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Abstract. Improved version of the Rivlin’s theorem has been stated and proved.

1. Introduction awd statement of results

Let p(z) be a polynomial of degree n then the following inequality is well known:

max
|z|=r

|p(z)| � rn max
|z|=1

|p(z)| for r � 1. (1.1)

Inequality (1.1) is due to Zarantonello and Varga [6] and equality holds for all
polynomials whose zeros lie at the origin.

Rivlin [5] considered the class of polynomials not vanishing in [z] < 1 and proved
the following inequality analogous to (1.1)

max
|z|=r

|p(z)| �
(1 + r

2

)n
max
|z|=1

|p(z)| for r � 1, (1.2)

which is much better than (1.1). Besides equality in (1.2) holds for p(z) =
(α + βz

2

)n

where |α| = |β | .
The class of polynomials p(z) = a0 +

n∑
v=μ

avzv having no zeros in |z| < K , K � 1

was considered by Dewan [3] (see also [2]) who generalized inequality (1.2) by proving
the following

THEOREM A. If p(z) = a0 +
n∑

v=μ
avzv has no zeros in |z| < K , K � 1 , then for

0 � r � λ � 1

max
|z|=r

|p(z)| �
( Kμ + rμ

Kμ + λμ

)n/μ
max
|z|=λ

|p(z)|. (1.3)

The equality holds for polynomials of the form p(z) = (zμ + Kμ)n/μ , where n is a
multiple of μ .

In this paper we shall prove the following extension and generalization of Theo-
rem A.
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THEOREM. Let p(z) = a0 +
n∑

v=μ
avzv be a polynomial of degree n , such that

p(z) �= 0 in |z| < K , K > 0 , then for 0 < r � R � K ,

max
|z|=r

|p(z)| �
( Kμ + rμ

Kμ + Rμ

)n/μ
max
|z|=R

|p(z)| +
[
1 −

( Kμ + rμ

Kμ + Rμ

)n/μ]
min
|z|=K

|p(z)|. (1.4)

The equality holds for polynomials of the form p(z) = (zμ + Kμ)n/μ where n is a
multiple of μ .

REMARK. For μ = 1 the above Theorem also provides, in general, an improve-
ment over a result due to Bidkham and Dewan [2] and for K = 1 , μ = 1 it improves
upon a result due to Govil [4].

2. A Lemma

We need the following result for the proof of our theorem.

LEMMA. Let p(z) = a0+
n∑

v=μ
avzv be a polynomial of degree n , such that p(z) �= 0

in |z| < K , K � 1 , then

max
|z|=1

|p′(z)| � n
1 + Kμ

{
max
|z|=1

|p(z)| − min
|z|=K

|p(z)|
}

.

The equality holds for polynomials of the form p(z) =
(
zμ + Kμ)n/μ

, where n is a
multiple of μ .

The above lemma is a particular case of a result due to Aziz and Rathar [1,Theorem
3, equation (14)].

3. Proof of Theorem

Since p(z) has no zeros in |z| < K , K > 0 then for 0 < t � K , P(z) = p(tz)
has no zeros in |z| < K/t , K/t � 1 . Hence on using the Lemma, we get

max
|z|=1

|P′(z)| � n

1 +
Kμ

tμ

{
max
|z|=1

|P(z)| − min
|z|=K/t

|P(z)|
}

or

max
|z|=t

|p′(z)| � ntμ−1

Kμ + tμ

{
max
|z|=t

|p(z)| − min
|z|=K

|p(z)|
}

. (3.1)

Let M(p, r) = max
|z|=r

|p(z)| , and m(p, r) = min
|z|=r

|p(z)| , then (3.1) is equivalent to

M(p′, t) � ntμ−1

Kμ + tμ

{
M(p, t) − m(p, K)

}
. (3.2)
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Now for 0 < r � R � K and 0 � θ < 2π , we have

∣∣p(
Reiθ)∣∣ �

∣∣p(
reiθ)∣∣ +

R∫
r

|p′(teiθ |dt

which implies

M(p, R) � M(p, r) +

R∫
r

M(p′, t)dt.

Combining the above inequality with (3.2), we get

M(p, R) � M(p, r) +

R∫
r

ntμ−1

Kμ + tμ

{
M(p, t) − m(p, K)

}
dt

or

M(p, R) � M(p, r) +
[ R∫

r

ntμ−1

Kμ + tμ
M(p, t)dt −

R∫

r

ntμ−1

Kμ + tμ
m(p, K)dt

]
.

(3.3)

Now using the arguments similar to those used in Dewan [3], the theorem follows.
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