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GENERALIZED FURUTA INEQUALITY IN

BANACH ∗ –ALGEBRAS AND ITS APPLICATIONS

TAKAYUKI FURUTA

Abstract. Okayasu [12] proved the useful Löwner-Heinz inequality in Banach ∗ -algebra as
follows. Let A be a unital hermitian Banach ∗ -algebra with continuous involution and a, b ∈ A .
If a � b > 0 , then ap � bp for p ∈ (0, 1] . For a > 0 , aα =exp( α log a ),where log is
the principal branch of the complex logarithm. As a nice application of this result, K.Tanahashi
and M.Uchiyama [15] proved the following very interesting inequality. Let a, b ∈ A . Let
R � p, q, r � 0 satisfy (1 + r)q � p + r and q � 1 .
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This inequality may be called to be “Banach ∗ -algebra version" of Furuta inequality. By
using this result and Löwner-Heinz inequality in Banach ∗ -algebra in Okayasu [12], we show
the following generalized Furuta inequality. Let a, b ∈ A . If a � b > 0 , then for each
1 � q � t � 0 and p � q
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holds for s � 1 and r � t . Moreover as an application of this inequality, we show that if
a � b > 0 , for each t ∈ [0, 1] , q � 0 and p � t ,
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is decreasing for r � t and s � 1 such that (p − t)s � q − t .
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