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Abstract. Okayasu [12] proved the useful Löwner-Heinz inequality in Banach ∗ -algebra as
follows. Let A be a unital hermitian Banach ∗ -algebra with continuous involution and a, b ∈ A .
If a � b > 0 , then ap � bp for p ∈ (0, 1] . For a > 0 , aα =exp( α log a ),where log is
the principal branch of the complex logarithm. As a nice application of this result, K.Tanahashi
and M.Uchiyama [15] proved the following very interesting inequality. Let a, b ∈ A . Let
R � p, q, r � 0 satisfy (1 + r)q � p + r and q � 1 .

(b
r
2 apb

r
2 )

1
q � (b

r
2 bpb

r
2 )

1
q if a � b > 0 .

This inequality may be called to be “Banach ∗ -algebra version" of Furuta inequality. By
using this result and Löwner-Heinz inequality in Banach ∗ -algebra in Okayasu [12], we show
the following generalized Furuta inequality. Let a, b ∈ A . If a � b > 0 , then for each
1 � q � t � 0 and p � q

aq−t+r � {a r
2 (a

−t
2 bpa

−t
2 )sa

r
2 }

q−t+r
(p−t)s+r

holds for s � 1 and r � t . Moreover as an application of this inequality, we show that if
a � b > 0 , for each t ∈ [0, 1] , q � 0 and p � t ,

Gp,q,t(a, b, r, s) = a
−r
2 {a r

2 (a
−t
2 bpa

−t
2 )sa

r
2 }

q−t+r
(p−t)s+r a

−r
2

is decreasing for r � t and s � 1 such that (p − t)s � q − t .

1. Introduction

Let A and B be bounded linear operators on a Hilbert space H . We have obtained
[4] the following order preserving operator inequalities as an extension of Löwner-Heinz
inequality [9] and [11].
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THEOREM F (Furuta inequality).

If A � B � 0 , then for each r � 0 ,
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1
q

hold for p � 0 and q � 1 with

(1 + r)q � p + r.

q

p

q=1
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Figure

Alternative proofs of Theorem F are given in [2] and [10] and also an elementary
one page proof in [5]. The domain drawn for p , q and r in the Figure is the best
possible one for Theorem F in [13]. In [6, Theorem 1.1] we established the following
Theorem G as extensions of Theorem F and Ando-Hiai [1, Theorem 3.5].

THEOREM G [6]. If A � B � 0 with A > 0 , then for each t ∈ [0, 1] and p � 1 ,

A1−t+r � {Ar
2 (A

−t
2 BpA

−t
2 )sA

r
2 } 1−t+r

(p−t)s+r (1.1)

holds for any s � 1 and r such that r � t .

Another mean theoretic proof of Theorem G is given in [3]. The best possibility of
(1.1) is proved in [14] by using skillful technique.

Let A be a unital Banach ∗ -algebra with unit e and a, b ∈ A . A is said to be
hermitian if a∗ = a then the spectrum σ(a) ⊂ R . a � 0 means that a = a∗ and
σ(a) ⊂ [0,∞) . a > 0 means a � 0 and 0 �∈ σ(a) . For a > 0 , aα = exp(α log a ),
where log is the principal branch of the complex logarithm. Recently Okayasu [12]
proved the following useful Löwner-Heinz inequality in Banach ∗ -algebra.

THEOREM A [12]. Let A be a unital hermitian Banach ∗ -algebra with continuous
involution. Let a, b ∈ A and p ∈ (0, 1] . Then ap > bp if a > b > 0 , and ap � bp if
a � b > 0 .

Using Theorem A, Tanahashi and Uchiyama [15] proved the following interesting
inequality.

THEOREM B [15]. Let A be a unital hermitian Banach ∗ -algebra with continuous
involution and a, b ∈ A . Let R � p, q, r � 0 satisfy (1 + r)q � p + r and q � 1 .
Then

(i) (b
r
2 apb

r
2 )

1
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1
q if a � b > 0

and
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1
q if a > b > 0 .
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In this paper we shall give an extension of Theorem B by applying Theorem A and
Theorem B and also we shall show an application of this extension.

2. Results

THEOREM 1. Let A be a unital hermitian Banach ∗ -algebra with continuous
involution. Let a, b ∈ A and R � p, q, r, s, t � 0 satisfy 1 � q � t � 0 , p � q , s � 1
and r � t . Then

(i) aq−t+r � {a r
2 (a

−t
2 bpa

−t
2 )sa

r
2 } q−t+r

(p−t)s+r if a � b > 0
and

(ii) aq−t+r > {a r
2 (a

−t
2 bpa

−t
2 )sa

r
2 } q−t+r

(p−t)s+r if a > b > 0 .

Theorem 1 implies the following Corollary 2 which is essentially equivalent to
Theorem B (see Remark 3).

COROLLARY 2. Let A be a unital hermitian Banach ∗ -algebra with continuous
involution. Let a, b ∈ A , p � 1 and r � 0 . Then the following (i) , (ii) , (iii) and
(iv) hold.
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r
2 apa

r
2 )

1+r
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2 bpa

r
2 )

1+r
p+r if a � b > 0
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r
2 )
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r
2 )

1+r
p+r if a � b > 0
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2 apa
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2 bpa
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1+r
p+r if a > b > 0

and
(iv) (b

r
2 apb

r
2 )

1+r
p+r > (b

r
2 bpb

r
2 )

1+r
p+r if a > b > 0 .

As an application of Theorem 1, we show the following Theorem 3 associated with
functions implying Theorem 1 (see Remark 5).

THEOREM 3. Let A be a unital hermitian Banach ∗ -algebra with continuous
involution and a, b ∈ A . If a � b > 0 , then for each t ∈ [0, 1] , q � 0 and p � t ,

Gp,q,t(a, b, r, s) = a
−r
2 {a r

2 (a
−t
2 bpa

−t
2 )sa

r
2 } q−t+r

(p−t)s+r a
−r
2

is decreasing for r � t and s � 1 such that (p − t)s � q − t .

COROLLARY 4. Let A be a unital hermitian Banach ∗ -algebra with continuous
involution and a, b ∈ A . If a � b > 0 , then for each t ∈ [0, 1] and p � 1 ,

a1−t+r � {a r
2 (a

−t
2 bpa

−t
2 )sa

r
2 } 1−t+r

(p−t)s+r

holds for s � 1 and r � t . Moreover, if a � b > 0 , then for each t ∈ [0, 1] and
p � 1 ,

Gp,q,t(a, b, r, s) = a
−r
2 {a r

2 (a
−t
2 bpa

−t
2 )sa

r
2 } 1−t+r

(p−t)s+r a
−r
2

is decreasing for r � t and s � 1 .

REMARK 1. In case for bounded linear operators on aHilbert space, (i) of Theorem
1 is shown in [8], Theorem 3 is obtained in [7] and Corollary 4 is also shown in [6] and
[3].
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3. Proofs of results

In what follows, a small letter means an element in Banach ∗ -algebra A . We need
the following usefull lemmas to give proofs of the results in 2.

LEMMA C [15]. Let a, b > 0 . For any real number λ

(bab)λ = ba
1
2 (a

1
2 b2a

1
2 )λ−1a

1
2 b.

LEMMA D [15]. If a > b > 0 , then b−1 > a−1 > 0 . Also if a � b > 0 , then
b−1 � a−1 > 0 .

LEMMA E [15]. If a > b > 0 and c > 0 , then cac > cbc . Also if a � b > 0
and c > 0 , then cac � cbc .

LEMMA F [12]. If a, b ∈ A , then either a � b > 0 or a > b � 0 implies a > 0 .

Proof of Theorem 1. We shall show (i) . Let a � b > 0 . Then a > 0 by Lemma
F. We have only to consider the case q �= 0 since the result is trivial in case q = 0 .
First of all we remark the following (3.0);

d = a
−t
2 bpa

−t
2 > 0 (3.0)

since d = a
−t
2 bpa

−t
2 = (b

p
2 a

−t
2 )∗(b

p
2 a

−t
2 ) . Next we prove that if a � b > 0 , then

aq � {a t
2 (a

−t
2 bpa

−t
2 )sa

t
2 } q

(p−t)s+t for 1 � q � t � 0 , p � q and s � 1 . (3.1)

In case 2 � s � 1 . We recall at � bt > 0 by Theorem A since t ∈ [0, 1] , so
b−t � a−t > 0 by Lemma D and we have

0 < b1 = {a t
2 (a

−t
2 bpa

−t
2 )sa

t
2 } q

(p−t)s+t (3.2)

= {b p
2 (b

p
2 a−tb

p
2 )s−1b

p
2 } q

(p−t)s+t by Lemma C

� {b p
2 (b

p
2 b−tb

p
2 )s−1b

p
2 } q

(p−t)s+t

= bq

� aq = a1 for 1 � q � t � 0, p � q and 2 � s � 1

because the first inequality follows by (3.0) and Theorem A since q
(p−t)s+t ∈ (0, 1] and

the second one follows by Lemma E and Theorem A since s − 1, q
(p−t)s+t ∈ (0, 1] , and

the last one follows by Theorem A since 1 � q � 0 .
Repeating (3.2) for a1 � b1 > 0 , then we have

aq1
1 � {a

t1
2
1 (a

−t1
2

1 bp1
1 a

−t1
2

1 )s1a
t1
2

1 }
q1

(p1−t1)s1+t1 > 0 (3.3)

for 1 � q1 � t1 � 0 , p1 � q1 and 2 � s1 � 1 . Put 1 = q1 � t1 = t
q � 0 and

p1 = (p−t)s+t
q � q1 = 1 in (3.3). Then

aq � {a t
2 [a

−t
2 a

t
2 (a

−t
2 bpa

−t
2 )sa

t
2 a

−t
2 ]s1a

t
2 } q

(p−t)ss1+t (3.4)

= {a t
2 (a

−t
2 bpa
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2 )ss1a

t
2 } q

(p−t)ss1+t > 0
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for 1 � q � t � 0 , p � q and 4 � ss1 � 1 . Repeating this process from (3.2) to
(3.4), consequently we obtain (3.1) for 1 � q � t � 0 , p � q and any s � 1 .

Put a2 = aq and b2 = {a t
2 (a

−t
2 bpa

−t
2 )sa

t
2 } q

(p−t)s+t > 0 in (3.1). Then applying
(i) of Theorem B for a2 � b2 > 0 for 1 � q � t � 0 , p � q and any s � 1 by (3.1),
so we have

a1+r2
2 � (a

r2
2

2 bp2
2 a

r2
2

2 )
1+r2
p2+r2 holds for p2 � 1 and r2 � 0 . (3.5)

We have only to put r2 = r−t
q � 0 and p2 = (p−t)s+t

q � 1 in (3.5) to obtain the desired
inequality (i) in Theorem 1. (ii) in Theorem 1 is obtained by the similar method.
Whence the proof of Theorem 1 is complete.

Proof of Corollary 2.
(i) We have only to put t = 0 , q = 1 and s = 1 in (i) of Theorem 1.
(ii) a � b > 0 implies b−1 � a−1 > 0 by Lemma D, so by (i)

(b
−r
2 b−pb

−r
2 )

1+r
p+r � (b

−r
2 a−pb

−r
2 )

1+r
p+r if a � b > 0

taking inverses of both sides

(b
r
2 apb

r
2 )

1+r
p+r � (b

r
2 bpb

r
2 )

1+r
p+r if a � b > 0 ,

holds by Lemma D, so that we obtain (ii) .
(iii) We have only to put t = 0 , q = 1 and s = 1 in (ii) of Theorem 1.
(iv) (iv) follows from (iii) by the similar way as the proof of (i) =⇒ (ii) .

REMARK 2. In Corollary 2, by scrutinizing (i) =⇒ (ii) and the reverse implica-
tion (ii) =⇒ (i) holds, we remark that (i) ⇐⇒ (ii) and also (iii) ⇐⇒ (iv) holds
by the similar method.

REMARK 3. (ii) of Corollary 2 is essentially equivalent to (i) of Theorem B
since Theorem B for 1 � p � 0 is obvious by Theorem A and Lemma E. Also
(iv) of Corollary 2 is essentially equivalent to (ii) of Theorem B by the same reason.
Consequently Corollary 2 is essentially equivalent to Theorem B together with Remark
2.

Proof of Theorem 3. Put q = t in Theorem 1. Then if a � b > 0 , then for each
t ∈ [0, 1] and p � t

ar � {a r
2 (a

−t
2 bpa

−t
2 )sa

r
2 } r

(p−t)s+r > 0 for s � 1 and r � t. (3.6)

(a) Decreasing of Gp,q,t(a, b, r, s) for s . Put d = a
−t
2 bpa

−t
2 in (3.6). We remark that

d = a
−t
2 bpa

−t
2 > 0 by (3.0). Applying Lemma C to (3.6), and then by using Lemma

D, Lemma E and Theorem A, we obtain for each t ∈ [0, 1] , p � t and r � t

(d
s
2 ard

s
2 )

(p−t)w
(p−t)s+r � dw > 0 for s � w > 0. (3.7)
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Then we have

f (s) = {a r
2 (a

−t
2 bpa

−t
2 )sa

r
2 } q−t+r

(p−t)s+r

= (a
r
2 dsa

r
2 )

q−t+r
(p−t)s+r

= {(a r
2 dsa

r
2 )

(p−t)(s+w)+r
(p−t)s+r } q−t+r

(p−t)(s+w)+r

= {a r
2 d

s
2 (d

s
2 ard

s
2 )

(p−t)w
(p−t)s+r d

s
2 a

r
2 } q−t+r

(p−t)(s+w)+r by Lemma C

� (a
r
2 ds+wa

r
2 )

q−t+r
(p−t)(s+w)+r

= f (s + w)

and the last inequality holds by (3.7), Lemma E and Theorem A since q−t+r
(p−t)(s+w)+r ∈

[0, 1] holds, so the proof of (a) is complete by Lemma E since Gp,q,t(a, b, r, s) =
a

−r
2 f (s)a

−r
2 .

(b) Decreasing of Gp,q,t(a, b, r, s) for r . Applying Theorem A to (3.6), if a � b > 0 ,
then for each t ∈ [0, 1] , p � t and s � 1

au � {a r
2 dsa

r
2 } u

(p−t)s+r > 0 for r � u > 0. (3.8)

Then we have

Gp,q,t(a, b, r, s) = a
−r
2 {a r

2 (a
−t
2 bpa

−t
2 )sa

r
2 } q−t+r

(p−t)s+r a
−r
2

= d
s
2 (d

s
2 ard

s
2 )

q−t−(p−t)s
(p−t)s+r d

s
2 by Lemma C

= d
s
2 {(d s

2 ard
s
2 )

(p−t)s+r+u
(p−t)s+r } q−t−(p−t)s

(p−t)s+r+u d
s
2

= d
s
2 {d s

2 a
r
2 (a

r
2 dsa

r
2 )

u
(p−t)s+r a

r
2 d

s
2 } q−t−(p−t)s

(p−t)s+r+u d
s
2 by Lemma C

� d
s
2 (d

s
2 ar+ud

s
2 )

q−t−(p−t)s
(p−t)s+r+u d

s
2

= Gp,q,t(a, b, r + u, s)

and the last inequality holds by (3.8), Lemma E , Theorem A and Lemma D since
q−t−(p−t)s
(p−t)s+r+u ∈ [−1, 0] . Consequently Gp,q,t(a, b, r, s) is decreasing for r � t . Whence
the proof of Theorem 2 is complete by (a) and (b) .

Proof of Corollary 4. We have only to put q = 1 in Theorem 1 and Theorem 3
respectively in order to obtain the first half and the latter half of Corollary 4.

REMARK 4. In Theorem 3 and Corollary 4, when the hypothesis a � b > 0 is
replaced by a > b > 0 , it turns out by scrutinizing of the proof of Theorem 3 that
Gp,q,t(a, b, r, s) is strictly decreasing of r and s .

REMARK 5. Take p, q, r and t in Theorem 3 as follows; 1 � q � t � 0 , p � q ,
and r � t . Then we have

aq−t � a
−t
2 bqa

−t
2 = Gp,q,t(a, b, t, 1) � Gp,q,t(a, b, r, s)



GENERALIZED FURUTA INEQUALITY IN BANACH ∗ -ALGEBRAS 295

and the second inequality follows by the monotonicity of Gp,q,t(a, b, r, s) and the first
inequality follows by Theorem A and Lemma E, so that we have (i) of Theorem 1. (ii)
of Theorem 1 is also obtained by the similar method together with Remark 4. Whence
Theorem 3 can be considered as an extension of Theorem 1.
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