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Abstract. We show that if the sequence {κn} is quasi geometrically increasing, then a so-called
block-condition

∞∑
m=0

κm

( νm+1∑
n=νm+1

|cn|q
)p/q

< ∞, 0 < p < q,

for every {νm} is equivalent to the following two conditions

∞∑
n=1

|cn|qμn < ∞ and
∞∑
n=1

κn

(
κn

μνn+1

) p
q−p

< ∞,

where {μn} is a nondecreasing sequence.
Applications to absolute |C,α| -summability of general orthogonal series are also pre-

sented.

1. Introduction. In the theory of orthogonal series several families of coefficient
conditions are being utilized. Among them the three primarily used have the following
structure: ∞∑

n=1

c2
nρn < ∞, (1.1)

∞∑
m=1

κm

( νm+1∑
n=νm+1

c2
n

)p/2
< ∞ (1.2)

and ∞∑
m=1

αm

( ∞∑
n=m

c2
n

)p/2
< ∞, (1.3)

where p > 0, ρ := {ρn} , α := {αn} and κ := {κn} are certain monotone sequences
of real numbers, ν := {νm} is a subsequence of natural numbers and c := {cn} is a real
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coefficient sequence. We do believe that the reader knows plenty of results using one
of the above conditions, but in any case in [5] there are cited several different theorems
incorporating conditions (1.i). In the same paper we studied the relations between these
conditions. Among others, we gave sufficient conditions for the equivalence of (1.2)
and (1.3), moreover, we have analyzed the relation between (1.1) and (1.2).

V. Totik and I. Vincze [10] continued our investigations replacing the exponent 2
by a positive number q in (1.i), and gave necessary and sufficient conditions for the
equivalences of the conditions generalized in that way.

In [8] Y. Okuyama and T. Tsuchikura proved that for a specific sequence κ and
p = 1 the condition (1.2) is equivalent to a condition of the type

∞∑
m=1

βm

( m∑
n=1

γnc2
n

)1/2
< ∞ (βn, γn > 0). (1.4)

As we know, this was the first result verifying the equivalence between conditions of
the type (1.2) and (1.4).

In [6] we proved a general equivalence theorem pertaining to the following condi-
tions:

σ1 :=
∞∑

m=0

κm

( νm+1∑
n=νm+1

|cn|q
)p/q

< ∞ (1.5)

and

σ2 :=
∞∑

m=1

βm

( m∑
n=1

γn|cn|q
)p/q

< ∞. (1.6)

The equivalence of conditions (1.5) and (1.6) means that there exists a constant
K := K(α, β , γ , ν, p, q) > 0 such that K−1σ2 � σ1 � Kσ2 for any sequence {cn} .
In what follows K , Ki will denote absolute constants or constants depending only on
parameters being irrelevant to the problem in question. The constants are not necessarily
the same ones at which are different occurrences.

Since the equivalence of (1.5) with the conditions

∞∑
n=1

|cn|qρn < ∞ (1.7)

and ∞∑
m=1

αm

( ∞∑
n=m

|cn|q
)p/q

< ∞ (1.8)

is settled by Totik and Vincze, it follows that all the equivalences of conditions (1.5) –
(1.8) are analyzed.

In [10], among others, we can read

THEOREM A. If p �= q then (1.7) and (1.8) are equivalent if and only if the three
sequences

{ρn}, {1/ρn} and
{ n∑

k=1

αk

}
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are bounded.
If p = q then (1.7) and (1.8) are equivalent if and only if

K−1ρn �
n∑

k=1

αk � Kρn (n = 1, 2, . . .)

is satisfied.

It is easy to see that these restrictions on the sequences {ρn} and {αn} are
very rigorous, they claim nearly that the sequence ρ is “almost a positive constant”,
furthermore then both conditions (1.7) and (1.8) demand only that the sequence {cn}
belongs to the space �q .

But in an old paper [3], improving a celebrated theorem of W. Orlicz [9] relating to
the unconditional convergence of orthogonal series, we proved that the condition (1.8)
with p = 1 , q = 2 and αm = 1/m is equivalent to the pair of following conditions:

∞∑
n=1

c2
nρn < ∞ (1.9)

and
∞∑

n=1

22n

ρ22n
< ∞,

where ρ := {ρn} is a nondecreasing sequence of positive numbers.
We emphasize that then the sequence ρ is not a nearly constant sequence as in

Theorem A; on the contrary it tends to infinity.
Later we [4] generalized this equivalence statement as follows:

THEOREM B. Condition

∞∑
m=1

1
λm

( ∞∑
n=m

c2
n

)1/2
< ∞

holds if and only if there exists a nondecreasing sequence μ := {μn} of positive
numbers satisfying the conditions (1.9) with μn in place of ρn and

∞∑
n=1

Λn

λnμn
< ∞,

where Λn :=
∑n

k=1 λ
−1
k and λ := {λn} is a monotone sequence of positive numbers.

This result was also utilized for problems in connection with orthogonal series.
Recently, in [7], we generalized Theorem B and proved the analogous pair of the

new theorem in connection with the condition (1.6).
These theorems read as follows:
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THEOREM C. Let 0 < p < q , λ := {λn} , and c := {cn} be a sequence of
nonnegative numbers, furthermore let Λn :=

∑n
k=1 λk . The condition

∞∑
m=1

λm

( ∞∑
n=m

cq
n

)p/q
< ∞ (1.10)

holds if and only if there exists a nondecreasing sequence μ := {μn} of positive
numbers satisfying conditions

∞∑
n=1

cq
nμn < ∞ (1.11)

and ∞∑
n=1

λn

(Λn

μn

)p/(q−p)
< ∞. (1.12)

THEOREM D. Let 0 < p < q, β := {βn} and c := {cn} be a sequence of
nonnegative numbers,

∑∞
n=1 βn < ∞ , furthermore let Bn :=

∑∞
k=n βk . Then condition

(1.6) with γn ≡ 1 holds if and only if there exists a nonincreasing sequence μ := {μn}
of positive numbers satisfying conditions (1.11) and

∞∑
n=1

βn

(Bn

μn

)p/(q−p)
< ∞. (1.13)

We underline that if p > q then Theorems C and D are not valid universally.
The aim of the present paper is to establish a theorem similar to the last two

theorems, but replacing the so-called rest-condition (1.10), and the head-condition
(1.6), respectively, by the block-condition (1.5).

Considering the very strict restrictions on the sequences ρ and α appearing in
Theorem A for the case p �= q , we cannot expect that such a theorem can be given
easily for arbitrary sequences κ and ν .

Now we can prove an equivalence theorem for quasi geometrically increasing
sequence κ and for arbitrary ν . A monotone sequence ω := {ωn} of positive terms
will be called quasi geometrically increasing if there exists a natural number N such
that ωn+N � 2ωn holds for every natural number n .

2. Our result reads as follows:

THEOREM 1. Let 0 < p < q, κ := {κn} be a quasi geometrically increasing
sequence, ν := {νm} be a subsequence of natural numbers, and c := {cn} be a
sequence of nonnegative numbers. The condition (1.5) holds if and only if there exists
a nondecreasing sequence μ := {μn} of positive numbers satisfying the conditions

∞∑
n=1

cq
nμn < ∞ (2.1)

and ∞∑
n=1

κn

( κn

μνn+1

) p
q−p

< ∞. (2.2)
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REMARKS.
1. Our proof will show that the conditions (2.1) and (2.2) jointly imply (1.5) for

any sequence κ of positive terms. Here we shall not use the assumption that
κ is quasi geometrically increasing.

2. We also stress that without any additional requirement on the sequence κ the
equivalence given in Theorem 1 does not hold. This can be demonstrated by
the following simple example.

Let p = 1 , q = 2 , κm := logm , νm := m and

cn :=
{

m−3 if n = 2m,

0 otherwise.

Then (1.5) is satisfied, but (2.1) and (2.2) cannot be fulfilled simultaneously. Namely,
then with a nondecreasing sequence {μn} the conditions

∞∑
m=1

m−6μ2m < ∞

and ∞∑
m=2

2mm2

μ2m+1
�

∞∑
n=2

log2 n
μn+1

< ∞

yield a trivial contradiction.

3. Proof. First we show that the conditions (2.1) and (2.2) jointly imply (1.5).
Namely, using Hölder’s inequality, we have

∞∑
m=0

κm

( νm+1∑
n=νm+1

cq
n

)p/q
�

�
{ ∞∑

m=0

( νm+1∑
n=νm+1

cq
n

)
μνm+1

}p/q{ ∞∑
m=0

κ
q

q−p
m μ

p
p−q
νm+1

}1− p
q �

�
{ ∞∑

n=1

cq
nμn

}p/q{ ∞∑
m=0

κm

( κm

μνm+1

) p
q−p

}1− p
q
.

Hence it is obvious that (2.1) and (2.2) imply (1.5).
As we have stated in our Remark 1, we underline that this part of the proof does

not require the assumption that κ is quasi geometrically increasing, it holds for any
positive sequence.

Before starting the opposite part of the proof we note that the following inequality

m∑
n=1

κn � Kκm (3.1)

holds for all m , subsequent to the fact that κ is a quasi geometrically increasing
sequence (see e.g. [6, Lemma 1]).
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In order to prove that if (1.5) is satisfied then there exists a monotone sequence
μ satisfying (2.1) and (2.2) simultaneously we distinguish two cases. If only a finite
number of cn is positive, the assertion (2.1) is trivial for any μ , and it is enough and
easy to find a monotone increasing sequence μ such that (2.2) hold, too.

Therefore, we can assume that the terms

Cνk :=
( ∞∑

n=νk+1

cq
n

) p−q
q

are all positive, creating thus a nondecreasing sequence.
Now, we define μ as follows:
For νm < n � νm+1 , let

μn := κmCνm , m = 0, 1, . . .

It is plain that this sequence μ := {μn} is nondecreasing.
Next, we show that with such μ (2.1) holds if (1.5) is satisfied. Namely, by p < q

we can use the so-called power-sum inequality (see e.g. [1], p. 28), later the inequality
(3.1), and finally (1.5), and thus we have

∞∑
n=ν0+1

cq
nμn =

∞∑
m=0

νm+1∑
n=νm+1

cq
nμn =

=
∞∑

m=0

κmCνm

νm+1∑
n=νm+1

cq
n �

�
∞∑

m=0

κm

( ∞∑
n=νm+1

cq
n

)p/q
�

�
∞∑

m=0

κm

∞∑
i=m

( νi+1∑
n=νi+1

cq
n

)p/q
=

=
∞∑
i=0

( νi+1∑
n=νi+1

cq
n

)p/q i∑
m=0

κm �

� K
∞∑
i=0

κi

( νi+1∑
n=νi+1

cq
n

)p/q
< ∞.

(3.2)

Herewith the implication (1.5) ⇒ (2.1) is verified.
Similar arguing delivers the implication (1.5) ⇒ (2.2). Using the definition of μ

we get
∞∑

n=1

κn

( κn

μνn+1

) p
q−p

=
∞∑
n=1

κn

( ∞∑
n=νn+1

cq
n

)p/q
=: S1,

and under (3.2) we have

S1 � K
∞∑
i=0

κi

( νi+1∑
n=νi+1

cq
n

)p/q
.
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Thus the proof of (1.5) ⇒ (2.2) is also complete.
We remark that our proof also shows that the sum in (1.5) can be majorized by

the product of the sums appearing in (2.1) and (2.2) endowed with exponents p/q and
1 − p

q , respectively.
Furthermore, at least in the elaborated case, the sums in (2.1) and (2.2) do not

exceed the sum of (1.5) multiplied by a suitable constant which depends only on the
sequence κ .

4. Applications. Utilizing our equivalence theorem, we could present several
new sufficient conditions in pair for general orthogonal series, since there exist a lot of
block-type conditions implying desired properties for the general orthogonal series

∞∑
n=1

cnϕn(x), x ∈ (0, 1). (4.1)

We present and prove only three sample results.

THEOREM 2. If 0 � α < 1
2 and there exists a monotone sequence μ := {μn} of

positive numbers such that
∞∑
n=1

c2
nμn < ∞ (4.2)

and
∞∑
n=1

2n(1−2α)

μ2n
< ∞, (4.3)

then the orthogonal series (4.1) is |C,α| -summable almost everywhere in (0,1).

Proof. Theorem 1 with p = 1 , q = 2 , νn = 2n and κn = 2
n
2 (1−2α)(0 � α < 1

2 )
implies that the conditions (4.2) and (4.3) are equivalent to

∞∑
m=0

2
m
2 (1−2α)

{ 2m+1∑
n=2m+1

c2
n

}1/2
< ∞. (4.4)

In [2] (see Satz II) we have proved that (4.4) implies the |C,α| -summability of
the series (4.1) almost everywhere in (0,1) (0 � α < 1/2) .

Thus Theorem 2 is proved.

Considering our Remark 1 we can present two more theorems using only the first
part of Theorem 1.

THEOREM 3. If there exists a monotone sequence μ := {μn} of positive numbers
such that (4.2) holds and

∞∑
m=1

m
μ2m

< ∞, (4.5)
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then the orthogonal series (4.1) is |C, 1
2 | -summable almost everywhere in (0,1).

Proof. The conditions (4.2) and (4.5) imply

∞∑
m=1

√
m

{ 2m+1∑
n=2m+1

c2
n

}1/2
< ∞ (4.6)

by Theorem 1 with p = 1 , q = 2, νm = 2m and κm =
√

m (see also our Remark 1).
In [2] it is proved that (4.6) implies the |C, 1

2 | -summability of (4.1) almost every-
where (see Satz II), thus we have the proof.

THEOREM 4. If α > 1/2 and there exists a monotone sequence μ of positive
numbers such that (4.2) is fulfilled and

∞∑
m=1

1
μ2m

< ∞, (4.7)

then the orthogonal series (4.1) is |C,α| -summable almost everywhere in (0,1).

We remark that Theorem 4 is a slight improvement of Theorem 3 given in [7].
We leave out the proof because it follows the line of our previous proof with the

modifications that κm = 1 ; the sufficiency of the condition

∞∑
m=1

{ 2m+1∑
n=2m+1

c2
n

}1/2
< ∞

for the |C,α| -summability is proved by “Satz I” in [2].

RE F ER EN C ES
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