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SHARP INEQUALITIES CONNECTED TO THE

HOMOGENIZED p –POISSON EQUATION

DAG LUKKASSEN

(communicated by L. Maligranda)

Abstract. In this paper we study inequalities for the effective energy density associated with the
homogenized p -Poisson equation. We prove that the inequalities are sharpest possible and we
even find all cases of equality. Our results implies uniqueness of rank 1 laminates within the
class of multi-phase structures.

1. Introduction

We study the p -Poisson equation

−div
(
λ (

x
ε
) |Du|p−2 Du

)
= f on Ω ⊂ RN , p > 1,

with Dirichlet boundary data where λ is periodic relative to a cell Y and bounded
between to positive constants. Considering ε = εh, h = 1, 2, . . . , as a sequence such
that εh → 0 as h → ∞ we get a family of p -Poisson equations. Homogenization
results for monotone operators then yield the existence of a corresponding homogenized
problem on the form

−div(b(Du)) = f on Ω.

In this paper we consider the following sharp inequalities for the effective energy density
(b(ei), ei)

qi � (b(ei), ei) � qi. (1.1)

Here ei is the usual basis-vector in the i ’th direction and qi and qi are real numbers
obtained as compositions of power-means (see Section 2). E.g. in the case when Y is
the unit cube ]0, 1[N these numbers can be written as

qi =
∫ 1

0
· · ·
∫ 1

0

(∫ 1

0
λ

1
1−p dxi

)1−p

dx1 · · · dxi−1dxi+1 · · · dxN ,

qi =

⎛
⎝∫ 1

0

(∫ 1

0
· · ·
∫ 1

0
λdx1 · · · dxi−1dxi+1 · · · dxN

) 1
1−p

dxi

⎞
⎠

1−p

.
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The first proof of (1.1) was presented in [15]. This result represents a generalization of
the inequality

qi � qi

which has been known in the theory of inequalities for quite a long time (see e.g. [1],
[3, p. 170] and [7, p. 148]). Variants and generalizations of (1.1) has been developed
later (see [10, 11, 12, 13, 14]).

These inequalities represent a generalization of the non-linear Wiener bounds for
the p -Poisson equation. Moreover, it seems to be possible to interpret the actual
inequalities as some type of refinements of some version of the Minkowski inequality.
In many cases the upper and lower bounds qi and qi are sufficiently close to give a
better estimate of the effective energy density than the non-linear Hashin-Shtrikman
bounds. In [9] a theorem was given (without proof) stating the precise conditions for
which qi = qi (see Theorem 1). In this paper we present the detailed proof of this
result. We also point out a new application of this theorem concerning the proof of the
uniqueness of rank 1 laminates (see Theorem 2). Moreover, we describe how (1.1) can
be used to estimate shear stiffness in sandwich plates consisting of composite power-law
material in the core (see Section 5).

2. Preliminaries

In the space RN , we consider a fixed parallelepiped Y =
∏N

j=1

]
0, x0

j

[
(a Y -

cell). Using general formulae for monotonic problems (see e.g. [6]) we get that the
homogenized operator b : RN → RN for the p -Poisson problem takes the following
form:

b(ξ) =
1
|Y|
∫

Y
λ (x)

∣∣∣ξ + Dwξ (x)
∣∣∣p−2

(ξ + Dwξ (x))dx,

where wξ is the unique solution (up to an additive constant) to the local problem: Find
wξ in W1,p

per(Y) (= the space of all Y -periodic ψ ∈ W1,p(Y) ) such that,∫
Y
(λ (x)

∣∣∣ξ + Dwξ (x)
∣∣∣p−2

(ξ + Dwξ (x)), Dv)dx = 0 (2.1)

for all v ∈ W1,p
per(Y).

It is possible to prove (see [4] and the references therein) that wξ is the unique
minimum point of the problem:

f λ (ξ) = min
u∈W1,p

per(Y)

1
|Y|
∫

Y
λ (x) |ξ + Du(x)|p dx (2.2)

Observe also that by putting v = wξ in (2.1) we get

(b(ξ), ξ) = f λ (ξ). (2.3)

Now, let i be a fixed positive integer less then or equal to N. The following
notations will be used: If s ∈ R1 and t ∈ RN−1, then x = (s, t) denotes the element in
RN with coordinates: xi = s, xj = tj whenever j < i, and xj = tj−1 whenever i < j.
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The spaces T and S are defined by T =
∏

j�=i

]
0, x0

j

[
and S =

]
0, x0

i

[
, equipped with

the corresponding Lebesgue measures η and μ, respectively. Finally we define the
numbers qi and qi as follows:

qi = |Y|−1
∫

Y
λidx,

where

λi(s, t) =

(
|S|−1

∫
S
(λ (·, t)) 1

1−p dμ

)1−p

for all s ∈ S, and almost all t ∈ T.

qi =

(
|Y|−1

∫
Y
(λ i)

1
1−p dx

)1−p

,

where

λ i(s, t) = |T|−1
∫

T
λ (s, ·)dη

for almost all s ∈ S, and all t ∈ T .

3. Sharpness conditions

In this section we will prove the following result which states necessary and
sufficient conditions such that qi = (b(ei), ei) = qi .

THEOREM 1. The following statements are equivalent:
1. qi = (b(ei), ei)
2. (b(ei), ei) = qi

3. λ = ki1ki2, where ki1 is dependent of only the i ’th coordinate and ki2 is
independent of the i ’th coordinate.

In order to prove the theorem we need to following result, which is of independent
interest.

LEMMA 1. Suppose f ∈ Lp(Y) where p � 1 and let U1 and U2 be subsets of
Y on the form Ii1 ×

∏
j�=i Ij and Ii2 ×

∏
j�=i Ij, respectively, where

∏
j�=i Ij ⊆ T, {Ij}

are segments and Ii1 and Ii2 are disjoint segments of S. Furthermore, assume that for
every such pair (U1, U2) ,

|U1|
∫

U2

f dx = |U2|
∫

U1

f dx.

Then f is independent a.e. of the i ’th coordinate.

Proof. We start by proving the lemma for the case N = 1, i.e. we prove that:
Suppose f ∈ Lp(Y) and that the following holds for every disjoint segments I1 and I2
of Y : |I2|

∫
I1

f dx = |I1|
∫

I2
f dx. Then f is constant a.e. We state that∫

V
f dx =

∫
V

kdx (3.1)
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for every open or closed set V ⊆ Y, where k = |Y|−1 ∫
Y f dx. This can be seen by

observing that (3.1) holds for every segment, hence also for open sets since they are
unions of countable collections of disjoint segments. Finally (3.1) holds for closed sets
since they are complements of open sets.

Fix ε > 0. Since Y is bounded, f ∈ L1(Y) and there is a continuous function
g such that ‖f − g‖1 < ε/2. Let V be the open set {x ∈ Y : g(x) > k} . By (3.1) it
yields that

∫
Y
|g − k| dx =

∣∣∣∣
∫

V
g − f dx

∣∣∣∣+
∣∣∣∣∣
∫

Y\V
g − f dx

∣∣∣∣∣ �
∫

Y
|g − f | dx <

ε

2
.

The triangle inequality gives∫
Y
|f − k| dx �

∫
Y
|f − g| dx +

∫
Y
|g − k| dx < ε,

and since ε was arbitrarily chosen, ‖f − k‖1 = 0 which, in its turn, implies that f = k
a.e.

The proof of the general case is similar. In fact, we get that (3.1) holds for
f ∈ Lp(Y) if we replace ” k ” by ” |S|−1 ∫

S f (·, t)dμ ” and ”V ” first by a subset of the
type ”U1 ” and next by a closed or open subset of Y. The rest of the proof follows
exactly as above, i.e. we get that f = k a.e., and, since k is independent of the i ’th
coordinate, this completes the proof.

Proof of Theorem 1. It is easily seen by inspection that 3 implies that qi = qi .
Hence 3⇒1 and 3⇒2.

Proof of 1⇒3: Let u denote the solution of (2.1) for ξ = ei . Since u is
Y -periodic we have that

∫
S Diu(·, t)dμ = 0. Accordingly,

|S| �
∣∣∣∣
∫

S
(ei + Du)(·, t)dμ

∣∣∣∣ �
∫

S
|(ei + Du)| (·, t)dμ. (3.2)

Moreover, by the Hölder inequality,∫
S
λ− 1

p λ
1
p (|ei + Du|)(·, t)dμ �

�
(∫

S
λ (·, t) 1

1−p dμ

) p−1
p
(∫

S
λ (|ei + Du|p)(·, t)dμ

) 1
p

(3.3)

Hence,

|S|λi �
∫

S
λ (|ei + Du|p)(·, t)dμ

(for almost all t ∈ T ). Now, by integrating with respect to the Lebesgue measure
in RN , by using Fubini’s theorem, (2.3) and the assumption that (b(ei), ei) = qi this
implies that we have equality in (3.2) and (3.3) for almost all t ∈ T. Equality in
(3.2) implies that Duj = 0 for j 	= i, that is, |ei + Du| is only dependent of the i ’th
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coordinate. Hence, equality in (3.3) implies that λ is a product ki1ki2 a.e., where ki1

is dependent of only the i ’th coordinate and ki2 is independent of the i ’th coordinate
(cf. [17, p. 65]).

Proof of 2⇒3: Let (b(ei), ei) = qi and v be the solution of (2.1) for ξ = ei with
λ replaced by λ i . We observe that v is only dependent of the i ’th coordinate. This fact
can be seen by extending v to a Y -periodic function in RN . Due to the independence
of λ i in the j -direction ( j 	= i) any translation of v in this direction restricted to Y
will be a solution of the cell problem. But this solution is unique up to an additive
constant, so v have to be independent of the j ’th coordinate. We also have that v is a
minimum point of (2.2) with λ replaced by λ i. According to the independence of λ i

in the j -direction ( j 	= i) (2.1) yields that the minimum value f λ i(ei) of (2.2) is equal
to qi . Moreover, it is easily seen that

f λ i(ei) = |Y|−1
∫

Y
λ i |ξ + Dv|p dx = |Y|−1

∫
Y
λ |ξ + Dv|p dx.

Hence, since qi = (b(ei), ei) = f λ (ei) we get that both u and v are minimum points
of (2.2), that is, u = v by the uniqueness of the local problem. Let U1 and U2 be as in
Lemma 1. We construct the function φ as follows. φ is defined equal to 1 on the set K
between U1 and U2 . On Y\(U1 ∪U2 ∪K), φ is defined to be equal to 0 . On U1 and
U2, respectively, φ is defined by linear interpolation between the function-values on
the two opposite traces which are normal to ei . This definition implies that we can find
functions ωh ∈ W1,p

per(Y) such that ∂ωh/∂xi → ∂φ/∂xi in Lp(Y) . Hence, according to
(2.1) and the properties of u we have that

0 =
∫

Y
λ

∂ωh

∂xi

∣∣∣∣ ∂u
∂xi

+ 1

∣∣∣∣
p−2

(
∂u
∂xi

+ 1)dx =

∫
Y
λ

∂φ
∂xi

∣∣∣∣ ∂u
∂xi

+ 1

∣∣∣∣
p−2 ( ∂u

∂xi
+ 1
)
dx =

∫
U1∪U2

λ
∂φ
∂xi

∣∣∣∣ ∂u
∂xi

+ 1

∣∣∣∣
p−2 ( ∂u

∂xi
+ 1
)
dx.

Consequently,

|U1|
∫

U2

λ
∣∣∣∣ ∂u
∂xi

+ 1

∣∣∣∣
p−2 ( ∂u

∂xi
+ 1
)
dx = |U2|

∫
U1

λ
∣∣∣∣ ∂u
∂xi

+ 1

∣∣∣∣
p−2 ( ∂u

∂xi
+ 1
)
dx,

and, by Lemma 1,
λ |∂u/∂xi + 1|p−2 (∂u/∂xi + 1)

is thereby independent of the i ’th coordinate a.e. Accordingly, if ∂u/∂xi + 1 = 0 for
some point in Y , the same holds for

λ |∂u/∂xi + 1|p−2 (∂u/∂xi + 1)

on the line parallel to ei containing this point. But since λ > 0 and u is Y -periodic,
this can only occur on a set of measure zero, i.e. ∂u/∂xi + 1 	= 0 a.e. and we conclude
that λ is a product ki1ki2 a.e., where ki1 is dependent of only the i ’th coordinate and
ki2 is independent of the i ’th coordinate. This completes the proof.
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4. Applications

In this section we point out new consequences of (1.1) and Theorem 1. We start by
recalling the Wiener inequalities associated with the homogenized p -Poisson equation:

P1/(1−p)(λ ) � (b(ei), ei) � P1(λ ),

where Pk(λ ) denotes the k ’th power mean of λ , i.e.

Pk(λ ) =

(
|Y|−1

∫
Y
λ kdx

) 1
k

.

For the proof, see e.g. [15]. We will now prove the following result which states
necessary and sufficient conditions such that (b(ei), ei) = P1/(1−p)(λ ) or (b(ei), ei) =
P1(λ )

THEOREM 2. The following statements are equivalent:
1. (b(ei), ei) = P1/(1−p)(λ )
2. (b(ej), ej) = P1(λ ) for all j 	= i
3. λ is dependent of only the i ’th coordinate.

REMARK. Functions λ which is dependent of only the i ’th coordinate are often
referred to as rank 1 laminates. The above theorem gives that these functions are unique
in the sense that no other functions can induce property 1 and 2. This is interesting
since if

P1/(1−p)(λ ) < (b(ei), ei) < P1(λ ),

then an infinite number of types of functions will lead to the same effective energy
density (b(ei), ei) , at least for the case when p = 2 (see e.g. [2, p. 91] and the
references given there)

REMARK. Theorem 2 represents a generalization of a statement given in [8, p. 193]
(without proof) for the special case p = 2 .

Proof of Theorem 2. It is easily seen by inspection that 3 implies that qi = qi =
P1/(1−p)(λ ) and qj = qj = P1(λ ) for all j 	= i . Hence (1.1) gives that 3⇒1 and
3⇒2.

Proof of 1⇒3: Since P1/(1−p)(λ ) � qj and qj � P1(λ ), (1.1) gives that

P1/(1−p)(λ ) � qj � (b(ej), ej) � qj � P1(λ )

for j = 1, 2, . . . , N Hence, assuming that 1 holds we obtain that qi = (b(ei), ei), and
by Theorem 1 this gives that λ = ki1ki2, where ki1 is dependent of only the i ’th
coordinate and ki2 is independent of the i ’th coordinate. Thus,

qi =

(
|S|−1

∫
S
(ki1)

1
1−p dμ

)1−p

|T|−1
∫

T
ki2dη
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and

P(1−p)−1 (λ ) =

(
|S|−1

∫
S
(ki1)

1
1−p dμ

)1−p(
|T|−1

∫
T
(ki2)

1
1−p dη

)1−p

.

Therefore, since
qi = P1/(1−p) (λ )

we find that (
|T|−1

∫
T
(ki2)

1
1−p dη

)1−p

= |T|−1
∫

T
ki2dη.

Thus ki2 = const a.e. [using the fact that Pk (f ) < Pt (f ) for k < t unless f = const ,
see e.g. [3]] and we conclude that λ is dependent of only the i ’th coordinate.

Proof of 2⇒3 : We argue similarly as above and obtain that λ = kj1kj2 where kj1 =
const a.e. and kj2 is independent of the j ’th coordinate for j = 1, 2, . . . i−1, i+1, . . . , N;
in other words λ is dependent of only the i ’th coordinate. This completes the proof.

5. Final discussion and concluding remarks

The p -Poisson equation serves as a model formany physical problems. Depending
of the type of problem considered the function λ can be the electric conductivity, the
thermal conductivity or the magnetic permeability.

Figure 5.1. Illustration of contributions to the bending of a sandwich beam

Moreover, for 3 dimensional problems where λ and u are only dependent of two
coordinates, say x, y, it is also possible to interpret λ as the shear module and u as the
displacement of an elastic body. This fact seems to be useful e.g. in connection with the
determination of the effective behavior of core materials in sandwich beams when the
core is an unidirectional mixture of several power law materials. In such constructions
the stiffness is provided partly by membrane action in the thin facings but mostly by
the transverse shear strain resistance in the core material (see Figure 5.1). The relation
between the effective transverse shear strain in the core γxz and the effective transverse
shear stress τxz is as follows:

τxz = b(ex, ex) |γxz|p−2 γxz.
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Thus, as the transverse shear stress often is known we can use (1.1) to give estimates
on the transverse shear strain.

We note also that for p = 2 the p -Poisson equation reduces to the linear heat
conduction equation.
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[2] M. P. BENSÖE, Optimization of Structural Topology, Shape, and Material, Springer-Verlag, Berlin 1995.
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