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CACCIOPPOLI’S INEQUALITY

FOR QUASILINEAR ELLIPTIC OPERATORS

IVAN PERIĆ AND DARKO ŽUBRINIĆ

(communicated by J. Pečarić)

Abstract. We generalize Caccioppoli’s inequality to the setting of quasilinear operators of Leray
- Lions type, including arbitrary open subsets in RN , N � 1 , instead of balls, and we obtain
an explicit value of the constant on the right-hand side. The best Caccioppoli constant for the
p -Laplacian is � pp .

1. Introduction

Caccioppoli’s inequality represents an important tool in the study of qualitative
properties of solutions of elliptic partial differential equations and elliptic systems, see
e.g. [3], [6], [5], [7]. We generalize Caccioppoli’s inequality in three directions: first, we
formulate it for quasilinear elliptic operators of divergence type, second, we deal with
arbitrary open subsets of Ω instead of balls, and third, we obtain an explicit value of
the constant appearing on the right hand side of the inequality.

We first formulate a variant of the classical Caccioppoli inequality, as in [6] (see
also [3], Proposition III.2.1, and Remark 2.1 there). Let Ω be an open subset of RN ,
N � 1 , L a linear differential operator of the second order defined by

Lu = −
N∑

i,j=1

Di [aij(x) Dju], (1)

where Di = ∂
∂xi

, u ∈ W1,2
loc (Ω) , aij ∈ L∞(Ω) , aij = aji , and

W1,2
loc (Ω) = {f ∈ L2

loc(Ω) ϕf ∈ W1,2(Ω), ∀ϕ ∈ C∞
0 (Ω)}.

For general definition of Sobolev spaces see e.g. [4] or [10]. We assume L to be
uniformly elliptic, that is, there exist two positive constants α and β such that for a.e.
x ∈ Ω ,

α|ξ |2 �
N∑

i,j=1

aij(x)ξiξj � β |ξ |2. (2)
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This inequality is equivalent to saying that the spectrum of the symmetric matrix
(aij(x))i,j=1,...,n lies in the interval [α, β ] for a.e. x ∈ Ω .

We say that a function u ∈ W1,2
loc (Ω) is an L -subsolution, or subsolution of the

problem
Lv = 0 in D ′(Ω) , (3)

if Lu � 0 in the weak sense, i.e.

N∑
i,j=1

∫
Ω

aij(x) Diu Djϕ dx � 0 ∀ϕ ∈ D+(Ω), (4)

where D ′(Ω) is the space of distributions, and D+(Ω) is the cone of all nonnegative
test functions defined on Ω . Now we formulate Caccioppoli’s result, see e.g. [6]:

THEOREM 1. (Caccioppoli) Under the above conditions we have that each non-
negative subsolution u of (3) satisfies the following inequality:∫

BR(x1)
|∇u|2dx � C

R2

∫
B2R(x1)

u2 dx, (5)

where x1 and R > 0 are such that B2R(x1) ⊂ Ω , and C is a constant independent of
x1 , R , and u .

We call the constant C the Caccioppoli constant. Our aim is to find its explicit
value. The proof of this result presented in [6] requires in essential way that the matrix
A(x) = (aij(x)) be symmetric. As we shall see in Theorem 3, it is possible to drop this
condition.

2. Caccioppoli’s inequality for Leray-Lions operators

Let Ω is an open, possibly unbounded set in RN , N � 1 , 1 < p < ∞ ,
p′ = p/(p − 1) , and let a(x,η, ξ) : Ω × R × RN → RN be a Carathéodory vector
function (i.e. measurable with respect to x for all ξ , η , and continuous with respect
to η and ξ for a.e. x ) satisfying the conditions of Leray - Lions type:

∃α > 0, a(x,η, ξ) · ξ � α|ξ |p, a.e. x ∈ Ω, η ∈ R, ξ ∈ RN , (6){
∃c1 � 0, ∃c2 > 0, ∃h ∈ Lp′

loc(Ω), ∀η ∈ R, ∀ξ ∈ RN ,
|a(x,η, ξ)| � h(x) + c1|η|p−1 + c2|ξ |p−1 a.e. in Ω .

(7)

Let us define the quasilinear operator of divergence type, or Leray-Lions operator,
by Lu = − div a(x, u,∇u) , u ∈ W1,p

loc (Ω) . We say that u ∈ W1,p
loc (Ω) is an L -

subsolution if Lu � 0 in the weak sense, that is,∫
Ω

a(x, u,∇u) · ∇ϕ dx � 0 ∀ϕ ∈ D+(Ω). (8)

We also define the nonnegative part of u by u+ = max{u, 0} . As is well known, if u
is an L -subsolution, so is u+ (see Stampacchia [8], Theorem II.6.6, whose result can
easily be seen to hold for Leray-Lions operators too). Here is the main result.
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THEOREM 2. Let A be an open subset such that A ⊂⊂ Ω , 0 < r < d(A, ∂Ω) ,

m = the number of nonzero elements in the set {h|Ar , c1, c2} , 0 < θ < αp′

pmp′−1cp′
2

. Then

for any L -subsolution u ∈ W1,p
loc (Ω) we have the following Caccioppoli type inequality:∫

A
|∇u+|p dx � C(θ)

∫
Ar

[h(x)p′ + cp′
1 |u+|p] dx +

D(θ)
rp

∫
Ar\A

|u+|p dx, (9)

where the constants C(θ) and D(θ) have explicit values:

C(θ) =
θpmp′−1

αp′ − θpmp′−1cp′
2

, D(θ) =
p′θp−1

αp′ − θpmp′−1cp′
2

. (10)

The crucial role in the proof of Theorem 2 is played by the following localization
result, see [9].

LEMMA 1. (smooth localization of measurable subsets) Let Ω be an open subset
of RN . Assume that A is a measurable subset of Ω and r > 0 such that Ar ⊆ Ω ,
where Ar is r -neighbourhood of A . Then for any c0 > 1 there exists a function
Φ ∈ C∞(Ω) such that

0 � Φ � 1, (11)
Φ = 0 on Ω \ Ar , Φ = 1 on A , (12)

|∇Φ| � c0
r . (13)

The novelty in the above lemma is that we can take the constant c0 arbitrarily close
to 1 . It is easy to see by an example that the condition c0 > 1 cannot be improved.

Proof of Theorem 2. Since u+ is also a subsolution, we can assume without loss
of generality that u � 0 on Ω . Let c0 > 1 be given. Assume that Φ is as in Lemma
1. Then we have ϕ = uΦp ∈ W1,p

0 (Ω) , and ϕ � 0 . It will be convenient to denote
M = mp′−1 . Then Lu � 0 implies∫

Ω
a(x, u,∇u) · ∇uΦp dx � −p

∫
Ω

a(x, u,∇u)uΦp−1∇Φ dx. (14)

Using ellipticity of L , see (6), and Young’s inequality we obtain that

α
∫

Ar

|∇u|pΦp dx � p
∫
Ω
[h(x) + c1|u|p−1 + c2|∇u|p−1]Φp−1θ

1
p′ · θ− 1

p′ u|∇Φ| dx

� pθM
p′

∫
Ar

[h(x)p′ + c1|u|p + cp′
2 |∇u|p]Φp dx

+θ−p/p′
∫

Ar

|u|p|∇Φ|pdx.

Exploiting properties of Φ from Lemma 1 we arrive to(
α − pθMcp′

2

p′

)∫
A
|∇u|pdx � pθM

p′

∫
Ar

[h(x)p′ + c1|u|p] dx +

+
θ−p/p′cp

0

rp

∫
Ar\A

|u|pdx.
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Since this inequality is independent of Φ , we can send c0 → 1 , and the claim follows.
Q.E.D.

COROLLARY 1. Let u ∈ W1,p
loc (Ω) be a −Δp -subsolution, where

Δpu = div(|∇u|p−2∇u)

is the p -Laplacian. If A is an open subset of Ω such that A ⊂⊂ Ω , 0 < r < d(A, ∂Ω) ,
then ∫

A
|∇u+|pdx � pp

rp

∫
Ar\A

|u+|pdx. (15)

Proof. We apply Theorem 2 with h(x) ≡ 0 , c1 = 0 , α = c2 = m = 1 . Using
simple calculus we see that in this case the minimal value of D(θ) is attained for
θ = 1/p , and the claim follows since D(1/p) = pp . Q.E.D.

Remark. In particular, if p = 2 we obtain that the Caccioppoli constant for −Δ -
subsolutions (i.e. subharmonic functions) is equal to 4 . Note that we do not claim that
the Caccioppoli constant pp in this corollary is optimal. In fact, we shall see that in
one-dimensional case the best Caccioppoli constant related to subsolutions of −v′′ = 0
is equal to 2

√
3 − 3 , see Theorem 4.

It is interesting to compare the above result with that due to Heinonen, Kilpeläinen,
and Martio [5], see also [7]. They consider the case of the Leray-Lions operator L of the
form Lu = − div a(x,∇u) satisfying h(x) ≡ 0 and c1 = 0 in (7), which also includes
p -Laplacian as a special case. They showed that if u ∈ W1,p

loc (Ω) is an L -subsolution,
and Φ ∈ C∞

0 (Ω) , then∫
Ω
|∇u+|p|Φ|pdx � C

∫
Ω
|u+|p|∇Φ|pdx. (16)

Using Lemma 1, it is easy to see that for any L -subsolution u ∈ W1,p
loc (Ω) , and with A ,

r as in the above corollary, we have that with the same C∫
A
|∇u+|pdx � C

rp

∫
Ar\A

|u+|pdx. (17)

COROLLARY 2. Let a > 0 , r > 0 , and assume that u ∈ W1,p(Ba+r(0)) is
nonnegativeand radially symmetric. If u is an −Δp -subsolution, then for v(ρ) = u(x) ,
ρ = |x| , we have ∫ a

0
|v′(ρ)|pρN−1 dρ � pp

rp

∫ a+r

a
v(ρ)pρN−1 dρ.

It is possible to obtain a variant of Theorem 2 for quasilinear elliptic systems of
divergence type, see [2] and [3] for similar problems. Assume that aj(x,η, ξ) : Ω×Rn×
RNn → RN are Carathéodory vector functions, j = 1, . . . , n , where η = (η1, . . . ,ηn) ,
ξ = (ξ 1, . . . , ξ n) , ξ j ∈ RN . We denote u = (u1, . . . , un) , Du = (∇u1, . . . ,∇un) .
Assume that 1 < pj < ∞ for all j , and let the ellipticity condition be fulfilled, i.e.
there exists α > 0 such that:

n∑
j=1

aj(x,η, ξ) · ξj � α
n∑

j=1

|ξ j|pj , a.e. x ∈ Ω, η ∈ Rn, ξ ∈ RNn, (18)
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∃cjk � 0, ∃djk � 0, ∃hj ∈ Lp′j (Ω), ∀j, ∀η ∈ Rn, ∀ξ ∈ RNn,

|aj(x,η, ξ)| � hj(x) +
∑n

k=1 cjk|ηk|pk/p′j + djk|ξk|pk/p′j a.e. in Ω .
(19)

Consider the following quasilinear elliptic system of n equations, with unknwons
uj ∈ W1,pj(Ω) , analogous to the system (3.1) in [2]:

− div aj(x, u, Du) = − div f j in D ′(Ω) , j = 1, . . . , n , (20)

where f j ∈ Lp′j (Ω) are given. Then similarly as in the proof of Theorem 2 we can
conclude that for any solution u = (uj) , uj ∈ W1,pj(Ω) , A ⊂⊂ Ω open, 0 < r <
d(A, ∂Ω) , the following Caccioppoli type estimate holds:

n∑
j=1

∫
A
|∇uj|pjdx �

n∑
j=1

(∫
Ar

Cj[hj(x)
p′j + |uj|pj ] dx +

Dj

rpj

∫
Ar\A

|uj|pjdx

+Ej

∫
Ar

|f j|p
′
j dx

)
.

Here Cj , Dj , Ej are nonnegative constants depending on the coefficients that
describe the behaviour of vector functions a1, . . . , an , and on an auxilliary constant
θ > 0 , analogously as in Theorem 2. All these constants can be expressed explicitly.
Furthermore, if hj ≡ 0 and cjk = 0 for all j, k , then we can take Cj = 0 .

3. The case of uniformly elliptic operators

Now we would like to obtain the value of the Caccioppoli constant when L is a
quasilinear differential operator of the second order defined by

Lu = −
N∑

i,j=1

Di [aij(x, u,∇u) Dju]. (21)

We assume L to be uniformly elliptic, that is, aij(x,η, ξ) are Carathéodory functions
defined on Ω × R × RN (measurable with respect to x for all (η, ξ) and continuous
with respect to (ξ ,η) for a.e. x ), essentially bounded with respect to (x,η, ξ) , and
there exists a positive constant α such that for a.e. x ∈ Ω and for all (η, ξ) ∈ R×RN ,

α|ξ |2 �
N∑

i,j=1

aij(x,η, ξ)ξiξj. (22)

THEOREM 3. Let L be uniformly elliptic, quasilinear differential operator of sec-
ond order, u an L -subsolution, and A an arbitrary open subset of Ω such that
A ⊂⊂ Ω , and 0 < r < d(A, ∂Ω) .

(a) If a0 > 0 is such that |aij(x,η, ξ)| � a0 for all i, j,η, ξ , and a.e. x , then the
following inequality holds:∫

A
|∇u+|2dx � 4N2a2

0

αr2

∫
Ar\A

|u+|2dx. (23)
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(b) If the matrix A(x,η, ξ) = (aij(x,η, ξ)) is symmetric for a.e. x and all η and
ξ , and the right hand side of (22) is � β |ξ |2 , then

∫
A
|∇u+|2dx � 4β

αr2

∫
Ar\A

|u+|2dx. (24)

Remark. Note that with A = BR(x1) and r = R < 1
2d(x1, ∂Ω) we obtain an

improvement of the classical Caccioppoli inequality (5).
Proof. (a) We have that the operator L is of divergence type with ai(x,η, ξ) =∑N

j=1 aij(x,η, ξ)ξj . It is easy to see that |a(x,η, ξ)| � Na0|ξ |2 , and the claim follows
from Theorem 2 with p = 2 , h(x) ≡ 0 , c1 = 0 , and c2 = Na0 .

(b) In the case when the matrix A = A(x,η, ξ) is symmetric we can proceed as
in the proof of the classical Cacciopoli inequality, using also Lemma 1. We include the
proof for the sake of completeness. Let c0 > 1 be arbitrary, and let Φ be a smooth
localization of A from our Lemma 1. Since Φ vanishes on the boundary of Ω , we
have that ϕ = uΦ2 ∈ W1,2

0 (Ω) , ϕ � 0 . As u is subsolution, using (4) we obtain

N∑
i,j=1

∫
Ω

aij(x, u,∇u) Diu Dj(uΦ2) dx � 0,

that is,

K =
N∑

i,j=1

∫
Ω

aij Diu DjuΦ2 dx � −2
N∑

i,j=1

∫
Ω

aij (ΦDiu) (u DjΦ) dx.

Since the matrix A is positively semidefinite, we can use the following well known
variant of the Cauchy inequality (here we need A to be symmetric):

|〈Aξ(x), ζ(x)〉 | � 〈Aξ(x), ξ(x)〉 1/2〈Aζ(x), ζ(x)〉 1/2

with A = (aij(x, u,∇u))i,j , ξ(x) = (ΦDiu)i , ζ(x) = (u DjΦ)j , so that

K � 2
∫
Ω
〈Aξ(x), ξ(x)〉 1/2〈Aζ(x), ζ(x)〉 1/2 dx

� 2

(∫
Ω
〈Aξ(x), ξ(x)〉 dx

)1/2(∫
Ω
〈Aζ(x), ζ(x)〉 dx

)1/2

= 2

⎛
⎝ N∑

i,j=1

∫
Ω

aij Diu DjuΦ2 dx

⎞
⎠

1/2⎛
⎝ N∑

i,j=1

∫
Ω

aij DiΦDjΦ u2 dx

⎞
⎠

1/2

.
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Taking into account the condition of uniform ellipticity and properties of Φ in Lemma
1 we obtain

α
∫

A
|∇u|2dx �

∑
i,j

∫
Ω

aij Diu DjuΦ2 dx

� 4
∑
i,j

∫
Ω

aij DiΦDjΦ u2 dx

� 4β
∫
Ω
|∇Φ|2u2 dx

� 4βc2
0

r2

∫
Ar\A

u2dx, ∀c0 > 1.

We can let c0 → 1 , and the claim is proved. Q.E.D.

Remark. It is interesting to note that, while the p -Laplacian is elliptic in the sense
of Leray-Lions for any p > 1 , it is not elliptic in the sense of (22), except for p = 2 .
However it is elliptic in the sense of ellipticity introduced in Gilbarg and Trudinger
[4] (see relation 10.2 there). Indeed, we have that Δpu =

∑
i,j aij(∇u)Diju , where

aij(ξ) = |ξ |p−2δij + (p − 2)|ξ |p−4ξiξj . Therefore

S =
N∑

i,j=1

aij(ξ) zizj = |ξ |p−4[|ξ |2|z|2 + (p − 2)(ξ · z)2] � 0. (25)

For p � 2 we have |ξ |p−2|z|2 � S � (p−1)|ξ |p−2|z|2 , i.e. −Δp is elliptic in the sense
of Gilbarg and Trudinger in the region U = Ω × R × RN , and for 1 < p < 2 we
have (p− 1)|ξ |p−2|z|2 � S � |ξ |p−2|z|2 , i.e. we have ellipticity condition in the region
U = Ω× R × (RN \ {0}) .

Now let us consider the second order operator Q defined on W1,p
loc (Ω) by

Qu = − div[(1 + |∇u|2) p
2 −1∇u], 1 < p < ∞. (26)

Then Q is elliptic for all p in the sense of (22), see also Chapter 10 in [4]. However, Q
is elliptic in the sense of Leray-Lions only for p � 2 . Indeed, if p � 2 then it is easy to
see that a(ξ)·ξ � |ξ |p , |a(ξ)| � 2p/2−2+2p/2−1|ξ |p−1 , where a(ξ) = (1+|ξ |2) p

2 −1ξ .
On the other hand, if p ∈ (1, 2) then the ellipticity condition for Q in the sense

of Leray-Lions is not fulfilled. To see this, note that

a(ξ) · ξ =

(
t

2
2−p

1 + t

)1−p/2

,

where we denote t = |ξ |2 . If we had α, d > 0 such that t
2

2−p /(1 + t) � αtd for all

t > 0 , then having in mind that the order of the left-hand side is t
2

2−p near t = 0 and

t
p

2−p near t = ∞ , this would imply d � 2
2−p and d � p

2−p , which is impossible for
1 < p < 2 .
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The operator Q appears in many physical situations, see [4], Chapter 10. Since
for p � 2 we have h(x) ≡ 2

p
2 −2 , c1 = 0 , c2 = 2

p
2 −1 , Theorem 2 implies

COROLLARY 3. Let A ⊂⊂ Ω , 0 < r < d(A, ∂Ω) . If p � 2 and u ∈ W1,p
loc (Ω) is

a Q -subsolution, then for any θ , 0 < θ < p
2p′ 2

1
2 pp′ we have the following Caccioppoli

type inequality ∫
Ω
|∇u+|pdx � C(θ)|Ar| + D(θ)

rp

∫
Ar\A

|u+|pdx, (27)

where

C(θ) =
pθ2p′−1

p′ − pθ2
1
2 pp′−1

, D(θ) =
pθ−p/p′

p′ − pθ2
1
2 pp′−1

. (28)

4. One-dimensional case

In one-dimensional case we have that a function u ∈ W1,2
loc (a, b) is subharmonic if

and only if u is convex, see [1]. In this case it is possible to obtain the best Caccioppoli
constant.

THEOREM 4. Let u ∈ W1,2(a − r, b + r) be a nonnegative convex function, where
(a, b) is bounded and r > 0 . Then∫ b

a
u′2dx � 2

√
3 − 3
r2

[∫ a

a−r
u2 dx +

∫ b+r

b
u2 dx

]
, (29)

and the inequality is sharp.

Proof. Since C∞([a−r, b+r]) is dense in W1,2(a−r, b+r) , it suffices to assume
u ∈ C∞([a − r, b + r]) . Using the identity (uu′)′ = (u′)2 + uu′′ and uu′′ � 0 we
obtain ∫ b

a
u′2dx �

∫ b

a
(uu′)′dx = u(b)u′(b) − u(a)u′(a).

The proof will follow if we estimate the right-hand side of (29) from below, using
tangents of u at a and b on the corresponding intervals.

(a) Suppose first that u′(a) � 0 or 0 < r � u(a)
u′(a) if u′(a) > 0 , and u′(b) � 0 or

0 < r � − u(b)
u′(b) if u′(b) < 0 . Then the right-hand side of (29) is bounded from below

by

f (r) :=
1
r2

[∫ a

a−r
(u′(a)(x − a) + u(a))2dx +

∫ b+r

b
(u′(b)(x − b) + u(b))2dx

]

=
1
3
(r +

3
r
)[u′(a)2 + u′(b)2] + [u(b)u′(b) − u(a)u′(a)].

Since f (r) attains its minimum at r0 =
√

3 ·
√

u(a)2+u(b)2

u′(a)2+u′(b)2 , then

f (r0) =
2√
3

√
[u(a)2 + u(b)2] · [u′(a)2 + u′(b)2].
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The desired inequality u(b)u′(b) − u(a)u′(a) � f (r0) is equivalent to

u(b)u′(b) − u(a)u′(a) �
√

[u(a)2 + u(b)2] · [u′(a)2 + u′(b)2], (30)

and the claim follows from the Cauchy inequality.
(b) Now suppose that u′(b) > 0 and r > u(a)

u(a) , or u′(b) < 0 and r > − u(b)
u′(b) .

Since only one alternative is possible, assume that the first one holds. In this case it
suffices to prove that

u(b)u′(b) � 2
√

3 − 3
r2

∫ b+r

b
[u′(b)(x − b) + u(b)]2 dx =: g(r)

It is easy to see that g(r) attains its minimum for r1 =
√

3· u(b)
u′(b) , and g(r1) = u(b)u′(b) .

The second alternative can be treated in the same way.
(c) The equality in (29) holds for a convex nonnegative function u ∈ W1,2(a −

r, b+r) if we assume that u′′ = 0 , i.e. if u is piecewise linear, and if we have equality in

(30), i.e. − u′(a)
u(a) = u′(b)

u(b) . Therefore to have equality in (29) it suffices to take c ∈ (a, b)
and define u(x) = k1(x − c) + d for x ∈ [c, b) , u(x) = k2(x − c) + d for x ∈ (a, c] ,
with k1 � 0 , k2 � 0 , d � 0 , k1k2(a + b− 2c)+ d(k1 + k2) = 0 and r = r0 as in (a).
If we take for example a = −b , b > 0 , and r =

√
3 b , then for u(x) = |x| we have

equality in (29). Q.E.D.

COROLLARY 4. Assuming a ∈ R , r > 0 , let u ∈ W1,2(a−r,∞) be a nonnegative,
convex function. Then ∫ ∞

a
u′2dx � 2

√
3 − 3
r2

∫ a

a−r
u2dx. (31)

Proof. The claim follows from the preceding theorem by letting b → ∞ . The
second integral in (29) vanishes as b → ∞ , because u is convex and quadratically
integrable over (a − r,∞) , so that u(x) → 0 as x → ∞ . Q.E.D.

THEOREM 5. Let u ∈ W1,p(a − r, b + r) , 1 � p < ∞ , be a nonnegative convex
function, where (a, b) is bounded and r > 0 . Then∫ b

a
|u′|pdx � Cp

rp

[∫ a

a−r
up dx +

∫ b+r

b
up dx

]
, (32)

where

Cp = max
λ>0

(p + 1)λ p

(1 + λ )p+1 − 1
(33)

is the best constant, and Cp < 1 for p > 1 , C1 = 1 .

Sketch of the proof. We proceed in the same way as in Theorem 4 for p = 2 , but
starting with the identity |u′|p = sgn (u′) · (u|u′|p−1)′ − (p − 1)u|u′|p−2u′′ a.e. In the
final step we have only to check the following inequality for u′(b) > 0 :

u(b)u′(b)p−1 � Cp

rp(p + 1)
· u(b)p+1

u′(b)

[(
1 +

u′(b)
u(b)

r

)p+1

− 1

]
,
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and the same for x = a , with u′(a) > 0 . Setting λ = u′(b)
u(b) r we reduce the preceding

inequality to 1 � Cp
λp(p+1) [(1 + λ )p+1 − 1] which is equivalent to the definition of

Cp . Q.E.D.

Remark. If a = −b , b > 0 , the equality in (32) is achieved for u(x) = |x| and
r = λpb , where λp is the point of maximum in (33). It is easy to see that we have

C2 = 2
√

3 − 3 , and C3 is obtained using λ3 = 3
√

4 + 2
√

2 + 3
√

4 − 2
√

2 .
Numerical experiments confirm our conjecture that

lim
p→∞(λp − p) = 0, lim

p→∞Cp = e−1.

5. Concluding remarks

Remark. Note that, contrary to the case of N = 1 , for N � 2 subharmonic
functions defined on a convex open set Ω do not have to be convex functions. For
example, if we define

EN(x) =
{

log |x|, for N = 2 ,
1

|x|N−2 , for N � 3 , (34)

and Ω a convex domain such that 0 /∈ Ω , it is well known that −ΔEN ≡ 0 on Ω ,
while the functions EN(x) , N � 2 , are neither convex nor concave on Ω . Furthermore,
for all functions u(x) = EN(x) , N � 2 , there holds inequality (15) with p = 2 . Many
other examples of nonconvex subharmonic functions can be found in [1].

Remark. We want to discuss the possibility of taking subsets A of Ω in Theorem
3 having the largest possible measure for a given r > 0 . To this end we introduce the
following regularity condition on Ω . We say that an open set Ω in RN has the uniform
inner ball property if there exists r0 > 0 such that for every x0 ∈ ∂Ω there exists a
(not necessarily unique) ball B ⊆ Ω of radius r0 such that x0 ∈ ∂B . This is equivalent
to saying that the r -neighborhood of the set

Ω−r = {x ∈ Ω : d(x, ∂Ω) > r} (35)

is equal to Ω for every r ∈ (r, r0] , that is, (Ω−r)r = Ω . Our Theorem 3(b) implies
that for every nonnegative subsolution u ∈ W1,2(Ω) of the quasilinear elliptic problem
(3) we have that for every r ∈ (0, r0]∫

Ω−r

|∇u|2dx � 4β
αr2

∫
Ω\Ω−r

u2dx. (36)

It is easy to see that rectangles in R2 do not have uniform inner ball property. The
same holds for domains in R2 having at least one acute cusp. However, there exist
domains having uniform inner ball property that are not even of class C1 . Such is the
case with some domains in R2 whose boundary has obtuse cusps, like the complement
of the rectangle.

As another example, this time in RN , take Ω = B1(0) \ D , where D is a closed
drop-like subset of B1(0) obtained as a convex hull D = conv {x0, B} , x1 being a
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point in B1(0) and B being another ball contined in B1(0) , such that x0 /∈ B . Then
x0 is the acute cuspidal point on the boundary of Ω , and Ω has the uniform inner ball
property. One can easly modify this example to obtain also contractible domains with
cuspidal points, having uniform inner ball property.

Remark. All results in this article involving L -subsolutions u can also be formu-
lated for L -supersolutions, with u− instead of u+ , where the negative part of u is
defined by u− = (−u)+ .

It is easy to see that if we assume u ∈ W1,p(Ω) instead of u ∈ W1,p
loc (Ω) , then our

results hold also for unbounded subsets A , provided d(A, ∂Ω) > 0 . Theorem 2 and its
consequences can be extended to Sobolev spaces with weights.
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