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A STRENGTHENED CAUCHY––SCHWARZ

INEQUALITY FOR BIORTHOGONAL WAVELETS

ALESSANDRA DE ROSSI

(communicated by A. Laforgia)

Abstract. A strengthened Cauchy–Schwarz inequality for spaces of biorthogonal wavelets de-
fined on the real line and on the interval is proved. The strengthened Cauchy–Schwarz inequality
is a fundamental tool in the analysis of the multilevel methods and, in particular, plays an
important role in the a posteriori error estimates for hierarchical methods.

1. Introduction

The fundamental tool in the analysis of multilevel finite elements methods is the
strengthened Cauchy-Schwarz inequality. The usual Cauchy-Schwarz inequality

|(v, w)| �
√

(v, v)
√

(w, w)

is refined by the strengthened one in the sense that it states the existence of a constant
γ ∈ [0, 1) such that

|(v, w)| � γ
√

(v, v)
√

(w, w);

for v ∈ V , w ∈ W , where V , W are linear spaces with V ∩W = {0} , and γ depends
only on the spaces V and W , and not on the choice of the functions v and w .

Such inequalities have been widely used in the analysis of hierarchical finite
elements methods (see for example [Y], [BDY], [EV]). It is possible to observe that the
existence of such inequalities is a natural consequence of the construction of hierarchical
basis functions. On the contrary, they have been rarely used in the context of the a
posteriori error estimates, where they instead play an important role. Moreover, it has
been proved in [De2] that the strengthened Cauchy–Schwarz inequality for biorthogonal
wavelets is a necessary hypothesis to obtain a posteriori error estimates for the wavelet–
based adaptive finite elements method ([CC], [De1]). We recall that a certain number
of forms and proofs of the strengthened Cauchy–Schwarz inequality for finite element
spaces, corresponding to different needs, already exist ([Y], [EV], [MT]). We point out
that a new approach to themultiscale theory, in which the strengthenedCauchy–Schwarz
inequality becomes fundamental, has been proposed in [Dah].
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In this paper a strengthened Cauchy–Schwarz inequality is proved for spaces of
biorthogonal wavelets defined on the real line and, afterwards, on the interval. At first,
the most important results on wavelet analysis are recalled. The hypotheses made are
general and well known to the wavelet specialists.

2. Biorthogonal wavelets

We introduce ([CDF], [Dau]) a biorthogonal systemof compactly supportedwavalets
by assigning two functions m0 , m̃0 satisfying the following conditions:
M1. m0 , m̃0 are two 2π –periodic functions. The Fourier expansions of m0 and m̃0

are of the type

m0(ξ) =
1√
2

+∞∑
n=−∞

hne
−inξ , m̃0(ξ) =

1√
2

+∞∑
n=−∞

h̃ne
−inξ .

M2. m0 and m̃0 satisfy the identity

m0(ξ)m̃0(ξ) + m0(ξ + π)m̃0(ξ + π) = 1, ∀ξ ∈ R

and
m0(0) = m̃0(0) = 1, m0(π) = m̃0(π) = 0.

M3. m0 and m̃0 vanish at π with a zero of order L−1 and L̃−1 (� k ), respectively.
In particular such polynomials can be factorized as

m0(ξ) =
(

1 + e−iξ

2

)L

F (ξ), m̃0(ξ) =
(

1 + e−iξ

2

)L̃

F̃ (ξ),

where F and F̃ are 2π –periodic functions.
M4. There exist two integers p , p̃ > 0 such that, if we set

max
ξ

|F (ξ) . . . F (2p−1ξ)| = 2pτ ,

max
ξ

|F̃ (ξ) . . . F̃ (2p−1ξ)| = 2p̃τ̃ ,

then we have σ = L − 1
2 − τ > 0 , σ̃ = L̃ − 1

2 − τ̃ > 0 , and τ , τ̃ � 0 .

The condition M2 can be translated into a property of the coefficients hn and h̃n

(filters). In fact we have ∑
n

hnh̃n−2k = δk0, ∀k ∈ Z,

∑
n

hn =
∑

n

h̃n =
√

2,

∑
n

(−1)nhn =
∑

n

(−1)nh̃n = 0.
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The orthogonal case follows when m0 and m̃0 coincide; it can be proved that in
this case m0 generates an orthogonal system.

Now we define the functions

ϕ̂(ξ) =
1√
2

∞∏
j=1

m0(2−jξ), ˆ̃ϕ(ξ) =
1√
2

∞∏
j=1

m̃0(2−jξ).

From the definition we have the following important relations

ϕ̂(2ξ) = ϕ̂(ξ)m0(ξ), ˆ̃ϕ(2ξ) = ˆ̃ϕ(ξ)m̃0(ξ), (2.1)

and

ϕ̂(0) =
1√
2
, ˆ̃ϕ(0) =

1√
2
.

The anti–transforms ϕ(x) and ϕ̃(x) are the scaling functions in the biorthogonal
decomposition of L2(R) . By (2.1) we obtain the refinement equations

ϕ(x) =
√

2
∑

n

hnϕ(2x − n), ϕ̃(x) =
√

2
∑

n

h̃nϕ̃(2x − n), (2.2)

and the normalization conditions∫
R
ϕ(x)dx = 1,

∫
R
ϕ̃(x)dx = 1. (2.3)

Moreover ϕ , ϕ̃ verify the biorthogonality relation

(ϕ, ϕ̃(· − k)) = δ0k.

Next we define the functions

ϕ0k(x) = ϕ(x − k), k ∈ Z,

and we set
V0 = spanL2(R){ϕ0k : k ∈ Z}.

In order to define the spaces Vj and Ṽj , for j �= 0 , we introduce the isometries in
L2(R)

Tj(v)(x) = 2
j
2 v(2jx)

and similarly for T̃j . Then

Vj = {Tjv : v ∈ V0} = spanL2(R){ϕjk : k ∈ Z}, (2.4)

and
Ṽj = {T̃jv : v ∈ Ṽ0} = spanL2(R){ϕ̃jk : k ∈ Z}, (2.5)

where, for j, k ∈ Z ,

ϕjk(x) = Tjϕ0k(x) = 2
j
2ϕ(2jx − k),

and
ϕ̃jk(x) = T̃jϕ̃0k(x) = 2

j
2 ϕ̃(2jx − k).
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It is possible to prove that, for every j ∈ Z , we have

f (x) ∈ Vj ⇐⇒ f (x − 2−jk) ∈ Vj, ∀k ∈ Z,

f (x) ∈ Vj ⇐⇒ f (2−jx) ∈ V0,

Vj ⊂ Vj+1,

and moreover ⋂
j∈Z

Vj = {0},
⋃
j∈Z

Vj = L2(R);

the same results naturally hold for the Ṽj .
Now, we consider the function (wavelet mother)

ψ(x) =
√

2
∑

n

gnϕ(2x − n),

where
gn = (−1)nh̃1−n

and set
ψjk(x) = 2

j
2ψ(2jx − k). (2.6)

We define
Wj = spanL2(R){ψjk : k ∈ Z} (2.7)

and
W̃j = spanL2(R){ψ̃jk : k ∈ Z}, (2.8)

where the ψ̃jk are defined as the ψjk . Thus we have the orthogonal decompositions

Vj+1 = Vj ⊕ Wj, Ṽj+1 = Ṽj ⊕ W̃j,

with
Wj ⊥ Ṽj, W̃j ⊥ Vj.

The Fourier transform of ψ is

ψ̂(ξ) = −e−i ξ2 m̃0(
ξ
2

+ π)ϕ̂(
ξ
2

). (2.9)

The wavelets satisfy the relation (
ψjk, ψ̃j′l

)
= δjj′δkl.

The wavelet representation of a generic function f ∈ L2(R) is

f (x) =
∑
j,k

(f , ψ̃jk)ψjk(x),

or
f (x) =

∑
k

(f , ϕ̃j0,k)ϕj0,k(x) +
∑
j�j0,k

(f , ψ̃jk)ψjk(x).
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The following relation is also used

ϕj+1,k =
∑

m

(ϕj+1,k, ϕ̃jm)ϕjm +
∑

m

(ϕj+1,k, ψ̃jm)ψjm (2.10)

and the analogue for ϕ̃j+1,k .

Now we enunciate some results that will be used in the sequel ([CDF]). They
establish regularity, exponential decay to infinity and an inequality verified by ϕ̂ , ˆ̃ϕ ,
respectively.

PROPOSITION 2.1. The functions ϕ̂ , ˆ̃ϕ belong to the space C k(R) , where k is
the order of regularity of m0 and m̃0 .

PROPOSITION 2.2. Let σ , σ̃ be as in M4–hipothesis. There exists a constant
C > 0 such that ∀ξ ∈ R

|ϕ̂(ξ)| � C(1 + |ξ |)− 1
2−σ ,

| ˆ̃ϕ(ξ)| � C(1 + |ξ |)− 1
2−σ̃ .

PROPOSITION 2.3. There exist two constants C1 , C2 > 0 such that

C1 �
∑

m

|ϕ̂(ξ + 2mπ)|2 � C2, ∀ξ ∈ R,

C1 �
∑

m

| ˆ̃ϕ(ξ + 2mπ)|2 � C2, ∀ξ ∈ R.

The following theorem, which covers the case when m0 and m̃0 are trigonometric
polynomials, is very important. (A first consequence of this hypothesis is that ϕ , ψ ,
ϕ̃ , ψ̃ have compact support.)

THEOREM 2.4. The following conditions are equivalent:
(i)

dlm0

dξ
(π) = 0, 0 � l � L − 1;

(ii) {ϕ(x− k)}k∈Z generate on R the algebraic polynomials of degree � L− 1 ;
(iii) we have ∫

R
xlψ̃(x)dx = 0, 0 � l � L − 1. (2.11)

Note that the condition (i) is equal to the M3–hypothesis on m0 .
Another result, which will be fundamental to prove the strengthened Cauchy–

Schwarz inequality for biorthogonal wavelets defined on the interval, is the following
one.
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PROPOSITION 2.5. For every j we have

||{αk}||l2 � ||
∑

k

αkϕjk||L2(R)

and thus

Vj =

{∑
k

αkϕjk : {αk} ∈ l2
}

.

Now we consider the wavelets defined on an interval. There are a lot of ways
to construct biorthogonal wavelet bases on an interval ([CDV], [DKU]). In this paper
the construction presented in [AHJP] is considered. This includes general situations
like biorthogonal wavelets and intervals of the real line. Let us consider two scaling
functions satisfying the refinement relations

ϕ(x) =
√

2
2L−1∑
k=0

hkϕ(2x − k), ϕ̃(x) =
√

2
2L̃−1∑
k=0

h̃kϕ̃(2x − k),

where 2L and 2L̃ are coefficients different to zero. This implies that

suppϕ = [0, 2L − 1], supp ϕ̃ = [0, 2L̃ − 1].

At first, we construct Vj[0, 1] and Ṽj[0, 1] . To make this we consider

Sj = {k : suppϕjk ∩ (0, 1) �= ∅} = {k : (−2L − 2) � k � 2j − 1}.
Let δL , δR , δ̃L , δ̃R be fixed non negative integers and define

Sj,L = {k : −(2L − 2) � k � δL − 1},
Sj,R = {k : 2j − (2L − 2) − δR � k � 2j − 1},
Sj,L = {k : δL � k � 2j − (2L − 1) − δR}.

These three subsets of Sj contain the indices of the basis functions at the left extreme,
at the interior and at the right extreme. We assume the parameter j is sufficiently large
to guarantee that the sets Sj,L and Sj,R are disjoint. Thus we have

Sj = Sj,L ∪ Sj,I ∪ Sj,R.

The sets S̃j , S̃j,L , S̃j,I , S̃j,R are defined in the same way. The integers δL , δR , δ̃L ,
δ̃R are important since with an appropriate choice it is possible to have a symmetric
construction.

By Theorem 2.4 we know that all polynomials PL−1 of degree � L − 1 can be
obtained as linear combinations of the functions {ϕjk}k∈Z . Because this property is
strictly related to the approximation property of the wavelets, every construction on the
interval must preserve it. This observation is the starting point of the procedure. Every

monomial Pα
j (x) = 2

j
2 (2jx)α , α � L − 1 , admits the representation

Pα
j (x) =

∑
k

(Pα , ϕ̃jk)ϕjk(x).
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The restriction to the interval [0, 1] can be written in the form

Pα
j (x)|[0,1] =

⎛
⎝∑

k∈Sj,L

+
∑
k∈Sj,I

+
∑

k∈Sj,R

⎞
⎠(Pα

j , ϕ̃jk
)
ϕjk(x)|[0,1].

Setting

ϕ�
jα,L(x) =

∑
k∈Sj,L

(
Pα

j , ϕ̃jk

)
ϕjk(x)|[0,1],

ϕ�
jα,R(x) =

∑
k∈Sj,R

(
Pα

j , ϕ̃jk

)
ϕjk(x)|[0,1],

we have

Pα
j (x)|[0,1] = ϕ�

jα,L(x) +
∑
k∈Sj,I

(
Pα

j , ϕ̃jk

)
ϕjk(x)|[0,1] + ϕ�

jα,R(x).

Now we define the space

Vj[0, 1] = {ϕ�
jα,L}α�L−1 ∪ {ϕjk}k∈Sj,I ∪ {ϕ�

jα,R}α�L−1.

In the same way we compute the functions {ϕ̃�
jα,L}α�L̃−1 , {ϕ̃�

jα,R}α�L̃−1 , and we
define the spaces Ṽj[0, 1] . Now we impose the biorthogonal condition and determine
functions, linear combinations of the last defined ones, which satisfy it. It is easy to
verify that the spaces defined in this way form an increasing succession.

To have the corresponding wavelets, let Wj[0, 1] be the orthogonal complement of
Vj[0, 1] in Vj+1[0, 1] . The wavelets ψjk , with k such that L − 1 � k � 2j − L , are in
Vj+1[0, 1] . The remaining 2L− 2 wavelets can be found using (2.10). In the same way
we define the spaces W̃j[0, 1] and the wavelets ψ̃jk belonging to such spaces. Again,
it is necessary to impose the biorthogonality condition. Now we have a biorthogonal
wavelet basis on the interval [0, 1] . It is clear that the construction might be generalized
to the case of a generic interval (a, b) of the real line.

3. Strengthened Cauchy–Schwarz inequality
for biorthogonal wavelets on the real line

Since we are interested in derivable wavelets, we consider the case of wavelets
satisfying the M4–hypothesis with σ > 1 (for the spline biorthogonal wavelets this is
true if L � 2 , because τ = 0 ).

LEMMA 3.1. Let Vj , Ṽj be defined as in (2.5), (2.6) and Wj , W̃j biorthogonal
wavelet spaces on R be defined by (2.8), (2.9). If we consider the function

ζ(ξ) =
S(ξ)S(ξ + 2π)

A(ξ)S2(ξ) + B(ξ)S2(ξ + 2π) + C(ξ)S(ξ)S(ξ + 2π)
(3.1)
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where

S(ξ) =
∑

l

(ξ + 4lπ)2

∣∣∣∣ϕ̂
(
ξ
2

+ 2lπ
)∣∣∣∣

2

,

A(ξ) =
∣∣∣∣m0

(
ξ
2

)
m̃0

(
ξ
2

+ π
)∣∣∣∣

2

,

B(ξ) =
∣∣∣∣m0

(
ξ
2

+ π
)

m̃0

(
ξ
2

)∣∣∣∣
2

,

C(ξ) =
∣∣∣∣m0

(
ξ
2

)
m̃0

(
ξ
2

)∣∣∣∣
2

+
∣∣∣∣m0

(
ξ
2

+ π
)

m̃0

(
ξ
2

+ π
)∣∣∣∣

2

,

then there exists γ < 1 such that

|(f ′, g′)| � γ ‖f ′‖ ‖g′‖, ∀f ∈ Vj, ∀g ∈ Wj (3.2)

if and only if there exists ζ� such that

ζ(ξ) � ζ� > 0, ∀ξ ∈ [0, 2π).

Proof. From the characterization of the spaces V0 and W0

f ∈ V0 ⇐⇒ f (x) =
∑

k

αkϕ0k(x) with {αk} ∈ l2

⇐⇒ ˆf (ξ) =
∑

k

αke
−ikξ ϕ̂(ξ)

= F(ξ)ϕ̂(ξ) with F ∈ L2(0, 2π),

g ∈ W0 ⇐⇒ ĝ(ξ) = e−i ξ2 G(ξ)m̃0

(
ξ
2

+ π
)
ϕ̂
(
ξ
2

)
= G(ξ)ψ̂(ξ), with G ∈ L2(0, 2π);

then we have

f (x) ∈ Vj ⇐⇒ ˆf (η) = 2−jF(2−jη)ϕ̂(2−jη),

g(x) ∈ Wj ⇐⇒ ĝ(η) = 2−jG(2−jη)ψ̂(2−jη),

since

f (x) ∈ Vj ⇐⇒ f (2−jx) ∈ V0

⇐⇒ [
f (2−jx)

]∧
(η) = F(η)ϕ̂(η),

g(x) ∈ Wj ⇐⇒ g(2−jx) ∈ W0

⇐⇒ [
g(2−jx)

]∧
(η) = G(η)ψ̂(η).



A STRENGTHENED CAUCHY–SCHWARZ INEQUALITY FOR BIORTHOGONAL WAVELETS 271

From the Parseval formula for the left–hand side of (3.2) we have

|(f ′, g′)| =
∣∣∣∣
∫

R
f ′(x)g′(x)dx

∣∣∣∣
=
∣∣∣∣
∫

R
[f ′(x)]∧(η)[g′(x)]∧(η)dη

∣∣∣∣
=
∣∣∣∣
∫

R
η ˆf (η) ηĝ(η)dη

∣∣∣∣
= 2−2j

∣∣∣∣
∫

R
η2F(2−jη)G(2−jη)ϕ̂(2−jη)ψ̂(2−jη)dη

∣∣∣∣
= 2j

∣∣∣∣
∫

R
ξ 2F(ξ)G(ξ)ϕ̂(ξ)ψ̂(ξ)dξ

∣∣∣∣ .
For the right–hand side, in the same way we find

(f ′, f ′) =
∫

R
|f ′(x)|2dx

=
∫

R
η2| ˆf (η)|2dη

= 2−2j
∫

R
η2|F(2−jη)|2|ϕ̂(2−jη)|2dη

= 2j
∫

R
ξ 2|F(ξ)|2|ϕ̂(ξ)|2dξ ,

and, equivalently,

(g′, g′) = 2j
∫

R
ξ 2|G(ξ)|2|ψ̂(ξ)|2dξ .

For (3.2) to hold, there must exist a γ < 1 such that

∣∣∣∣
∫

R
ξ 2F(ξ)G(ξ)ϕ̂(ξ)ψ̂(ξ)dξ

∣∣∣∣
� γ

(∫
R
ξ 2|F(ξ)|2|ϕ̂(ξ)|2dξ

) 1
2

×
(∫

R
ξ 2|G(ξ)|2|ψ̂(ξ)|2dξ

) 1
2

,
(3.3)

with F, G ∈ L2(0, 2π).
Now, (2.1) and (2.9) imply

ϕ̂(ξ) = m0

(
ξ
2

)
ϕ̂
(
ξ
2

)
,

ψ̂(ξ) = −e−i ξ2 m̃0

(
ξ
2

+ π
)
ϕ̂
(
ξ
2

)
.
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Substituing them in (3.3), we have

∣∣∣∣
∫

R
ξ 2 ei ξ2 F(ξ)G(ξ)m0

(
ξ
2

)
m̃0

(
ξ
2

+ π
) ∣∣∣∣ϕ̂

(
ξ
2

)∣∣∣∣
2

dξ

∣∣∣∣∣
�
(∫

R
ξ 2|F(ξ)|2

∣∣∣∣m0

(
ξ
2

)∣∣∣∣
2 ∣∣∣∣ϕ̂

(
ξ
2

)∣∣∣∣
2

dξ

) 1
2

×

×
(∫

R
ξ 2|G(ξ)|2

∣∣∣∣m̃0

(
ξ
2

+ π
)∣∣∣∣

2 ∣∣∣∣ϕ̂
(
ξ
2

)∣∣∣∣
2

dξ

) 1
2

and remembering that F and G are 2π –periodic functions, we find∣∣∣∣∣
∫ 2π

0
F(ξ)G(ξ)

∑
k

(ξ + 2kπ)2ei( ξ2 +kπ)m0

(
ξ
2

+ kπ
)
×

×m̃0

(
ξ
2

+ π + kπ
) ∣∣∣∣ϕ̂

(
ξ
2

+ kπ
)∣∣∣∣

2

dξ

∣∣∣∣∣

� γ

(∫ 2π

0
|F(ξ)|2

∑
k

(ξ + 2kπ)2

∣∣∣∣m0

(
ξ
2

+ kπ
)∣∣∣∣

2 ∣∣∣∣ϕ̂
(
ξ
2

+ kπ
)∣∣∣∣

2

dξ

) 1
2

×

×
(∫ 2π

0
|G(ξ)|2

∑
k

(ξ + 2kπ)2

∣∣∣∣m̃0

(
ξ
2

+ π + kπ
)∣∣∣∣

2 ∣∣∣∣ϕ̂
(
ξ
2

+ kπ
)∣∣∣∣

2

dξ

) 1
2

.

(3.4)
Therefore, if the strengthened Cauchy–Schwarz inequality is proved, there exists γ < 1
such that∣∣∣∣∣

∑
k

(ξ + 2kπ)2ei
( ξ

2 +kπ
)
m0

(
ξ
2

+ kπ
)

m̃0

(
ξ
2

+ π + kπ
) ∣∣∣∣ϕ̂

(
ξ
2

+ kπ
)∣∣∣∣

2
∣∣∣∣∣

� γ

(∑
k

(ξ + 2kπ)2

∣∣∣∣m0

(
ξ
2

+ kπ
)∣∣∣∣

2 ∣∣∣∣ϕ̂
(
ξ
2

+ kπ
)∣∣∣∣

2
) 1

2

×

×
(∑

k

(ξ + 2kπ)2

∣∣∣∣m̃0

(
ξ
2

+ π + kπ
)∣∣∣∣

2 ∣∣∣∣ϕ̂
(
ξ
2

+ kπ
)∣∣∣∣

2
) 1

2

.

(3.5)

Now we consider odd k and even k , and we divide the sum∣∣∣∣∣
∑

l

(ξ + 4lπ)2ei
( ξ

2 +2lπ
)
m0

(
ξ
2

+ 2lπ
)

m̃0

(
ξ
2

+ π + 2lπ
)∣∣∣∣ϕ̂

(
ξ
2

+ 2lπ
)∣∣∣∣

2

+
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+
∑

l

(ξ + 2π + 4lπ)2ei
( ξ

2 +π+2lπ
)
m0

(
ξ
2

+ π + 2lπ
)
×

×m̃0

(
ξ
2

+ 2lπ
) ∣∣∣∣ϕ̂

(
ξ
2

+ π + 2lπ
)∣∣∣∣

2
∣∣∣∣∣

� γ

(∑
l

(ξ + 4lπ)2

∣∣∣∣m0

(
ξ
2

+ 2lπ
)∣∣∣∣

2 ∣∣∣∣ϕ̂
(
ξ
2

+ 2lπ
)∣∣∣∣

2

+
∑

l

(ξ + 2π + 4lπ)2

∣∣∣∣m0

(
ξ
2

+ π + 2lπ
)∣∣∣∣

2 ∣∣∣∣ϕ̂
(
ξ
2

+ π + 2lπ
)∣∣∣∣

2
) 1

2

×

×
(∑

l

(ξ + 4lπ)2

∣∣∣∣m̃0

(
ξ
2

+ π + 2lπ
)∣∣∣∣

2 ∣∣∣∣ϕ̂
(
ξ
2

+ 2lπ
)∣∣∣∣

2

+
∑

l

(ξ + 2π + 4lπ)2

∣∣∣∣m̃0

(
ξ
2

+ 2lπ
)∣∣∣∣

2 ∣∣∣∣ϕ̂
(
ξ
2

+ π + 2lπ
)∣∣∣∣

2
) 1

2

.

From periodicity of m0 and m̃0 , we obtain

∣∣∣ei ξ2 m0

(
ξ
2

)
m̃0

(
ξ
2

+ π
)∑

l

(ξ + 4lπ)2

∣∣∣∣ϕ̂
(
ξ
2

+ 2lπ
)∣∣∣∣

2

−ei ξ2 m0

(
ξ
2

+ π
)

m̃0

(
ξ
2

)∑
l

(ξ + 2π + 4lπ)2

∣∣∣∣ϕ̂
(
ξ
2

+ π + 2lπ
)∣∣∣∣

2
∣∣∣∣∣

� γ

(∣∣∣∣m0

(
ξ
2

)∣∣∣∣
2∑

l

(ξ + 4lπ)2

∣∣∣∣ϕ̂
(
ξ
2

+ 2lπ
)∣∣∣∣

2

+
∣∣∣∣m0

(
ξ
2

+ π
)∣∣∣∣

2∑
l

(ξ + 2π + 4lπ)2

∣∣∣∣ϕ̂
(
ξ
2

+ π + 2lπ
)∣∣∣∣

2
) 1

2

×

×
(∣∣∣∣m̃0

(
ξ
2

+ π
)∣∣∣∣

2∑
l

(ξ + 4lπ)2

∣∣∣∣ϕ̂
(
ξ
2

+ 2lπ
)∣∣∣∣

2

+
∣∣∣∣m̃0

(
ξ
2

)∣∣∣∣
2∑

l

(ξ + 2π + 4lπ)2

∣∣∣∣ϕ̂
(
ξ
2

+ π + 2lπ
)∣∣∣∣

2
) 1

2

.

Setting

S(ξ) =
∑

l

(ξ + 4lπ)2

∣∣∣∣ϕ̂
(
ξ
2

+ 2lπ
)∣∣∣∣

2

,

we have ∣∣∣∣m0

(
ξ
2

)
m̃0

(
ξ
2

+ π
)

S(ξ) − m0

(
ξ
2

+ π
)

m̃0

(
ξ
2

)
S(ξ + 2π)

∣∣∣∣ �
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� γ

(∣∣∣∣m0

(
ξ
2

)∣∣∣∣
2

S(ξ) +
∣∣∣∣m0

(
ξ
2

+ π
)∣∣∣∣

2

S(ξ + 2π)

) 1
2

×

×
(∣∣∣∣m̃0

(
ξ
2

+ π
)∣∣∣∣

2

S(ξ) +
∣∣∣∣m̃0

(
ξ
2

)∣∣∣∣
2

S(ξ + 2π)

) 1
2

.

and then∣∣∣∣m0

(
ξ
2

)
m̃0

(
ξ
2

+ π
)

S(ξ) − m0

(
ξ
2

+ π
)

m̃0

(
ξ
2

)
S(ξ + 2π)

∣∣∣∣
2

� γ 2

{∣∣∣∣m0

(
ξ
2

)∣∣∣∣
2 ∣∣∣∣m̃0

(
ξ
2

+ π
)∣∣∣∣

2

S2(ξ)

+
∣∣∣∣m0

(
ξ
2

+ π
)∣∣∣∣

2 ∣∣∣∣m̃0

(
ξ
2

)∣∣∣∣
2

S2(ξ + 2π)

+

[∣∣∣∣m0

(
ξ
2

)∣∣∣∣
2 ∣∣∣∣m̃0

(
ξ
2

)∣∣∣∣
2

+
∣∣∣∣m0

(
ξ
2

+ π
)∣∣∣∣

2 ∣∣∣∣m̃0

(
ξ
2

+ π
)∣∣∣∣

2
]

S(ξ)S(ξ + 2π)

}
.

(3.6)
For the left–hand side inequality, we find(

m0

(
ξ
2

)
m̃0

(
ξ
2

+ π
)

S(ξ) − m0

(
ξ
2

+ π
)

m̃0

(
ξ
2

)
S(ξ + 2π)

)
×

×
(

m0

(
ξ
2

)
m̃0

(
ξ
2

+ π
)

S(ξ) − m0

(
ξ
2

+ π
)

m̃0

(
ξ
2

)
S(ξ + 2π)

)

=
∣∣∣∣m0

(
ξ
2

)
m̃0

(
ξ
2

+ π
)∣∣∣∣

2

S2(ξ) +
∣∣∣∣m0

(
ξ
2

+ π
)

m̃0

(
ξ
2

)∣∣∣∣
2

S2(ξ + 2π)

−
{

m0

(
ξ
2

)
m̃0

(
ξ
2

)
m̃0

(
ξ
2

+ π
)

m0

(
ξ
2

+ π
)

+ m0

(
ξ
2

)
m̃0

(
ξ
2

)
m0

(
ξ
2

+ π
)

m̃0

(
ξ
2

+ π
)}

S(ξ)S(ξ + 2π).

(3.7)

Moreover, by the M2–hypothesis

m0

(
ξ
2

)
m̃0

(
ξ
2

)
+ m0

(
ξ
2

+ π
)

m̃0

(
ξ
2

+ π
)

= 1,

we have(
m0

(
ξ
2

)
m̃0

(
ξ
2

)
+ m0

(
ξ
2

+ π
)

m̃0

(
ξ
2

+ π
))

×

×
(

m0

(
ξ
2

)
m̃0

(
ξ
2

)
+ m0

(
ξ
2

+ π
)

m̃0

(
ξ
2

+ π
))
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=
∣∣∣∣m0

(
ξ
2

)
m̃0

(
ξ
2

)∣∣∣∣
2

+ m0

(
ξ
2

)
m̃0

(
ξ
2

)
m0

(
ξ
2

+ π
)

m̃0

(
ξ
2

+ π
)

+
∣∣∣∣m0

(
ξ
2

+ π
)

m̃0

(
ξ
2

+ π
)∣∣∣∣

2

+ m0

(
ξ
2

)
m̃0

(
ξ
2

)
m0

(
ξ
2

+ π
)

m̃0

(
ξ
2

+ π
)

= 1

and thus

∣∣∣∣m0

(
ξ
2

)
m̃0

(
ξ
2

)∣∣∣∣+
∣∣∣∣m0

(
ξ
2

+ π
)

m̃0

(
ξ
2

+ π
)∣∣∣∣

2

− 1

= −
[
m0

(
ξ
2

)
m̃0

(
ξ
2

)
m0

(
ξ
2

+ π
)

m̃0

(
ξ
2

+ π
)

+ m0

(
ξ
2

)
m̃0

(
ξ
2

)
m0

(
ξ
2

+ π
)

m̃0

(
ξ
2

+ π
)]

.

Substituing it in (3.7)

∣∣∣∣m0

(
ξ
2

)
m̃0

(
ξ
2

+ π
)

S(ξ) − m0

(
ξ
2

+ π
)

m̃0

(
ξ
2

)
S(ξ + 2π)

∣∣∣∣
2

=
∣∣∣∣m0

(
ξ
2

)
m̃0

(
ξ
2

+ π
)∣∣∣∣

2

S2(ξ) + +
∣∣∣∣m0

(
ξ
2

+ π
)

m̃0

(
ξ
2

)∣∣∣∣
2

S2(ξ + 2π)

+

[∣∣∣∣m0

(
ξ
2

)
m̃0

(
ξ
2

)∣∣∣∣
2

+
∣∣∣∣m0

(
ξ
2

+ π
)

m̃0

(
ξ
2

+ π
)∣∣∣∣

2

− 1

]
S(ξ)S(ξ + 2π),

and finally in (3.6), we have

∣∣∣∣m0

(
ξ
2

)
m̃0

(
ξ
2

+ π
)∣∣∣∣

2

S2(ξ) + +
∣∣∣∣m0

(
ξ
2

+ π
)

m̃0

(
ξ
2

)∣∣∣∣
2

S2(ξ + 2π)

+

[∣∣∣∣m0

(
ξ
2

)
m̃0

(
ξ
2

)∣∣∣∣
2

+
∣∣∣∣m0

(
ξ
2

+ π
)

m̃0

(
ξ
2

+ π
)∣∣∣∣

2

− 1

]
S(ξ)S(ξ + 2π)

� γ 2

{∣∣∣∣m0

(
ξ
2

)
m̃0

(
ξ
2

+ π
)∣∣∣∣

2

S2(ξ) +
∣∣∣∣m0

(
ξ
2

+ π
)

m̃0

(
ξ
2

)∣∣∣∣
2

S2(ξ + 2π)

+

[∣∣∣∣m0

(
ξ
2

)
m̃0

(
ξ
2

)∣∣∣∣
2

+
∣∣∣∣m0

(
ξ
2

+ π
)

m̃0

(
ξ
2

+ π
)∣∣∣∣

2
]

S(ξ)S(ξ + 2π)

}
.

In conclusion, let

γ 2(ξ) =
A(ξ)S2(ξ) + B(ξ)S2(ξ + 2π) + [C(ξ) − 1]S(ξ)S(ξ + 2π)

A(ξ)S2(ξ) + B(ξ)S2(ξ + 2π) + C(ξ)S(ξ)S(ξ + 2π)
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where

A(ξ) =
∣∣∣∣m0

(
ξ
2

)
m̃0

(
ξ
2

+ π
)∣∣∣∣

2

,

B(ξ) =
∣∣∣∣m0

(
ξ
2

+ π
)

m̃0

(
ξ
2

)∣∣∣∣
2

,

C(ξ) =
∣∣∣∣m0

(
ξ
2

)
m̃0

(
ξ
2

)∣∣∣∣
2

+
∣∣∣∣m0

(
ξ
2

+ π
)

m̃0

(
ξ
2

+ π
)∣∣∣∣

2

.

If the strengthened Cauchy–Schwarz inequality is satisfied, there exists a γ� such that

γ 2(ξ) � γ 2
� < 1, ∀ξ ∈ [0, 2π).

To prove that the reverse holds, it is sufficient to verify that, if there exists a point where
(3.5) is not satisfied, then there are no functions F , G ∈ L2(0, 2π) such that (3.4)
holds with γ < 1 .

Let ξ � ∈ [0, 2π) be such that (3.5) holds with γ = 1 . This means that, if we
denote by χ(ξ) the left–hand side of (3.5), and by Γ(ξ) and Λ(ξ) the factors in the
right–hand side, then we have ∀ε > 0

(1 − ε)Γ(ξ)Λ(ξ) � χ(ξ) � (1 + ε)Γ(ξ)Λ(ξ), ∀ξ ∈ B = B(ξ �, δε).
Now let Fε , Gε be two functions in L2(0, 2π) such that supp Fε , supp Gε ⊂ B . Then

(1 − ε)
∫

B

∣∣∣Fε(ξ)Gε(ξ)
∣∣∣Γ(ξ)Λ(ξ)dξ

�
∫

B

∣∣∣Fε(ξ)Gε(ξ)
∣∣∣χ(ξ)dξ

� (1 + ε)
∫

B

∣∣∣Fε(ξ)Gε(ξ)
∣∣∣Γ(ξ)Λ(ξ)dξ , ∀ξ ∈ B.

Set
Fε(ξ) = Hε(ξ)Γ(ξ),

Gε(ξ) = Hε(ξ)Λ(ξ),
where Hε ∈ L2(0, 2π) , supp Hε ⊂ B , then we have

(1 − ε)
∫

B
|Hε(ξ)Γ(ξ)Λ(ξ)|2 dξ

�
∫

B

∣∣∣Fε(ξ)Gε(ξ)
∣∣∣ χ(ξ)dξ

� (1 + ε)
∫

B
|Hε(ξ)Γ(ξ)Λ(ξ)|2 dξ ,

(1 − ε)
(∫

B
|Hε(ξ)Γ(ξ)Λ(ξ)|2 dξ

) 1
2
(∫

B
|Hε(ξ)Γ(ξ)Λ(ξ)|2 dξ

) 1
2

�
∫

B

∣∣∣Fε(ξ)Gε(ξ)
∣∣∣ χ(ξ)dξ

� (1 + ε)
(∫

B
|Hε(ξ)Γ(ξ)Λ(ξ)|2 dξ

) 1
2
(∫

B
|Hε(ξ)Γ(ξ)Λ(ξ)|2 dξ

) 1
2
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and

(1 − ε)
(∫

B
|Fε(ξ)Λ(ξ)|2 dξ

) 1
2
(∫

B
|Gε(ξ)Γ(ξ)|2 dξ

) 1
2

�
∫

B

∣∣∣Fε(ξ)Gε(ξ)
∣∣∣χ(ξ)dξ

� (1 + ε)
(∫

B
|Fε(ξ)Λ(ξ)|2 dξ

) 1
2
(∫

B
|Gε(ξ)Γ(ξ)|2 dξ

) 1
2

.

Thus

∣∣∣∣
∫

B
Fε(ξ)Gε(ξ)χ(ξ)dξ

∣∣∣∣ �
(∫

B
|Fε(ξ)Λ(ξ)|2 dξ

) 1
2
(∫

B
|Gε(ξ)Γ(ξ)|2 dξ

) 1
2

,

and

∣∣∣∣∣
∫ 2π

0
Fε(ξ)Gε(ξ)χ(ξ)dξ

∣∣∣∣∣ �
(∫ 2π

0
|Fε(ξ)Λ(ξ)|2 dξ

) 1
2
(∫ 2π

0
|Gε(ξ)Γ(ξ)|2 dξ

) 1
2

,

which implies the assertion. �

LEMMA 3.2. The function

S(ξ) =
∑

l

(ξ + 4lπ)2

∣∣∣∣ϕ̂
(
ξ
2

+ 2lπ
)∣∣∣∣

2

is continuous on the interval [0, 4π] .

Proof. For ξ ∈ [0, 4π] fixed, let l0 ∈ Z satisfy both conditions

|l0| > 1,

∣∣∣∣ξ2 + 2(l0 + 1)π
∣∣∣∣ � 1.

Then

S(ξ) = S1(ξ) + S2(ξ)

=
∑
|l|�l0

(ξ + 4lπ)2

∣∣∣∣ϕ̂
(
ξ
2

+ 2lπ
)∣∣∣∣

2

+
∑
|l|>l0

(ξ + 4lπ)2

∣∣∣∣ϕ̂
(
ξ
2

+ 2lπ
)∣∣∣∣

2

.

The finite sum S1 is continuous due to Proposition 2.1. Moreover, the exponential
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decay to infinity of ϕ̂ in Proposition 2.2, implies

S2(ξ) =
∑
|l|>l0

(ξ + 4lπ)2

∣∣∣∣ϕ̂
(
ξ
2

+ 2lπ
)∣∣∣∣

2

� C
∑
|l|>l0

(ξ + 4lπ)2 1(
1 +

∣∣∣ ξ2 + 2lπ
∣∣∣)1+2σ

� C
∑
|l|>l0

(ξ + 4lπ)2∣∣∣ ξ2 + 2lπ
∣∣∣1+2σ

= K
∑
|l|>l0

1

|ξ + 4lπ|2σ−1

� K
∑
|l|>l0

1
|4lπ|2σ−1

which is convergent because σ > 1 . �

LEMMA 3.3. There exists ζ� such that

ζ(ξ) � ζ� > 0, ∀ξ ∈ [0, 2π),

where ζ(ξ) is defined by (3.1).

Proof. Let be ξ ∈ (0, 2π) . In this case A(ξ) , B(ξ) � 0 , and, by M2–hypothesis,
C(ξ) > 0 . Continuity of A , B , C implies that these functions have maximum in
[0, 2π] . Moreover, if S(ξ) = 0 , with ξ ∈ (0, 4π) , this would mean ϕ̂(ξ + 2lπ) = 0
for every l ∈ Z , and then we have

∑
l

ϕ̂(ξ + 2lπ) = 0

contrary to Proposition 2.3. Note that for ξ = 0 , ζ(ξ) is an indeterminate form, since

A(0) = B(0) = S(0) = S(2π) = 0, C(0) = 1.

In this case we have (by M3–hypothesis about m0 , m̃0 ), for ξ → 0 ,

A(ξ) ∼ ξ 2L̃,

B(ξ) ∼ ξ 2L,

C(ξ) ∼ ξ 2.

With regard to S(ξ + 2π) , in a sufficiently small neighbourhood of 0 , we have (using
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(2.1) and dividing the sum)

S(ξ + 2π) =
∑

l

(ξ + 2π + 4lπ)2

∣∣∣∣ϕ̂
(
ξ
2

+ π + 2lπ
)∣∣∣∣

2

=
∑

l

(ξ + 2π + 4lπ)2

∣∣∣∣m0

(
ξ
4

+
π
2

+ lπ
)∣∣∣∣

2 ∣∣∣∣ϕ̂
(
ξ
4

+
π
2

+ lπ
)∣∣∣∣

2

=
∑

k

(ξ + 2π + 8kπ)2

∣∣∣∣m0

(
ξ
4

+
π
2

+ 2kπ
)∣∣∣∣

2 ∣∣∣∣ϕ̂
(
ξ
4

+
π
2

+ 2kπ
)∣∣∣∣

2

+
∑

k

(ξ + 6π + 8kπ)2

∣∣∣∣m0

(
ξ
4

+
3π
2

+ 2kπ
)∣∣∣∣

2 ∣∣∣∣ϕ̂
(
ξ
4

+
3π
2

+ 2kπ
)∣∣∣∣

2

,

and using the periodicity of m0 and m̃0 , we find

S(ξ + 2π) =
∣∣∣∣m0

(
ξ
4

+
π
2

)∣∣∣∣
2∑

k

(ξ + 2π + 8kπ)2

∣∣∣∣ϕ̂
(
ξ
4

+
π
2

+ 2kπ
)∣∣∣∣

2

+
∣∣∣∣m0

(
ξ
4

+
3π
2

)∣∣∣∣
2∑

k

(ξ + 6π + 8kπ)2

∣∣∣∣ϕ̂
(
ξ
4

+
3π
2

+ 2kπ
)∣∣∣∣

2

� (2π)2

∣∣∣∣m0

(
ξ
4

+
π
2

)∣∣∣∣
2∑

k

∣∣∣∣ϕ̂
(
ξ
4

+
π
2

+ 2kπ
)∣∣∣∣

2

+ π2

∣∣∣∣m0

(
ξ
4

+
3π
2

)∣∣∣∣
2∑

k

∣∣∣∣ϕ̂
(
ξ
4

+
3π
2

+ 2kπ
)∣∣∣∣

2

.

From the M2–hypothesis, we have

m0

(
ξ
4

+
π
2

)
�= 0 or m0

(
ξ
4

+
3π
2

)
�= 0,

and then we obtain (by Proposition 2.3)

S(ξ + 2π) � c1

∣∣∣∣m0

(
ξ
4

+
π
2

)∣∣∣∣
2

+ c2

∣∣∣∣m0

(
ξ
4

+
3π
2

)∣∣∣∣
2

� c3 > 0.

Thus

ζ(ξ) → 1 for ξ → 0.

In conclusion, by Lemma 3.2, in all cases ζ(ξ) is greater than a positive constant. �

Now it is possible to formulate the fundamental result.

THEOREM 3.4. The strengthened Cauchy-Schwarz inequality holds for biorthogo-
nal wavelet spaces Vj(R) and Wj(R) satisfying the hypothesis M1–M2–M3–M4.
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4. A strengthened Cauchy-Schwarz inequality
for biorthogonal wavelets on the interval

In this paragraph a strengthened Cauchy–Schwarz inequality for biorthogonal
wavelets defined on an interval is proved. In the proof we use the previous result for
biorthogonal wavelets defined on the real line.

THEOREM 4.1. Let Vj([0, 1]) and Wj([0, 1]) be respectively the spaces of scaling
functions and biorthogonal wavelets, defined on the interval [0, 1] . There exists γ < 1
such that

|((v, w))| � γ ||v|| ||w||, ∀u ∈ Vj[0, 1], ∀w ∈ Wj[0, 1],

where || · || is the semi–norm in H1([0, 1]) and ((u, u)) = ||u||2 .

Proof. First we note that we can consider the interval [0, +∞) . Moreover, Tj is
an isometry for all j , and this implies that it is sufficient to prove inequality at level
j = 0 . Let

γ = sup
v∈V0, ||v||=1

w∈W0, ||w||=1

((v, w)),

where V0 = V0[0, +∞) , W0 = W0[0, +∞) . By usual Cauchy–Schwarz inequality we
have that γ � 1 . Now we set γ = 1 . Then there exist sequences

{vn} ⊂ V0[0, +∞),

{wn} ⊂ W0[0, +∞),

such that
||vn|| = 1, ||wn|| = 1,

and
((vn, wn)) → 1.

Moreover, we observe that

||vn − wn||2 = ||vn||2 + ||wn||2 − 2((vn, wn))

= 2 [1 − ((vn, wn))]

and thus
||vn − wn|| → 0. (4.1)

We note that
V0[0, +∞), W0[0, +∞) ⊂ V1[0, +∞)

and thus we have
vn(x) =

∑
k�0

αn
1kϕ1k(x),

wn(x) =
∑
k�0

βn
1kϕ1k(x).
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Moreover, from Proposition 2.5,

||vn − wn||2 �
∑
k�0

ck|αn
1k − βn

1k|2.

For all k , it follows from (4.1) that

|αn
1k − βn

1k| → 0.

Now we fix a K ∈ N and define the finite dimensional spaces

VK
0 [0, +∞) = V0[0, +∞) ∩ span{ϕ1k; 0 � k � K},

WK
0 [0, +∞) = W0[0, +∞) ∩ span{ϕ1k; 0 � k � K}.

The disjointness of the spaces V0[0, +∞) and W0[0, +∞) implies

VK
0 [0, +∞) ∩ WK

0 [0, +∞) = {0}.

Let VI
0[0, +∞) and WI

0[0, +∞) be infinite dimensional spaces such that

V0[0, +∞) = VK
0 [0, +∞) ⊕ VI

0[0, +∞),

W0[0, +∞) = WK
0 [0, +∞) ⊕ WI

0[0, +∞).

Hence, for every n , it is possible to consider the decompositions of vn and wn

vn = vK
n + vI

n,

wn = wK
n + wI

n.

We notice that

||vK
n − wK

n || → 0,

and thus

||vK
n || → 0, ||wK

n || → 0,

||vI
n|| → 1, ||wI

n|| → 1.

But vI
n and wI

n could be considered as elements of V0(R) and W0(R) , respectively,
and hence they have coefficients not equal to zero only from a certain point on. This
implies that for vI

n ∈ V0(R) and wI
n ∈ W0(R) we have

((vI
n, w

I
n))

||vI
n|| ||wI

n||
→ 1

contrary toTheorem3.4 about the strengthenedCauchy–Schwarz inequality for biorthog-
onal wavelets on the real line. �
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