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DETERMINANTAL INEQUALITIES FOR THE PSI FUNCTION

BIAGIO PALUMBO

(communicated by A. Laforgia)

Abstract. Some inequalities concerning determinants which involve the psi function (logarithmic
derivative of the gamma function) are established.

1. Introduction and background

In this paper some determinantal inequalities for the psi function are studied. We
recall that the function ψ is defined as the logarithmic derivative of the eulerian function

Γ , that is ψ(x) = Γ′(x)
Γ(x) . In what follows we shall only consider these functions on the

interval (0, +∞) , but it is well-known that they may be defined for every complex z ,
except for the non-positive integer numbers (indeeed, in the points z = 0,−1,−2, . . .
gamma and psi functions have a pole of the first order).

First we shall deal with the determinants∣∣∣∣ ψ
′(x) ψ ′′(x)

ψ ′′(x) ψ ′′′(x)

∣∣∣∣ ,

∣∣∣∣ ψ
′′(x) ψ ′′′(x)

ψ ′′′(x) ψ (4)(x)

∣∣∣∣ ,
∣∣∣∣ ψ

′′′(x) ψ (4)(x)
ψ (4)(x) ψ (5)(x)

∣∣∣∣ , . . . (1.1)

and, more generally, with the determinant

∣∣∣∣ ψ (k+2a)(x) ψ (k+a+b)(x)
ψ (k+a+b)(x) ψ (k+2b)(x)

∣∣∣∣ , where k is a

positive integer and a and b are non-negative integers.
Finally, we shall consider the derterminant∣∣∣∣ ψ (m)(x) ψ (m)(x + h)

ψ (m)(x + k) ψ (m)(x + h + k)

∣∣∣∣ , (1.2)

where h and k are two real positive number and m is a non-negative integer.
We recall that a function f defined on an interval I ⊆ R is said absolutely

monotonic on I if it is continuous on I and it has non-negative derivatives of all orders

on
◦
I , i.e. f (k)(x) � 0 for x ∈ ◦

I and k = 0, 1, 2, . . . .
A function f defined on an interval I ⊆ R is said completely monotonic in I if

it is continuous on I and its derivatives are alternatively non-negative and non-positive
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on
◦
I , i.e. (−1)kf (k)(x) � 0 for x ∈ ◦

I and k = 0, 1, 2, . . . ; it is clear that f (x) is
completely monotonic in I if and only if f (−x) is absolutely monotonic on the interval
−I , that is the interval whose elements are the opposites of the numbers of I .

It is also to be noted that if f is absolutely monotonic in I , then all its derivatives
f (k) are absolutely monotonic in I as well, while if f is completely monotonic in I ,
then all the functions (−1)kf (k)(x) are completely monotonic in I .

Now, for the absolutely and completely monotonic functions the well-known Han-
kel determinantal inequalities hold, see [3 p. 167]: if f is absolutely monotonic in
(−∞, 0) , then for any negative x we have the inequalities:

f (x) � 0,

∣∣∣∣ f (x) f ′(x)
f ′(x) f ′′(x)

∣∣∣∣ � 0,

∣∣∣∣∣∣
f (x) f ′(x) f ′′(x)
f ′(x) f ′′(x) f ′′′(x)
f ′′(x) f ′′′(x) f IV(x)

∣∣∣∣∣∣ � 0, . . .

f ′(x) � 0,

∣∣∣∣ f ′(x) f ′′(x)
f ′′(x) f ′′′(x)

∣∣∣∣ � 0,

∣∣∣∣∣∣
f ′(x) f ′′(x) f ′′′(x)
f ′′(x) f ′′′(x) f IV(x)
f ′′′(x) f IV(x) f V(x)

∣∣∣∣∣∣ � 0, . . .

(1.3)
and so on. Taking into account the relation between absolutely and completely mono-
tonic functions, we also may say that inequalities (2.1) are valid for x > 0 if f is
completely monotonic in (0, +∞) and if in the determinants f (k)(x) is replaced by
(−1)kf (k)(x) ; in particular, if f is completely monotonic in (0, +∞) we have for
x > 0 : ∣∣∣∣ f (x) −f ′(x)

−f ′(x) f ′′(x)

∣∣∣∣ =
∣∣∣∣ f (x) f ′(x)
f ′(x) f ′′(x)

∣∣∣∣ � 0,

∣∣∣∣−f ′(x) f ′′(x)
f ′′(x) −f ′′′(x)

∣∣∣∣ =
∣∣∣∣ f ′(x) f ′′(x)
f ′′(x) f ′′′(x)

∣∣∣∣ � 0,

and so on.

2. Hankel type inequalities for the psi function

The result of this section is obtained as an immediate consequence of the known
results recalled in the introduction.

THEOREM 1. For any fixed positive integer m the inequality∣∣∣∣ ψ (m)(x) ψ (m+1)(x)
ψ (m+1)(x) ψ (m+2)(x)

∣∣∣∣ � 0 (2.1)

holds for any x > 0 . More generally, for any fixed non-negative integers a and b , and
for any fixed positive integer k , the inequality∣∣∣∣ ψ (k+2a)(x) ψ (k+a+b)(x)

ψ (k+a+b)(x) ψ (k+2b)(x)

∣∣∣∣ � 0 (2.2)

holds for any x > 0 .
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Proof. To prove formula (2.1) it is sufficient to show that the function ψ ′(x) is
completely monotonic in (0, +∞) . For this, we consider the well-known integral

representation ψ(x) =
∞∫
0

(e−t

t
− e−xt

1 − e−t

)
dt holds for any x > 0 [2, p. 259, formula

(6.3.21)]. taking derivatives in this formula m times with respect to x we have:

ψ (m)(x) = (−1)m+1

∞∫
0

tm
e−xt

1 − e−t
dt, (2.3)

which proves that derivatives of even order of the function ψ ′(x) are positive in
(0, +∞) , while the derivatives of odd order are negative in the same interval. Due
to the inequalities recalled above, we may state that inequality (2.1) is valid for every
fixed positive integer m and for x > 0 .

For what concerns inequality (2.2), we recall that in [2, p. 283, formula (3.3)]
Hankel determinantal inequalities have been extended as follows: let k, a1, a2, . . . , an

be non negative integers; if f is absolutelymonotonic in I = (−∞, 0) or I = (−∞, 0] ,
then the determinant |f (ai+aj+k)(xi + xj)|n is non-negative for each pair (xi, xj) such
that xi + xj ∈ I , and the same is true for the determinant |(−1)kf (ai+aj+k)(xi + xj)|n ;
instead, if f is completely monotonic in I = (0, +∞) or I = [0, +∞) , then we have
|(−1)kf (ai+aj+k)(xi + xj)|n � 0 and also |(−1)ai+aj+kf (ai+aj+k)(xi + xj)|n � 0 whenever
xi + xj ∈ I . In the particular case n = 2 , xi = xj = x

2 , a1 = a , a2 = b , the

last two inequalities become

∣∣∣∣ f (k+2a)(x) f (k+a+b)(x)
f (k+a+b)(x) f (k+2b)(x)

∣∣∣∣ � 0 . Hence formula (2.2)

for a positive integer k follows from the fact that ψ ′(x) is completely monotonic in
(0, +∞) . �

3. Further determinal inequalities for the psi function

In the previous section we considered determinants in which different derivatives
of the psi function are calculated at the same x . Now, we shall consider a determinant

such as

∣∣∣∣ ψ (m)(x) ψ (m)(x + h)
ψ (m)(x + k) ψ (m)(x + h + k)

∣∣∣∣ , in which the same derivative of ψ(x) is

calculated at different points.
It is well-known that a function f defined on an open interval I is said convex

( strictly convex ) on I if for every pair (x, y) ∈ I × I and for any α ∈ (0, 1) we
get f (αx + (1 − α)y) � αf (x) + (1 − α)f (y) (< for strict convexity) or, which

is the same, if the function Φ(u, v, w) =
(w − v)f (u) + (u − w)f (v) + (v − u)f (w)

(u − v)(v − w)(w − u)
,

symmetric with respect to the three variables u, v, w , is non-negative (positive) for
every triplet (u, v, w) of pairwise distinct number of I . Instead, f is concave (strictly
concave) on I if f (αx + (1 − α)y � (or> ) αf (x) + (1 − α)f (y) , i.e. if Φ(u, v, w)
is non-positive (negative).

Another equivalent condition is the following: for a fixed h > 0 , let us define the
function g(x) = f (x + h)− f (x) , which is defined for every x ∈ I such that x + h ∈ I
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too; we may say that f is convex (strictly convex) on I if and only if g is non-
decreasing (increasing), that is if for x < y (with x, y ∈ I such that x + h, y + h ∈ I )
we have f (x + h) − f (x) � f (y + h) − f (y) (< for strict convexity). Similarly, f is
concave (strictly concave) on I if and only if g is non-increasing (decreasing) in I .

Let f be positive on the open interval I ; the function f is said log-convex on
I (strictly log-convex) if log f is (strictly) convex on I , and it is said (strictly) log-
concave on I if log f is (strictly) concave on I . Due to the characterization above,
we may say that f (x) > 0 is ( strictly) log-convex on I if and only if the function

log f (x + h) − log f (x) is non-decreasing (increasing) on I , i.e., if G(x) =
f (x + h)

f (x)
is non-decreasing (increasing) on I , while f is (strictly) log-concave on I if and only
if G(x) is non-increasing (decreasing) on I .

If f is negative on I , we may say again that −f is log-convex if G is non-

decreasing; in fact we have G(x) =
−f (x + h)
−f (x)

=
f (x + h)

f (x)
.

It is well-known that a function f twice differentiable on I is there convex if and
only if f ′′(x) � 0 on I ; hence if f is positive in I and twice differentiable and log-
convex on I , it is also convex on I , and if f is concave and positive it is log-concave
too.

It follows that the function ψ ′ is log-convex in (0, +∞) , since

∣∣∣∣ ψ
′(x) ψ ′′(x)

ψ ′′(x) ψ ′′′(x)

∣∣∣∣�0

for the (2.1). Hence, for a fixed h > 0 , the function
ψ ′(x + h)
ψ ′(x)

is non-decreasing,

therefore for k > 0 we have
ψ ′(x + h)
ψ ′(x)

� ψ ′(x + h + k)
ψ ′(x + k)

, that is

∣∣∣∣ ψ ′(x) ψ ′(x + h)
ψ ′′(x + k) ψ ′(x + h + k)

∣∣∣∣ � 0.

A similar result may be obtained for ψ (m)(x) (m is positive integer): in fact for
odd m the function ψ (m)(x) is log-convex, since

D2
(
logψ (m)) =

ψ (m)(x)ψ (m+2)(x) − [ψ (m+1)(x)]2

[ψ (m)(x)]2
,

which is non-negative for the formula (2.1). For even m we have again

D2
(
log(−ψ (m)(x))

)
=

ψ (m)(x)ψ (m+2)(x) − [ψ (m+1)(x)]2

[ψ (m)(x)]2
,

which is non-negative for the (2.1).
So we have proved the following

THEOREM 2. For any fixed positive integer m , and for any h, k > 0 , the inequality∣∣∣∣ ψ (m)(x) ψ (m)(x + h)
ψ (m)(x + k) ψ (m)(x + h + k)

∣∣∣∣ � 0 (3.1)

holds for any x > 0 .
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Some particular cases of (3.1) are the following: for k = h it becomes
∣∣∣∣ ψ (m)(x) ψ (m)(x + h)
ψ (m)(x + h) ψ (m)(x + 2h)

∣∣∣∣ � 0; (3.2)

this formula for h = 1 gives∣∣∣∣ ψ (m)(x) ψ (m)(x + 1)
ψ (m)(x + 1) ψ (m)(x + 2)

∣∣∣∣ � 0. (3.3)

Formula (3.1) with k = 2h becomes
∣∣∣∣ ψ (m)(x) ψ (m)(x + h)
ψ (m)(x + 2h) ψ (m)(x + 3h)

∣∣∣∣ � 0, (3.4)

and (3.4) for h = 1 gives
∣∣∣∣ ψ (m)(x) ψ (m)(x + 1)
ψ (m)(x + 2) ψ (m)(x + 3)

∣∣∣∣ � 0. (3.5)

Similar results for the ψ function seem more difficult to obtain, since ψ(x) has
not constant sign on (0,∞) : indeed, ψ is concave and strictly monotone on (0, +∞) ,
and it is zero only in α ∼= 1.46163 . So, Theorem 1 is false for m = 0 , since the

function A(x) =
∣∣∣∣ ψ(x) ψ ′(x)
ψ ′(x) ψ ′′(x)

∣∣∣∣ has not constant sign (it is A(α) = −(ψ ′(α))2 and

A
( 1

2

) ∼= 8.69 ).
On the other hand, formula (3.1) is true, with the inequality reversed, in the

interval [α, +∞) : in fact, in the interval (α, +∞) ψ is concave and positive, then it
is log-concave, and the inequality also holds for x = α ; according to the values of the
parameters h and k it may hold also in (0, +∞) . First we give independent proof of
two particular cases, then we shall prove a more general theorem.

THEOREM 3. The inequalities∣∣∣∣ ψ(x) ψ(x + 1)
ψ(x + 1) ψ(x + 2)

∣∣∣∣ < 0 (3.6)

and ∣∣∣∣ ψ(x) ψ(x + 1)
ψ(x + 2) ψ(x + 3)

∣∣∣∣ < 0 (3.7)

hold for any x > 0 .

Proof. First we prove some asymptotic formulas which we shall use later:

ψ(x) = −1
x
− γ + o(1); (3.8)

ψ ′(x) = 1
x2 + π2

6
+ o(1); (3.9)

ψ ′′(x) = − 2
x3 − 2ζ(3) + o(1), (3.10)
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where the o -symbols are intended for x → 0+ , the symbol γ denotes the well-known

Euler-Mascheroni constant, defined as γ = lim
n→∞

(
1 + 1

2 + · · ·+ 1
n
− log n

)
, and ζ(s)

is of course the Riemann’s zeta function, defined as ζ(s) =
∞∑
n=1

1
ns for every s ∈ C

with �e(s) > 1 .
To prove (3.8), first we write ψ(1 + x) = ψ(1) + o(1) = −γ + o(1) for x → 0+

(for the formula ψ(1) = −γ , see [1, p. 258, formula (6.3.2)]). Now, by remembering

that ψ(1 + x) = ψ(x) + 1
x

, see [1, p. 258, formula (6.3.5)], we have at once the (3.8).

Likewise, taking into account that ψ (m)(1) = (−1)m+1m!ζ(m+1) for any positive

integer m [2, p. 260, formula (6.4.2)], in particular ψ ′(1) = ζ(2) = π2

6
, we have

ψ ′(1+ x) = π2

6
+ o(1) ; since ψ ′(1+ x) = ψ ′(x)− 1

x2 ([2, p. 260, (6.4.6)]), we obtain

the (3.9). Formula (3.10) is obtained in a similar way, using ψ ′′(1+ x) = ψ ′′(x)+ 2
x3 .

Now, by calculating explicitly the determinant

∣∣∣∣ ψ(x) ψ(x + 1)
ψ(x + 1) ψ(x + 2)

∣∣∣∣ , we find

− g(x)
x2(x + 1)

, where g(x) = xψ(x) + x + 1 ; then we note that the first two derivatives

of g are {
g′(x) = ψ(x) + xψ ′(x) + 1

g(x) = 2ψ ′(x) + xψ ′′(x)

and determine the sign of g′′(x) . by using (2.3) we find g′′(x) =
∞∫
0

(2t − t2x)e−xt

1 − e−t
dt ;

but we may note that d
dt

(t2e−xt) = (2t − t2x)e−xt . So, an integration by parts gives

g′′(x) =

∞∫
0

t2e−(x+1)t

(1 − e−t)2
dt,

which is positive for any x > 0 . Hence g′(x) is increasing on (0, +∞) .
Using formulas (3.8-9) we may easily calculate the limit of g′(x) as x → 0+ :

lim
x→0+

g′(x) = lim
x→0+

(ψ(x) + xψ ′(x) + 1)

= lim
x→0+

(
−1

x
− γ + o(1) + 1

x
+ π2

6 x = o(x) + 1
)

= 1 − γ ,

which is positive. Therefore g′(x) is positive for any x > 0 .
Now, we calculate in the same way the limit of g(x) as x → 0+ :

lim
x→0+

g(x) = lim
x→0+

(xψ(x) + x + 1) = lim
x→0+

(−1 − γ x + o(x) + x + 1) = 0.

This proves that g(x) is positive for any x > 0 , hence

∣∣∣∣ ψ(x) ψ(x + 1)
ψ(x + 1) ψ(x + 2)

∣∣∣∣ is

negative for any x > 0 .
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For what concerns formula (3.7), we have, proceeding as above,

∣∣∣∣ ψ(x) ψ(x+1)
ψ(x+2) ψ(x+3)

∣∣∣∣ = − h(x)
x2(x + 1)(x + 2)

,

where

h(x) = (2x2 + 2x)ψ(x) + 2x2 + 5x + 2,

and

h′(x) = (4x + 2)ψ(x) + (2x2 + 2x)ψ ′(x) + 4x + 5,

h′′(x) = 4ψ(x) + (8x + 4)ψ ′(x) + (2x2 + 2x)ψ ′′(x) + 4,

h′′′(x) = 12ψ ′(x) + (12x + 6)ψ ′′(x) + (2x2 + 2x)ψ ′′′(x).

Using (2.3) again, we find

h′′′(x) = 2

+∞∫
0

(6t − 6t2x − 3t2 + t3x2 + t3x)e−tx

1 − e−t
dt.

Since

d
dt

(t2e−tx) = (2t − t2x)e−tx, d
dt

(t3e−tx) = (3t2 − t3x)e−tx,

we have

h′′′(x) = 6

+∞∫
0

d
dt

(t2e−tx)

1 − e−t
dt − 2(x + 1)

+∞∫
0

d
dt

(
t3e−tx

)
1 − e−t

dt,

which, integrating by parts, becomes

h′′′(x) = 2

+∞∫
0

(
3t2 − (x + 1)t3

)
e−t(x+1)

(1 − e−t)2
dt.

Again, we have d
dt

(
t3e−t(x+1)

)
=

(
3t2− t3(x+1)

)
e−t(x+1) , so we may integrate by

parts again and obtain h′′′(x) = 4
+∞∫
0

t3e−t(x+2)

(1 − e−t)3
dt , which is positive for every x > 0 .

Therfore, h′′ is increasing.

Using (3.8–10), we have lim
x→0+

= −4γ + 2
3π

2 > 0 , so h′ is also increasing on

(0, +∞) ; then, lim
x→0+

h′(x) = 3− 2γ > 0 , so h is also increasing on (0, +∞) ; finally,

lim
x→0+

h(x) = 0 , and h is positive on (0, +∞) . �

Finally, we have the more general result
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THEOREM 4. The inequality∣∣∣∣ ψ(x) ψ(x + h)
ψ(x + k) ψ(x + h + k)

∣∣∣∣ < 0 (3.11)

holds for any x > 0 if and only if the positive parameters h and k are such that
h + k � α , where α is the unique zero of ψ(x) .

Proof. We already know that (3.11) is true, independently of h and k , on
[α, +∞) ; so we have only to consider 0 < x < α .

First, we put

B(x) =
∣∣∣∣ ψ(x) ψ(x + h)
ψ(x + k) ψ(x + h + k)

∣∣∣∣ = ψ(x)ψ(x + h + k) − ψ(x + h)ψ(x + k)

and calculate lim
x→0+

B(x) ; if h + k < α , then ψ(h + k) < 0 , so lim
x→0+

B(x) = +∞ , and

similarly in the case h+ k > α we have lim
x→0+

B(x) = −∞ ; for h+ k = α we we may

note that ψ(x + α) = ψ ′(α)x + o(x) as x → 0+ ; this equality, together with (3.8),
gives lim

x→0+
B(x) = −ψ ′(α) − ψ(h)ψ(k) < 0 . This proves that (3.11) cannot hold for

any x > 0 if h + k < α .
Now, let us consider the case h + k = α , with h � k ; we have to analyze the

following subcases:

A1) 0 < x < α < x + h � x + k < x + α;

A2) 0 < x < α = x + h � x + k < x + α;

A3) 0 < x < x + h < α < x + k < x + α;

A4) 0 < x < x + h � x + k = α < x + α;

A5) 0 < x < x + h � x + k < α < x + α.

The product ψ(x)ψ(x+α) is negative, because ψ(x) < 0 and ψ(x+α) > 0 ; in
the subcases A1 and A5 ψ(x + h)ψ(x + k) is positive (product of two factors with the
same sign), therefore B(x) < 0 , and the same is true in the subcases A2 and A4, since
ψ(x + h)ψ(x + k) = 0 . In the case A3 the product ψ(x + h)ψ(x + k) is also negative,
but |ψ(x + h)ψ(x + k)| is lesser than |ψ(x)ψ(x + α)| , so we have B(x) < 0 again.

In the case h + k > α , with h � k , the subcases to be considered are:

B1) α � h � k, 0 < x < α < x + h � x + k < x + h + k;

C1) h < α � k, 0 < x < α < x + h < x + k < x + h + k;

C2) h < α � k, 0 < x < α = x + h < x + k < x + h + k;

C3) h < α � k, 0 < x < x + h < α < x + k < x + h + k;

D1) h � k < α, 0 < x < α < x + h � x + k < x + h + k;

D2) h � k < α, 0 < x < α = x + h � x + k < x + h + k;
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D3) h � k < α, 0 < x < x + h < α < x + k < x + h + k;

D4) h � k < α, 0 < x < x + h � x + k = α < x + h + k;

D5) h � k < α, 0 < x < x + h � x + k < α < x + h + k.

In the subcase B1 we have ψ(x) < 0 , ψ(x + h) > 0 , ψ(x + k) > 0 and
ψ(x + h + k) > 0 , so B(x) is negative; subcases C1–C3 are similar to A1–A3, and
finaly subcases D1–D5 are similar to A1–A5; therfore we have B(x) < 0 in every case.
�
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