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INEQUALITIES FOR SOME COEFFICIENTS

OF UNIVALENT FUNCTIONS

JIAN-LIN LI, H. M. SRIVASTAVA AND YU-LIN ZHANG

Abstract. Let S be the usual class of normalized analytic and univalent functions in the open
unit disk. We write

log
f (z)

z
= 2

∞∑
n=1

γn zn (f ∈ S ).

The well-known de Branges’ theorem shows that

In =
n∑

k=1

(n − k + 1)
(

k|γk |2 −
1
k

)
� 0 (n ∈ N := {1, 2, 3, · · · }; f ∈ S ).

In this paper we use the properties of In to obtain some coefficient inequalities for univalent
functions. The results obtained here extend and unify several known results.
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