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INEQUALITIES FOR THE ZEROS OF THE

ASSOCIATED ULTRASPHERICAL POLYNOMIALS

P. D. SIAFARIKAS

(communicated by A. Laforgia)

Abstract. Using a functional analytic method based on the three-term recurrence relation of
orthogonal polynomials, we study the monotonicity of the zeros of the associated ultraspherical
(or Gegenbauer) polynomials, and we give some inequalities for the largest zeros.

1. Introduction

The orthogonal polynomials Pn(x) , n � 0 , of degree n , with respect to a positive
Borel measure on the real line with infinite mass points, can be defined by the recurrence
relation:

αnPn+1(x) + αn−1Pn−1(x) + bnPn(x) = xPn(x)
P−1(x) = 0, P0(x) = 1,

(1.1)

where αn > 0 and bn real sequences.
The associated polynomials Pn(x; c) of the above polynomials are obtained when

we replace n by n + c in the coefficients αn and bn of (1.1), i.e.,

αn+cPn+1(x; c) + αn+c−1Pn−1(x; c) + bn+cPn(x; c) = xPn(x; c)
P−1(x; c) = 0, P0(x; c) = 1

for arbitrary real c � 0 or c > −1 .
The associated polynomials are called associated of order c , if c is an integer

greater than 1 and numerator polynomials, if c = 1 . One of the most important
results for the last case was given by A. Elbert and A. Laforgia in [5]. Results for
particular cases of associated polynomials concerning explicit forms, orthogonality
measures, monotonicity properties and differential inequalities for their zeros were
given in [1], [3], [7], [8], [9], [16], [24], [26], [30]. We point out that the above associated
polynomials do not satisfy a second order differential equation of Sturm-Liouville type.
Therefore the effective methods which are based on properties of differential equations
of Sturm-Liouville type cannot be applied. They satisfy a 4th-order differential equation.
For particular cases of associated polynomials, many authors [28], [29], [31, and the
references therein] gave explicitly the corresponding 4th-order differential equations.
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In this paper we study monotonicity of the zeros of the associated ultraspherical
(or Gegenbauer) polynomials and we present some inequalities for the largest zeros. In
section 2 we present the method we shall use, and in section 3 we give the main results.

2. The method

We consider the general recurrence relation

αnPn+1(x) + αn−1Pn−1(x) + bnPn(x) = xPn(x) (2.1)
P−1(x) = 0, P0(x) = 1, (2.2)

where αn , bn real sequences, with αn > 0 , n = 0, 1, . . . and present briefly the
method we shall use.

Let ek , k = 0, 1, 2, . . . , n − 1 be an orthonormal basis in a finite dimensional
Hilbert space HN and let V be the truncated shift operator

Vek = ek+1, k = 0, 1, . . . .n − 2, Ven−1 = 0. (2.3)

The adjoint of V satisfies

V∗ek = kek−1, k = 0, 1, . . . , n − 2, V∗e0 = 0. (2.4)

Let A, B be the diagonal operators

Aek = αkek, Bek = bkek, k = 0, 1, . . . , n − 1. (2.5)

Then we can see easily the following [13].

THEOREM 2.1. The zeros of the polynomial Pn(x) of degree n defined by

αnPn+1(x) + αn−1Pn−1(x) + bnPn(x) = xPn(x)
P−1(x) = 0, P0(x) = 1

are the eigenvalues of the operator

T = AV∗ + VA + B

i.e.,

(AV∗ + VA + B)xk = λkxk

or

λk = ((AV∗ + VA+B)xk, xk), ‖xk‖ = 1, k = 0, 1, . . . , n − 1

and vice versa.

REMARK 2.1. The identification of zeros of orthogonal polynomials as eigenvalues
of a tridiagonal matrix is a very old result. What is new in our approach is the separation
of this tridiagonal matrix as a sum of products of simple matrices in the operator form

T = AV∗ + VA + B.

Some results have been found very easily, due to this separation. We think that these
results do not follow easily from the usual tridiagonal matrix form of T .
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Upper bounds for the zeros λn,k of the polynomial Pn(x) .
Using the relation

λn,k = ((AV∗ + VA + B))xn,k, xn,k), ‖xn,k‖ = 1, k = 0, 1, 2, . . . , n − 1 (2.7)

we can easily obtain upper bounds for all the zeros λn,k .
If fact from (2.7) we have:

λn,k � ‖A‖ · ‖V∗‖ + ‖V‖ · ‖A‖ + ‖B‖ = 2‖A‖ + ‖B‖ = 2 max
k

|αk| + max
k

|bk|,

since ‖V‖ = ‖V∗‖ = 1 .
One can find more stringent upper bounds using chain sequences [9].

Lower bounds for the largest zero λmax .
Since the operator

AV∗ + VA + B

is self-adjoint, we have that:

λmax=‖AV∗+VA+B‖ = sup
f ∈Hn

|((AV∗+VA+B)f , f )|�((AV∗+VA+B)f , f ), ‖f ‖ = 1.

(2.8)
Choosing f = 1/

√
2 (en−1 + en−2) , we find from (2.8)

λmax � 1
2
[2αn−2 + bn−2 + bn−1], n � 2. (2.9)

We can find sharper lower bounds if we use the relation

λ (i)
max=‖AV∗+VA+B‖(i)=‖(AV∗+VA+B)i‖= sup

f ∈Hn

|((AV∗+VA+B)if , f )|

� ((AV∗ + VA + B)if , f ), ‖f ‖ = 1, i = 1, 2, 3, . . .
(2.10)

So, from (2.9) for i = 2 , f = 1/
√

2 (en−1 + en−2) we obtain

λ 2
max � 1

2 [2α2
n−3 + 2α2

n−2 + b2
n−2 + b2

n−1]. (2.11)

Differentiability of the Eigenvalues.
If the operators A and B of the operator T = AV∗ + VA + B depend on a

real parameter v and A(v) , B(v) are uniformley bounded for v in some interval
and differentiable in the operator norm, then the eigenvectors xk(v) of the self-adjoint
operator

T(v) = A(v)V∗ + VA(v) + B(v)

are strongly differentiable and the derivative of the corresponding eigenvalues λk(v) is
given by

dλk(v)
dv

≡ λ ′
k(v) = ((A′(v)V∗ + VA′(v) + B′(v))xk(v), xk(v)), ‖xk(v)‖ = 1

where A′(v)ek = α′
kek , B′(v)ek = b′kek , k = 0, 1, . . . , n − 1 and primes mean differ-

entiation with respect to v . For details see [10].
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When we want to examine the sign of
dλk(v)

dv
a difficulty appears in the scalar

product ((A′(v)V∗ + VA′(v) + B′(v))xk(v), xk(v)) , because the operator (A′(v)V∗ +
VA′(v)) is not positive although in many interesting cases the sequence α′

n(v) , is strictly
positive.

From a more general result proved in [12], we know that the components of the
eigenvector xmax which corresponds to the largest eigenvalue λmax of the operator
AV∗ + VA + B are strictly positive numbers. Therefore the scalar product in

dλk(v)
dv

= ((A′(v)V∗ + VA′(v) + B′(v))xk(v), xk(v))

is greater than zero provided that a′(v) > 0 and b′(v) > 0 . For the largest eigenvalue
λmax(v) the following relation also holds

d2λmax(v)
dv2

� ((A′′(v)V∗ + VA′′(v) + B′′(v))xmax(v), xmax(v))

provided that A(v) is twice differentiable [11].

REMARK. Formally, the differentiability of the eigenvalues with respect to a pa-
rameter is an old result, known as the Hellmann-Feyman theorem [R. P. Feyman, Phys.
Rev 56(1939) 340–343, H. Hellmann, Einfuhrung in die Quantenchemie, (Deuticke,
Vienna 1937)]. The first application of this theorem to the zeros of orthogonal poly-
nomlals, to the best of our knowledge, is that of M. E. H. Ismail, [22]. Previously,
this theorem has been applied by J. T. Lewis and M. E. Muldoon, [27], for the zeros
of Bessel functions of the first kind and of order v > −1 . Rigorous proofs of the
Hellmann-Feyman theorem were given with different assumptions, in [10], [11], [22].

Finally we point out that the above method is general and is valid not only for the
particular case considered in this paper. It has been used successfully by E. K. Ifantis
and the author in previous work [10, 13–19].

3. Main Results

The associated Ultraspherical (or Gegenbauer) Polynomials

Pλ
n (x; c), c � 0, λ � −1/2, n = 0, 1, 2, . . .

are defined as follows

(n+c+1)Pλ
n+1(x; c)+(n+c+2λ−1)Pλ

n−1(x; c)=2x(n+c+λ )Pλ
n (x; c)

Pλ
−1(x; c) = 0, Pλ

0 (x; c) = 1.
(3.1)

The associated Legendre polynomials obtained with c = 1
2 were studied in [2]. Setting

in (3.1)

U−1 = 0, U0 = 1, Un =
n + c + 2λ − 1

n + c
Un−1, n � 1
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so that Un > 0 , and

Pλ
n (x; c) =

( Un

n + c + λ

)1/2
Qλ

n (x; c)

we find that

1
2

[ (n + c + 1)(n + c + 2λ )
(n + c + 1 + λ )(n + c + λ )

]1/2
Qλ

n+1(x; c)

+ 1
2

[ (n + c)(n + c + 2λ − 1)
(n + c + λ )(n + c + λ − 1)

]1/2
Qλ

n−1(x; c) = xQλ
n (x; c)

Qλ
−1(x; c) = 0, Qλ

0 (x; c) = 1 (3.2)

The polynomials Qλ
n (x; c) and the associated ultraspherical polynomials Pλ

n (x; c) , have
the same zeros, say xλnk(c) , k = l, 2, . . . [n/2] , in decreasing order. According to our
aproach the zeros, xλnk(c) are eigenvalues of the operator:

A(λ , c)V∗ + VA(λ , c)

i.e.
1
2 (A(λ , c)V∗ + VA(λ , c))f λnk(c) = xλnk(c)f

λ
nk(c), ‖f λnk(c)‖ = 1

or

xλnk(c) = 1
2
((A(λ , c)V∗ + VA(λ , c))f λnk(c), f

λ
nk(c)), k = 1, 2, . . . , [n/2], ‖f λnk(c)‖ = 1

(3.3)
where

A(λ , c)ej = aj(λ , c)ej, j = 0, 1, 2, . . . , n − 1

and

αj(λ , c) = 1
2

[ (j + c + 1)(j + c + 2λ )
(j + c + 1 + λ )(j + c + λ )

]1/2
(3.4)

Upper and lower bounds for the largest zero xλn1(c) .
From (3.3) we obtain the upper bounds:

xλnk(c) � ‖A‖ = max
j

|aj(λ , c)| = 1
2

[ (n + c)(n + c + 2λ − 1)
(n + c + λ )(n + c + λ − 1)

]1/2

for all zeros xλnk(c) , k = 1, 2 . . . .
For c = 0 we obtain upper bounds for all zeros xλnk of the classical ultraspherical

polynomials Pλ
n (x) .

Applying the relations (2.9) and (2.11) for bn = 0 and αj(λ , c) , j = 1, 2, . . . , n−1
given by (3.4), we obtain the following lower bounds for the largest zero xλn1(c) .

xλn1(c) � αn−2 = 1
2

[ (n + c − 1)(n + c + 2λ − 2)
(n + c + λ − 1)(n + c + λ − 2)

]1/2

, λ � 1

(xλn1(c))
2 � α2

n−2 + α2
n−3 =

=
1

4(n + c + λ − 2)

[ (n + c − 1)(n + c + 2λ − 2)
(n + c + λ − 1)

+
(n + c − 2)(n + c + 2λ − 3)

(n + c + λ − 3)

]

=
(n+c−1)(n+c+2λ−2)(n+c+λ−3)+(n+c−2)(n+c+2λ−3)(n+c+λ−1)

4(n+c+λ−1)(n+c+λ−2)(n+c+λ−3)
, λ � 2.
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We can obtain more stringent lower bounds for the largest zero xλn1(c) if we use relation
(2.10) for i = 3, 4, . . .

For c = 0 , in the above inequalities, we obtain the corresponding lower bounds
for the largest zero xλn1 , of the classical Ultraspherical polynomials.

Monotonicity of the largest zero xλn1(c) .
The differential equation for the largest zero xλn1(c) with respect to λ , according

to our approach, is the following

d
dλ

xλn1(c) = 1
2

(( d
dλ

A(λ , c)V∗ + V
d

dλ
A(λ , c)f λn1(c)

)
, f λn1(c)

)

or, since
( d

dλ
A(λ , c)V∗f λn1(c), f

λ
n1(c)

)
is real

d
dλ

xλn1(c) =
( d

dλ
A(λ , c)V∗f λn1(c), f

λ
n1(c)

)
(3.5)

where

d
dλ

A(λ , c)ej =
d

dλ
aj(λ , c)ej, j = 0, 1, 2, . . . , n − 1

d
dλ

A(λ , c) = −A(λ , c)Γ(λ , c)

and

Γ(λ , c)ej = γj(λ , c)ej, γj(λ , c) =
λ 2 + (λ − 1/2)(j + c)

(j + c + 2λ )(j + c + λ + 1)(j + c + λ )
. (3.6)

The differential equation (3.5) now is written as

− d
dλ

xλn1(c) = (Γ(λ , c)A(λ , c)V∗f λn1(c), f
λ
n1(c)). (3.7)

From (3.7) it follows immediately that

d
dλ

xλn1(c) < 0, for λ � 1/2, since (f λn1(c), en) > 0.

Also, since

γ1(λ , c) <
1

2(j + c + λ + 1)
, j = 0, 1, 2, . . . , n − 1

it follows from the differential equation (3.7) that

− d
dλ

xλn1(c) <
1

c + λ + 1
(A(λ , c)V∗f λn1(c), f

λ
n1(c)) =

1
c + λ + 1

xλn1, λ � 1/2

or
d

dλ
[(c + λ + 1)1/2xλn1(c)] > 0, λ � 1/2.

From the above we obtain the following:
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THEOREM 3.1. For any fixed n, c and λ � 1/2 we have
(i) the largest zero xλn1(c) decreases with respect to λ .
(ii) The function (c + λ + 1)1/2xλn1(c) , increases with respect to λ .

REMARKS. ( i ) For c = 0 , we have the corresponding result for the classical
ultraspherical polynomials Pλ

n (x) [14], [4].

( ii ) Recently it is proved [6] that the function
[
λ +

2n2 + 1
4n + 2

]1/2
xλnk , k = 1, 2, . . .

where xλn,k are the zeros of the classical Ultraspherical polynomials increases as λ
increases for λ > −1/2 . This result answers and improves the following conjectures

LAFORGIA’S CONJECTURE [25]. For n � 2 and 1 � k �
[
n
2

]
the function λxλnk ,

k = 1, 2, . . . increases as λ increases for λ > 0 .

ISMAIL-LETTESSIER-ASKEY CONJECTURE [21]. For n � 2 and 1 � k � [n/2] the
function (λ + 1)1/2xλnk , k = 1, 2, . . . increases as λ increases for λ > −1/2 .

Similarly, in the same way as for the differential equation (37) we can find the
differential equation for the largest zero xλn1(c) , with respect to c .

d
dc

xλn1(c) = (Γ(λ , c)A(λ , c)V∗f λn1(c), f
λ
n1(c)) (3.8)

where:

Γ(λ , c)ej = γj(λ , c)ej, γj(λ , c) =
[2(j + c + λ ) + 1]λ (λ − 1)

(j + c + 1)(j + c + 2λ )(j + c + λ + 1)(j + c + λ )
(3.9)

and αj(λ , c) = 1
2

[ (j + c + 1)(j + c + 2λ )
(j + c + 1 + λ )(j + c + λ )

]1/2
> 0 .

From (3.8) and (3.9) we obtain the following:

THEOREM 3.2. The largest zero xλn1(c) of Pλ
n (x, c) , satisfy the differential inequal-

ities:

(i) 0<
2λ (λ − 1)

(n + c + 2λ − 1)3
xλn1(c)<

d
dc

xλn1(c)<
2λ (λ − 1)
(n + c)3

xλn1(c), λ>1, −1
2<λ<0

(3.10)

(ii)
2λ (λ − 1)

(n + c + 2λ − 1)3
xλn1(c)<

d
dc

xλn1(c)<
2λ (λ − 1)

(n + c + λ )3
xλn1(c)<0, 0<λ<1.

(3.11)

Proof. Since (f λn1(c), en) > 0 and γj(λ , c) > 0 , for λ > 1 γj(λ , c) < 0 , for
0 < λ < 1 it follows from (3.8) that

dxλn1(c)
dc

> 0 for λ > 1 and
dxλn,1(c)

dc
< 0 for 0 < λ < 1.

Also since for λ > 1

γj(λ , c) <
2(j + c + λ + 1)λ (λ − 1)

(j + c + 1)(j + c + 2λ )(j + c + λ + 1)(j + c + λ )
<

2λ (λ − 1)
(j + c + 1)3
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and

γj(λ , c) >
2(j + c + λ )λ (λ − 1)

(j + c + 1)(j + c + 2λ )(j + c + λ + 1)(j + c + λ )
>

2λ (λ − 1)
(j + c + 2λ )3

it follows from (3.8) that

0 <
2λ (λ − 1)

(n + c + 2λ − 1)3 xλn1(c) <
d
dc

xλn1(c) <
2λ (λ − 1)
(n + c)3 xλn1(c), λ > 1.

Similarly we find that

2λ (λ − 1)
(n + c + 2λ − 1)3

xλn1(c) <
d
dc

xλn1(c) <
2λ (λ − 1)

(n + c + λ )3
xλn1(c) < 0, 0 < λ < 1.

COROLLARY. For the largest zeros xλn1(c) of the associated Ultraspherical poly-
nomials the following inequalities hold.

(i) e
λ (λ−1)

[
1

(n+2λ−1)2
− 1

(n+2λ+c−1)2

]
xλn1 < xλn1(c) < e

λ (λ−1)

[
1
n2 − 1

(n+c)2

]
xλn1,

− 1
2

< λ < 0, λ > 1

(ii) e
λ (λ−1)

[
1

(n+λ−1)2
− 1

(n+λ+c−1)2

]
xλn1 < xλn1(c) < e

λ (λ−1)

[
1

(n+λ )2
− 1

(n+c+λ )2

]
xλn1,

0 < λ < 1.

Proof. It follows by integrationwith respect to c , from0 to c , from the inequalities
(3.10), (3.11). The above inequalities become equalities when c = 0 , and therefore
are stringent when c is near to zero in the interval (−1, +∞) .
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