when n=2 or aj =ay = --- = a,.
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THEOREM. If s > r and if w = (wy,wy, ..., w,) satisfy (2.1) of Lemma, then
mys(a;w) = my,(a;w) (2.5)
with the equality if and only if a; = a, = -+ = a,.

Proof of Theorem. We consider five cases.
Casel. 0 <r<swrite s=pr (p>1).
Using remark 1 the inequality (2.5) is equivalent to

{ nZwkMLpr(aw } { Zwk aw”’}’%

or
1
{ ZwkM aw} /{ Zkakaw }r.
Since r > 0 replacmg a” by a we get
1
—ZwkM (a;w) { Zkakaw },,
ﬂ k=1
or
1
ZwkM aw) { Zwk WoAe(a; w))? } . (2.6)
We prove the 1nequa11ty (2.6) by induction on n. Let n = 2. Since
2 1
Pleo.y — { 1 ) p}ﬁ
M W) =1 o WhAi(a;w) — .
wiM|" (a;w) Wzgwk[ WA (a; w) — waay]
We have

wlMIM (a;w) + szg’] (a;w)

INTE S
k=1

2
+ {WLZ 1 Wk(Wzak)p}

k=

S1e
S1e

=

2
> {WLZ Z wi[Wo Ay (a; w) — waar + waarl?

{ Zwk WA (a;w)]P }

where the last 1nequa11ty follows from (1.3) by n = 2. Therefore the inequality (2.6)
is valid for n = 2.

We assume that the inequality (2.6) is valid for n — 1 then

n—1
ZwkM,E’](a;w > {
k=1

==

n—1

Zwk —1Ag(a; w)]P } . (2.7)
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Now we have

Z wkM,[f} (a;w) = Z wkME’} (a;w) + waMP (a; w)
= k=1

Z [WnAk ((1 W) Wpdy + Wnak]p

S wmadapr)
k

where the first inequality follows from (2.7), the second inequality follows from (2.3)
and the third inequality from (1.3). This completes the inductive proof.

1

CASE2. r <0< s wewrite s=pr (p<0).
Using remark 1 and replacing @” by a the inequality (2.5) is equivalent to

ZwkM aw) { Zwk WoAe(a; w))? } . (2.8)

The proof of (2.8) becomes by induction on n. The result follows the same way,
as in case 1, by application of the corresponding cases (2.3) and (1.3) for p < 0.
Namely all inequalities of case 1 are valid here reversed.

CASE 3. Let 0 = r < s. Using remark 1 the inequality (2.5) is equivalent to

n

(T ) > (o S wiGatamr )
" k=1

k=1

or

{ﬁ[Ak(as;w)] * }W" { Zkak a’;w } :

k=1
Since s > 0 replacing a* by a we get

n

{H[Ak(a;W)]Wk}WL" > Win ikak(a;w). (2.9)

k=1
We prove the inequality (2.9) by induction on n. Let n = 2. Since

2

wiGi(a;w) = {H[WzAk(a§W) — Wzak]wk}WLz

k=1
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we have

wi1G1(a;w) + waGa(a; w)
2 1 2

— {E[WzAk(a ;W) — woay] }Wz +W2{k la }
~{
<

where the last inequality follows from (1.4) by n = 2. Therefore the inequality (2.9)
is valid for n = 2.
We assume that the inequality (2.9) is valid for n — 1 then

2 1

ﬁ[WzAk(a w) — waay] }WLZ + {H waay) }Vz
k=1 ke

2
I1

—_

1

[WzAk(a W) — Wodg —I-Wzak} }Wz = WZ{HAI( a,w ]Wk}
k=1 k=1

n—1 1
w1
Tt} ™ > oo (210)
k=1
Now we have
n n—1
Zkak(a;w) = Zkak(a;w) + w,Gy(a;w)
= k=1
n—1 W+ n WL
< Wn_l{H[Ak(a;W)]Wk} g Wn{ a,f"} !
k=1 k=1
n—1 n ;

—

= { [W,—1Ax(a; w)] } '+ {H Wnay) }
k=1

< ([Tt vt} Lo}

k=1 k=1

k=1

=

I

{H[W Ax(a; w)]Wk} —w, {ﬁ[Ak(a;w)]Wk}WL”

3

where the first inequality follows from (2.10), the second inequality follows from (2.4)
and the third inequality from (1.4). This completes the inductive proof.

CASE4. Let r < s < 0. Wewrite s=pr (0<p<1).
Using remark 1 and replacing @” by a the inequality (2.5) is equivalent to

ZwkM (a;w) { Zwk WA (a;w)P } . (2.11)
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The prove of (2.11) becomes by induction on . The result follows the same way,
as in case 1, by application of the corresponding case (2.3) and (1.3) for 0 < p < 1.

CASES. Let r <s=0.

Using Remark 1 and replacing a” by a the inequality (2.5) is again equivalent to
(2.9). This has been proved in case 3.

This completes the proof of Theorem.

NOTATION. If w; > wy > ... > w, the condition (2.1) is satisfied and (2.5) holds
in this case too.

Applications of theorems

Let
Ala;w) = (Ar(a;w), Ax(a; w), ..., Ay(a; w))
Gla;w) = (Gi(a;w), Ga(a; w), ..., Gula; w))
H(a;w) = (Hi(a;w), Ha(a;w), . .., Hy(a;w)).

1. For s =1 and r = 0 we have a mixed arithmetic-geometric mean inequality
Gu(A(a;w);w) = A, (Gla; w); w).

2. For s =0 and r = —1 we have a mixed geometric-harmonic mean inequality
H,(G(a;w);w) = Gy(H(a;w);w).

3. For s =1 and r = —1 we have a mixed arithmetic-hannonic mean inequality

H,(A(a;w);w) = A, (H(a; w); w).
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