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INEQUALITIES FOR SOME COEFFICIENTS
OF UNIVALENT FUNCTIONS

JIAN-LIN LI, H. M. SRIVASTAVA AND YU-LIN ZHANG

(communicated by J. Pecari¢)

Abstract. Let . be the usual class of normalized analytic and univalent functions in the open
unit disk. We write

log@ :ZZ w7t (feS).
n=1

The well-known de Branges’ theorem shows that

n

Iy=> (n—k+1) <k\yk|2f %) <0 (neN:={1,2,3,---}; f €.7).
k=1

In this paper we use the properties of [; to obtain some coefficient inequalities for univalent
functions. The results obtained here extend and unify several known results.

1. Introduction

Let .¥ be the class of functions of the form:

f(Z)=z+§:anz”7 (1.1)

n=2

which are analytic and univalent in the open unit disk
U :={z:z2€¢C and |[7] <1}.

We write

1og@ =2 12 (1.2)
n=1

Z

and

A o]
(&> Y a) (0<i <o) (13)

n=0
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The Koebe function K(z) = z(1 —z) 2 has the logarithmic coefficients
Yn:% (n e N) (1.4)
and K@ N -
z n
(T) = Z:; dy(2M) 2. (1.5)

In 1984 de Branges proved the Milin conjecture that, for f € . and n € N, the
following sharp inequality holds true:

L=>Y (n—k+1)(kyk2—%> <O0. (1.6)

k=1
This was extended to the form:

. 1
Lo, B) = di1(a) dyi(B) (|Yk2 - ﬁ) <0 (neN; 0<a<2; B2>2),
k=1
(1.7)
by showing that these inequalities are in the convex hull of the inequalities (1.6) (see
[3, p. 27]). Recently, Dong [5] proved that

3m ) .
4m271(1_|}’1|) (n=2m—1, meN)
15m(m+ 1)

(m® — 1)(2m + 3)

_In >Mn -

5
(G- mP-IP) (n=2mmem).
(1.8)
In this paper we use the properties of [, to obtain some inequalities for the
coefficients ¥, and a,(A) defined as above. The results obtained here extend and unify
several known results.

2. Inequalities for the Coefficients a,(1)

It is well-known that de Branges’ result (1.6) implies Robertson’s conjecture:

N
Yo (B <N+1 (NeN\{1}), (2.1)
n=0

and hence also the celebrated Bieberbach conjecture:

lan| < n (n e N\ {1}). (2.2)

Equality in each of the results (1.6), (2.1), and (2.2) holds true only if

Z
=K = =1).
f(Z) X(Z) (1 IR XZ)Z (‘X‘ )

The inequalities (2.1) and (2.2) have been extended by several authors (¢f. [1], [3],
[8], and [14]). In particular, Milin and Grinshpan [14] proved the following results:
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THEOREM A. Let f € .7 be defined by (1.1). Then the following sharp inequali-
ties hold true:

N—1
jan| <" e (3)[P<EN  (NeN\{1}); (23)
k=0

Z lax (1)) < {N+ 1) exp (Nl—il> — nexp (I"nl)] (2.4)

(neNg:=NU{0}; N=nn+1,n+2,--; N+n#0; .y =1 =0),
where
E=aexp(l—a) <1 (oc = 4 +;a2|2> . (2.5)
THEOREM B. Ler f € . be defined by (1.1). Then
lav(2)l <{0(A)}2dn(24) (A2 1; NEN), (2.6)
where
B(A) = a(h) exp(1 — a(A) < 1 (a(ﬂt) _ %ﬁ';) e

Equality in (2.5) is attained by the function K, (z).

Aharonov [1] also obtained (2.3). Hayman and Hummel [8] discussed as to what
extent the analogue of (2.2) holds true for the coefficients a,(A) defined by (1.3). They
proved that

ZN (M)
n 1.
2 dn(zﬂt) < dN(2/l + 1) (A > 5 N € No)

The following theorem will provide a unification and extension of the above results.

THEOREM 1. Let f € .7 be defined by (1.1). Then

S DE oaysa L)AL >k neN\(1)) (28)

— di(21)
and
()] < {0)8,22, 0} dy(22) (A >1: neN\{1}),  (29)
where

0.0 =00 (s e (15]) )
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and O(A) and M, are defined by (2.7) and (1.8), respectively. Equality in (2.8) and
(2.9) holds true only if f (z) = K, (z).

Proof. We note from (1.2) and (1.3) that

i ar(A) & =exp (i 2A )/kzk) . (2.11)
k=0

k=1

Applying Milin’s inequalities [11, pp. 33—-37], we find from (2.11) that

~ la())” 2
kz:g o 0,(2A) d, (22 + 1) exp 751,,(2/1“)[”(% +1) (2.12)
and 2
lan(A)| < {6,(24)}2 d,(24) exp (m 1,1(2/1)) , (2.13)
where {0,(24)} is a non-increasing sequence of positive numbers:
0,2A4) < 6,124) < --- < 6;24) < 6(2A) =1 (2.14)

and I,(B) := 1,(2,B) is defined by (1.7). The equality 6,(2A) = 1 holds true for
some n € N only if

Xk
Te= " (keN; [x|=1).

We now apply the Abel transformation to the quantity I,(f). This yields

Z dn k <k|yk - %)

= Z {dn—i(B) — 2du—4—1(B) + dn—i—2(B)} It
k=1
= B-1)(B-2)

b)) —k+F -2

k=1

Ik + (ﬁ - 2) Infl + Ina

(2.15)
where d_»(f) =d_(B) =0.
It follows from (1.6) that

<,,f§iiﬁff+§>3) (\@ = 1) <0 (B>2 neN\{1}).

In(ﬁ) <dn—1(B) 2

(2.16)
Furthermore, by applying (1.8), we have (for f > 2 and n € N)
- M, (B=2)
LB s MPyi=q & (B-1)(B-2)
—; dn—k(B) (nfk+[371)(n—k+ﬁ—2)Mk (B>2).

(2.17)
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The equality in (2.16) and (2.17) holds true only for the function K (z).
Since

6,(24) < 6:(24) =0(4)  (neN),
we get from (2.12) and (2.17) that

n

ar( 2 2A
> Gty < (o e (o e 4 o) ey

24 24024 — 1)d, i (24 + 1)
< {9(/1) exp<dn(2,1 +1) (n+24—1D)(n+24—-2)

M,

- d,,(%ﬁnM”) } (22 + 1)

={0(1)8,(24 4+ 1,1)} d,(2A + 1) (A >4 neN\{1}),

(2.18)
which yields (2.8).
Similarly, from (2.13) and (2.17), we have
()| < 1 exp (-2 d,(20)
n X d,,(2/l n
1 ?L 2/1 - 1A =2)d,—1(2A)
< .
\{ }zeXp< du( nt 2 —Dnt2i—3) 219)

D M)} hi2h)

= {0(1)8,(22,0)}* d,(2) (A >1; neN\{1}),

which gives (2.9). The assertion concerning the attainment of equality in (2.8) and
(2.9) is obvious. This completes the proof of Theorem 1.

REMARK 1. It follows from (2.12), (2.14), and (2.17) that the analogue of (2.4)
holds true for the coefficients a,(A) (A > 3).

3. Inequalities for the Coefficients 7,

Milin and Grinshpan [14] noted that de Branges’ result (1.6) implies the Bazilevié
conjecture on the estimation of the logarithmic area, namely,

Zk\ykw log 0<r<l). (3.1)
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Zemyan [18], Andreev and Duren [2], and Milin [12] also gave different proofs of (3.1).
Recently, Li [10] and Nikitin [15] obtained the stronger inequality:

——r(l=n?(1=nP)  (0<r<i). (3.2)

= 1
> klnfrt <log ¢
k=1 o

The following theorem will improve this inequality further.

THEOREM 2. Let f € .¥ and 0 < r < 1. Then

1

15 23422434 T4 304D\ (5 o o
_3—2(1—r) { 73 loglir— 2 4_1_“/1' — " ).
(3.3)

= 1 3 1+ 7 1+r 2
2 2 2
S kit <tog - 3 (1= (S5 g - 2) (1= )

Proof. For > 0, we observe that

Z klprt = (1—r)P Z k[yel* * Z di(B) r*
k=1 k=1 k=0

(1—7) {il r"+i<zn: d"z(ﬁ)> r"} (3.4)

k=1

o0

(1- r)ﬁ Z L(B)r
n=1

1
= log +
1—r

When 8 = 2, we conclude from (2.17) that

> 1
>kl <log 1
k=1

— (L= > M (3.5)
k=1
Since
o0 o0 3k B
YoMt =(1-nP) Y] 2 — 1 e
k=1 k=1

5 > 15k k+ 1)
" (Z = Inf = | > @k
k=1
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and since

— 3%k 5, 3 1 2%—1
§4k2—1’ - kZ:: 2k—1 toaura)”

1w

3 1+r210 1+r72

-8 r? 1=+ >
and
> 15k(k + 1) 15 & 3 2 3 "
Z 2 =3 + + r
14k—1 (2k+3) 32 — 2k—1  2k+1 2k+3

15 /3427 43 o L+r 3(1+7)
Y 273 - 2 )

it is easily seen that the inequality (3.5) reduces to (3.3). This proves Theorem 2.

Duren and Leung [6] showed that

ol <Y kl—z S (3.6)

k=1 k=1

forall f € .. One question that arises naturally is whether the partial-sum inequality:

donl<)] k_12 (3.7)
k=1 k=1

holds true for n € N'\ {1,2}. Both Milin and Grinshpan [14] and Andreev and Duren
[2] provide some supportive evidence that (3.7) should hold true for n > 3, although
neither work provides a proof. Recently, Zemyan [18] gave an estimate of the left-hand
side of (3.7). Li [10] improved Zemyan’s result to the following form:

1 8
Z|Yk|2 ;k_ n

where § < 0.312 is the Milin constant. We shall now prove

(1—\)’1\2) (n e N\ {1,2}),

W =

THEOREM 3. Let f € .. Then

. 2 . 1 6 2 5 2 2
;\YH <;ﬁ+m—L(”)(1—|m ) —H(n) Z—|Y1| —Inl”)(3.8)

(n e N\ {1,2}),
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where § < 0.312, L(n) (> %) and H(n) (> }) are defined by

3 (72 e m

el (S | VA — =2m—1;

2<8 4 (2+m)+4m2_1) (n=2m—1, meN)
L=93/p ! m+ 1

— _ — ! _ - — .

2(8 t=gv (2+m)+(2m+1)2> (n=2m; m €N)

(3.9)

and

1504 2 1 ,(1 m

) A = - —2m—1:

8{3 g "3V (2””) 4m2—1} (n=2m—1;meN)

2

Hny={ B4 =~ 1,01

g3 3 TV gt

2—(m+2)dm* —1)
(2m —1)(2m+ 1)2(2m + 3)

] (n=2m; m € N),

(3.10)
and y(z) :=T1"(2)/T(z) denotes the Psi or Digamma function.
Proof. By using summation by parts twice, we have
1 1 - 2 1
kvlP=2) = I, + I,
; x ( "l k) ; Kkt D&+2) * T it Dnt2)
(3.11)
P (T
n+1 T k)’
k=1
From (2.17) and Milin’s Lemma, we obtain
n n 1 6
2L —+ ———R, 3.12
k=1 k=1
where
R =S 2 My + Ly (3.13)
Tk DK +2) T e D2 '
Now

2m
2
M. =3(1-n? —
kZ:;k(k+1)(k+2) =3 Wl')k:l @ 1)

5/5 L, N\ I
t3 (4 nl™=Irl > k; 2k — )2k + 122k +3)’
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m 2
L (2k—1)(2k+ 1) }

= L O L
~ 218 VT T e
and
= 1 1 = 1
; 2k — 1)(2k + 1)2(2k + 3) §{k (2k—1)(2k+1) 2k+ +Z; 2k + 1)(2k + 3)
B m 1 }
2k + 1)
14 2+1 (L4m)— 2+(2m+1)(m+2)
B I A S R i yer; ey
where we have used the fact that
= 1 1,
-~ Z (L . 3.14
;(zk_l)z 8 4W(2+m) ( )
Thus (3.12) gives (3.8) when n = 2m. Since
1 1
Rm— :Rm 7Mm— _7Mm>
ot = o G ) T mem 1)

the inequality (3.12) also gives (3.8) in the case when n = 2m — 1. This completes the
proof of Theorem 3.

In view of the fact that v’ (3 +m) — 0 (m — oo), Theorem 3 yields the
following

COROLLARY. Let f € .. Then

> 2 3(n? —8) 5(32—-3n%) (5
NP < E - () - 22 (2 g P ). (315

4. Remarks on the Estimation of | (z)/f'(z)|

The well-known Landau’s theorem shows that, if f € .% is defined by (1.1), then

|an| n@Vn ‘\% (ZE%; nEN\{l}) (41)



216 JIAN-LIN L1, H. M. SRIVASTAVA AND YU-LIN ZHANG

Gong [7] extended the inequality (4.1) to the following sharp forms:

(2)
2)

n! (n+|z|)
S ==+ 2f)

(n)
la,| < n < ’f,
1(

(ze#; neN\{1}); (4.2)

< n!
S (=)
Therefore, de Branges’ result (2.2) also improves several results on the estimation of
If ") (z)/f'(z)|. For example, one may cite the results obtained by Jakubowski [9] and
Todorov [17]. (See also a recent work of Srivastava [16] for various extensions of
inequalities like (4.1) to fractional derivatives.)

Recently, Chua [4] generalized de Branges’ theorem (2.2) to arbitrary simply-
connected domains. The following two theorems were established by him [4].

f0(2)
lanl <1 ‘ f'(z)

(ze%; ne N\ {1}). (4.3)

THEOREM C. Let
oo
w=g(z) :Z+Z a, 7' € S
n=2

Forn=kk+1,k+2,--- (k€N), let Byy(az,as,- - ,a,) be the coefficient of w"
in the expansion:

Giw) = [¢7'w)]" =3 B,

n=k
where g~ is the inverse of g. Then the sharp inequality:
k( 2n
Bustanas,eo o)l <5 (")) (4.4)

holds true for n = k,k+ 1,k+2,--- (k € N), with equality precisely for the function
Ky (2).

THEOREM D. Let f (w) be an analytic and univalent function on a convex domain
&. Then

(n)
‘f - (W)‘ <(n+1)127H{As W)™ (we & n=2,3,4), (4.5)
f'(w)
where Ag(w) denotes the hyperbolic metric on & . Furthermore, if f (w) is also convex,
then o
f7(w) ‘ -1 1
<n! 277 g (W)} weé& n=2,34). 4.6
e st~ L s

In this section, we first give a simple proof of Theorem C. We say that

f@=) @
n=0
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is dominated by

F(Z) - Z Anzn7
n=0

and we write f (z) < F(z), if
lan| < Ay (n € Np).
Obviously, if f(z) < F(z), then
FEI <F@I (ke N).
Lowner’s result shows that, if

w=glt)=z+) @€ and z=g '(w)=) Buw,
n=2 n=1

then L/ o
1B,.1| < ;( " ) (n€N), (4.7)

n—1
with equality for a given n only if
g7 '(w)=xK '(xw) and [x|=1.
For the Koebe function w = K, (z) = z/(1 — z)* =: K(z), we have

1-2w—+1—-4 =1/ 2
1=K '(w) = w W :w+z ;<n”1>w". (4.8)
n=2

2w
Thus Lowner’s result can be rewritten as follows:
g (w) <K H(w).

This gives
k

] < [k )] (ke Ny). (4.9)

Since

b (1= yT=dw )™ ik(2n>n’

- w
n\n—=k
n=k

(4.9) is equivalent to (4.4).
Next we prove an extension of Theorem D from 2 < n <4 to 2 < n < 7. For

each wy € &, let w = g(z) be a conformal mapping of % onto & with g(0) = wy.
Then the function
8(z) — £(0)

h(z) =
g'(0)
is a normalized convex univalent function in % and

)kg(Wo) = m
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Let
[h—l(w)]" = i B.yw"  (keN)
n=k
Then, from
e o )W)
Foo =Y L8Oy e
j=0
we have
< (f o g)0) ;
70 = L )
=0
- Fo8)(0) -y (wowo)”
_,; J! ;B""< g'(0) )
S N N I
‘Z{ i [g'<o>1"} v = wo)
which yields
[P0 1IN (Fog)00) )
n! - [g,(o)]n = ]' BnJ ( EN)
Since
[(f o 8)(z) — (f 2£)(0)]
Fog®
we find from (4.11) and (2.2) that
)
) o Zjv w0) ¢'(0)] 1Byl

n

= f'(wo)| {As(wo)}" ™" > j|Bujl.
j=1
Let B,; = B, (n € N). Then

[h*(w)]":wki(’f) (iBw ) =S B,

n=k

(4.11)

(4.12)

(4.13)
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which yields

k k k
Biy =1, Birix= <1)Bz, Biiox = <1>Bz + (2>B§7
k k k
Biisp = (1>B4 + 2< )BzB3 + (3)B§,
k k k k
Bijayx = (1>Bs + <2) (B§ +2B,B4) +3 <3> B3B; + (4)337

k k k
Biysk = ( )136 +2 <2> (B2Bs + B3By) +3 (3) (B3B4 + B3B:)

k k
+4<4>B§B3 + (5)33,

k k k
Biyox = (1>B7 + (2) (Bj + 2B2Bs + 2B3Bs) + (3> (B3 + 3B3Bs + 6B,B3B,)

k k k
+ ( 4) (4B3Bs + 6B3B3) +5 ( 5) B3B; + ( 6) BS.

For the convex function A(z), Libera and Zlotkiewicz [11] proved that

(4.14)
|Ba| <1 (n=2,3,4,5,6,7), (4.15)

and also that these bounds are sharp.
In view of (4.15), we deduce from (4.14) that

Bl = 1. Bl < () =&
<) 26 ()= 65
(o) -(D
s = (1) +4) +o(3) +4(0) + () = (23)

(1) #5G) 10 +00) +5(5) + (6) = G 0)

1
n
(k ) (n=kk+1,--- ,k+6). (4.16)

<(1)+()-G)

+3

k
3

|Biyo.x| < +5

that is,
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It follows from (4.12) and (4.16) that, for 2 < n < 7,

PO <y et 3(5 )

! _
n! - N 1

(4.17)

= If'(wo)| {2s(wo)}" ™" (n+1)2" 2,
which is (4.5).
If f(w) is also convex, then
[(f 08)(z) — (f £)(0)]
f'(wo) ¢'(0)

is a normalized convex univalent function in % . Hence, in the case when 2 <n < 7,
(4.11) and (4.16) yield

v(ﬂ)(WO)‘ ‘” Z lf WO )| |BnJ|

n!

< VI(WO)‘ {Ag’(WO)}nil Z <l’l - 1> (418)

A

= I (wo)l {As(wo)}" ™" 2",

which is (4.6).

This completes the proof of our extension of Theorem D.
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