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AN INEQUALITY FOR MIXED POWER MEANS

CHRISTOS D. TARNAVAS AND DIMITRIOS D. TARNAVAS

(communicated by J. Pečarić)

Abstract. In 1992 Frank Hollad [1] stated the following inequality

(A1A2 . . .An)
1
n � 1

n
(G1G2 . . .Gn) (1)

where Ak,Gk , k = 1, 2, . . . , n are arithmetic and geometric means, respectively, of positive
numbers a1, a2, , . . . , ak .

In 1994 Kiran Kedlaya [2] gave a combinatorial proof of (1). In 1995 Takashi Matsuda [3]
gave another proof of (1).

In 1996 B. Mond and J. Pečarić [5] proved the following generalization of inequality (1)
involving power means:

if s > r then mr,s(a) � ms,r(a), (2)

where mr,s(a) is defined by the following definition (1.2).
In this article a more general inequality, which concern weighted power means, is proved.

1. Introduction

Let a = (a1, a2, . . . , an) and w = (w1, w2, . . . , wn) be positive n -tuples,
then the arithmetic, geometric and harmonic means of a with weights w are defined
by:

An(a; w)= 1
Wn

n∑
k=1

wkak, Gn(a; w)=
( n∏

k=1

awk
k

) 1
Wn

, Hn(a; w)=Wn

( n∑
k=1

wk

ak

)−1

where

Wk =
k∑

i=1

wi, k = 1, 2, . . . , n.

When all weights are equal we write respectively An, Gn and Hn .
If r is a real number, then the weighted power mean of order r is defined as

M[r]
n (a;w) =

(
1

Wn

n∑
k=1

wka
r
k

) 1
r
, r �= 0 (1.1)

M[0]
n (a; w) = Gn(a; w)
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When all weights are equal we write M[r]
n (a) or M[r]

n .
We enter the following definition analogue of (1.1).
If r, s is arbitrary real numbers we define

mr,s(a; w) =
{

1
Wn

n∑
k=1

wk
[
M[s]

k (a; w)
]r

} 1
r
. (1.2)

When all weights are equal we write mr,s(a) .
We need the following Minkowski’s inequality, which can be found in [4, p. 170–

171].
Let a = (a1, a2, . . . , an) , b = (b1, b2, . . . bn) and w = (w1, w2, . . . , wn) be

positive n -tuples, and define the n -tuple a+b = (a1 +b1, a2 +b2, . . . , an +bn) . Then

M[p]
n (a; w) + M[p]

n (b; w) � M[p]
n (a + b; w) (p � 1) (1.3)

Gn(a; w) + Gn(b; w) � Gn(a + b; w) (p = 0) (1.4)

if p < 1 then the inequality (1.3) is reversed.

2. The Main Result

REMARK 1. The following simple identities can be easily established [4, p. 132–
134]

a) Gn(as; w) =
{
Gn(a; w)

}s
,

b) M[s]
n (a; w) =

{
An(as; w)

} 1
s , s �= 0 ,

c) M[rs](a; w) =
{
M[r]

n (as; w)
} 1

s , s �= 0 ,
where as = (as

1, a
s
2, . . . , a

s
n) .

First we prove the following Lemma

LEMMA. Let f : R → R be a convex function and a = (a1, a2, . . . , an) , w =
(w1, w2, . . . , wn) be two positive n -tuples (n � 2) such that

Wnwk − Wkwn > 0 for 2 � k � n − 1 (2.1)

then

1
Wn−1

n−1∑
k=1

wkf [Wn−1Ak(a; w)] � 1
Wn

n∑
k=1

wkf [WnAk(a; w) − wnak]. (2.2)

The equality holds in case n = 2 or if f (x) is strictly convex in case a1 = a2 = · · · =
an . If f (x) is concave then the inequality (2.2) is reversed.

REMARK 2. In the special case where all weights are equal the condition (2.1) is
satisfied and (2.2) is written

1
n−1

n−1∑
k=1

f (nAk − Ak) � 1
n

n∑
k=1

f (nAk − ak).
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Proof of Lemma. For n = 2 (2.2) is equality.
Let n � 3 . Since

wkWn

Wn−1
= wk

Wnwk − wnWk

wkWn−1
+ wk+1

wnWk

wk+1Wn−1
, k = 2, 3, . . . , n − 1

the left hand of (2.2) is equal to

1
Wn

{
w1f [Wn−1A1(a; w)] + S + wnf [Wn−1An−1(a; w)]

}

=
1

Wn

{
w1f [WnA1(a; w) − wna1] + S + wnf [WnAn(a; w) − wnan]

}

where

S =
n−1∑
k=2

wk

{wnWk−1

wkWn−1
f [Wn−1Ak−1(a; w)] +

Wnwk − wnWk

wkWn−1
f [Wn−1Ak(a; w)]

}
.

Since

wnWk−1

wkWn−1
> 0,

Wnwk − wnWk

wkWn−1
> 0

and

wnWk−1

wkWn−1
+

Wnwk − wnWk

wkWn−1
= 1, 2 � k � n − 1,

we apply the convexity of f inside the braces of sum S , we get

S �
n−1∑
k=2

wkf
(wnWk−1

wkWn−1
Wn−1Ak−1(a; w) +

Wnwk − wnWk

wkWn−1
Wn−1Ak(a; w)

)

=
n−1∑
k=2

wkf
[
WnAk(a; w) − wnak

]
.

This proves the lemma. The case of equality is a simple consequence of the
convexity of f .

COROLLARY. If we choose f (x) = xp ( x > 0 , p > 1 or p < 0 ), we obtain

1
Wn−1

n−1∑
k=1

wk[Wn−1Ak(a; w)]p � 1
Wn

n∑
k=1

wk[WnAk(a; w) − wnak]p. (2.3)

If 0 < p < 1 then the inequality (2.3) is reversed.
For f (x) = ln x , x > 0 from (2.2) we obtain

{n−1∏
k=1

[Wn−1Ak(a; w)]wk

} 1
Wn−1 �

{ n∏
k=1

[WnAk(a; w) − wnak]wk

} 1
Wn

. (2.4)

The equality for (2.4) and (2.3) holds when n = 2 or a1 = a2 = · · · = an .
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THEOREM. If s > r and if w = (w1, w2, . . . , wn) satisfy (2.1) of Lemma, then

mr,s(a; w) � ms,r(a; w) (2.5)

with the equality if and only if a1 = a2 = · · · = an .

Proof of Theorem. We consider five cases.
Case 1. 0 < r < s write s = pr (p > 1 ).
Using remark 1 the inequality (2.5) is equivalent to

{ 1
Wn

n∑
k=1

wk[M
[pr]
k (a; w)]r

} 1
r �

{ 1
Wn

n∑
k=1

wk[M
[r]
k (a; w)]pr

} 1
pr

or

{ 1
Wn

n∑
k=1

wkM
[p]
k (ar; w)

} 1
r �

{ 1
Wn

n∑
k=1

wk[Ak(ar; w)]p
} 1

pr
.

Since r > 0 replacing ar by a we get

1
Wn

n∑
k=1

wkM
[p]
k (a; w) �

{ 1
Wn

n∑
k=1

wk[Ak(a; w)]p
} 1

p

or
n∑

k=1

wkM
[p]
k (a; w) �

{ 1
Wn

n∑
k=1

wk[WnAk(a; w)]p
} 1

p
. (2.6)

We prove the inequality (2.6) by induction on n . Let n = 2 . Since

w1M
[p]
1 (a; w) =

{
1
W2

2∑
k=1

wk[W2Ak(a; w) − w2ak]p
} 1

p
.

We have

w1M
[p]
1 (a; w) + w2M

[p]
2 (a; w)

=
{

1
W2

2∑
k=1

wk[W2Ak(a; w) − w2ak]p
} 1

p
+

{
1
W2

2∑
k=1

wk(w2ak)p
} 1

p

�
{

1
W2

2∑
k=1

wk[W2Ak(a; w) − w2ak + w2ak]p
} 1

p

=
{

1
W2

2∑
k=1

wk[W2Ak(a; w)]p
} 1

p

where the last inequality follows from (1.3) by n = 2 . Therefore the inequality (2.6)
is valid for n = 2 .

We assume that the inequality (2.6) is valid for n − 1 then

n−1∑
k=1

wkM
[p]
k (a; w) �

{
1

Wn−1

n−1∑
k=1

wk[Wn−1Ak(a; w)]p
} 1

p
. (2.7)
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Now we have
n∑

k=1

wkM
[p]
k (a; w) =

n−1∑
k=1

wkM
[p]
k (a; w) + wnM

[p]
n (a; w)

�
{ 1

Wn−1

n−1∑
k=1

wk[Wn−1Ak(a; w)]p
} 1

p
+ wn

{ 1
Wn

n∑
k=1

wka
p
k

} 1
p

�
{ 1

Wn

n∑
k=1

wk[WnAk(a; w) − wnak]p
} 1

p
+

{ 1
Wn

n∑
k=1

wk(wnak)p
} 1

p

�
{ 1

Wn

n∑
k=1

wk[WnAk(a; w) − wnak + wnak]p
} 1

p

=
{ 1

W n

n∑
k=1

wk[WnAk(a; w)]p
} 1

p

where the first inequality follows from (2.7), the second inequality follows from (2.3)
and the third inequality from (1.3). This completes the inductive proof.

CASE 2. r < 0 < s we write s = pr (p < 0) .
Using remark 1 and replacing ar by a the inequality (2.5) is equivalent to

n∑
k=1

wkM
[p]
k (a; w) �

{ 1
Wn

n∑
k=1

wk[WnAk(a; w)]p
} 1

p
. (2.8)

The proof of (2.8) becomes by induction on n . The result follows the same way,
as in case 1 , by application of the corresponding cases (2.3) and (1.3) for p < 0 .
Namely all inequalities of case 1 are valid here reversed.

CASE 3. Let 0 = r < s . Using remark 1 the inequality (2.5) is equivalent to

{ n∏
k=1

[M[s]
k (a; w)]wk

} 1
Wn �

{ 1
Wn

n∑
k=1

wk[Gk(a; w)]s
} 1

s

or

{ n∏
k=1

[Ak(as; w)]
wk
s

} 1
Wn �

{ 1
Wn

n∑
k=1

wkGk(as; w)
} 1

s
.

Since s > 0 replacing as by a we get

{ n∏
k=1

[Ak(a; w)]wk

} 1
Wn � 1

Wn

n∑
k=1

wkGk(a; w). (2.9)

We prove the inequality (2.9) by induction on n . Let n = 2 . Since

w1G1(a; w) =
{ 2∏

k=1

[W2Ak(a; w) − w2ak]wk

} 1
W2
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we have

w1G1(a; w) + w2G2(a; w)

=
{ 2∏

k=1

[W2Ak(a; w) − w2ak]wk

} 1
W2 + w2

{ 2∏
k=1

awk
k

} 1
W2

=
{ 2∏

k=1

[W2Ak(a; w) − w2ak]wk

} 1
W2 +

{ 2∏
k=1

(w2ak)wk

} 1
W2

�
{ 2∏

k=1

[W2Ak(a; w) − w2ak + w2ak]wk

} 1
W2 = W2

{ 2∏
k=1

Ak(a; w)]wk

} 1
W2

where the last inequality follows from (1.4) by n = 2 . Therefore the inequality (2.9)
is valid for n = 2 .

We assume that the inequality (2.9) is valid for n − 1 then

{n−1∏
k=1

[Ak(a; w)]wk

} 1
Wn−1 � 1

Wn−1

n−1∑
k=1

wkGk(a; w). (2.10)

Now we have

n∑
k=1

wkGk(a; w) =
n−1∑
k=1

wkGk(a; w) + wnGn(a; w)

� Wn−1

{n−1∏
k=1

[Ak(a; w)]wk

} 1
Wn−1 + wn

{ n∏
k=1

awk
k

} 1
Wn

=
{n−1∏

k=1

[Wn−1Ak(a; w)]wk

} 1
Wn−1 +

{ n∏
k=1

(wnak)wk

} 1
Wn

�
{ n∏

k=1

[WnAk(a; w) − wnak]wk

} 1
Wn +

{ n∏
k=1

(wnak)wk

} 1
Wn

�
{ n∏

k=1

[WnAk(a; w)]wk

} 1
Wn = Wn

{ n∏
k=1

[Ak(a; w)]wk

} 1
Wn

where the first inequality follows from (2.10), the second inequality follows from (2.4)
and the third inequality from (1.4). This completes the inductive proof.

CASE 4. Let r < s < 0 . We write s = pr (0 < p < 1 ).
Using remark 1 and replacing ar by a the inequality (2.5) is equivalent to

n∑
k=1

wkM
[p]
k (a; w) �

{ 1
Wn

n∑
k=1

wk[WnAk(a; w)]p
} 1

p
. (2.11)
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The prove of (2.11) becomes by induction on n . The result follows the same way,
as in case 1, by application of the corresponding case (2.3) and (1.3) for 0 < p < 1 .

CASE 5. Let r < s = 0 .
Using Remark 1 and replacing ar by a the inequality (2.5) is again equivalent to

(2.9). This has been proved in case 3.
This completes the proof of Theorem.

NOTATION. If w1 � w2 � . . . � wn the condition (2.1) is satisfied and (2.5) holds
in this case too.

Applications of theorems

Let

A(a; w) = (A1(a; w), A2(a; w), . . . , An(a; w))
G(a; w) = (G1(a; w), G2(a; w), . . . , Gn(a; w))
H(a; w) = (H1(a; w), H2(a; w), . . . , Hn(a; w)).

1. For s = 1 and r = 0 we have a mixed arithmetic-geometric mean inequality

Gn(A(a; w); w) � An(G(a; w); w).

2. For s = 0 and r = −1 we have a mixed geometric-harmonic mean inequality

Hn(G(a; w); w) � Gn(H(a; w); w).

3. For s = 1 and r = −1 we have a mixed arithmetic-hannonic mean inequality

Hn(A(a; w); w) � An(H(a; w); w).
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