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Abstract. The product of ratios that equals 1 in Ceva’s Theorem is analyzed in the case of
non-concurrent Cevians, for triangles as well as arbitrary convex polygons. A general lemma
on complementary systems of inequalities is proved, and used to classify the possible cases of
non-concurrent Cevians. In the concurrent case, particular consideration is given to the Brocard
configuration defined by equal angles between Cevians and polygon sides.

1. Introduction

In his study of triangle geometry, Henri Brocard [1845–1922] focused attention on
the points and angle named after him. Given a triangle ΔABC with vertices A, B, C ,
there is a unique angle ω and a unique point Ω such that

ω = <) ACΩ = <)BAΩ = <)CBΩ ,

see Figure 1(a). The angle ω is called the Brocard angle and the point Ω is the
(positive) Brocard point of the triangle. The negative Brocard point, Ω′ , is defined by
the same angle

ω = <) CAΩ′ = <) ABΩ′ = <) BCΩ′ ,

see Figure 1(b). The Brocard angle is given, in terms of the angles of the triangle, as
follows

cotω = cotα + cotβ + cot γ . (1)

The two Brocard points are isogonal conjugates ([12],[13],[19]), and they coincide if the
triangle is equilateral, in which case ω = π

6 .
References on the Brocard points, angle, related constructs and generalizations

are contained in [2], [12]–[22] and [24]. See also [10] for a biographical reference on
Brocard, the encyclopedia [23] for concise definitions and collections of results, and
[5] for a perspective on the role of triangle geometry in classical and contemporary
mathematics.
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The earliest easily accessible reference to the Brocard point that we are aware of
is [1]. According to Honsberger [12] and Mitrinović, Pečarić and Volenec [18], the
Brocard point was already known to Crelle [4], Jacobi and others at the beginning of
the 19th century. Indeed, the historically more accurate name of Crelle-Brocard point
is used in [18] (where other references to contemporary work are also given).
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(a) The point Ω and angle ω (b) The point Ω′ and angle ω
Figure 1. A triangle, its Brocard angle ω , and two Brocard points {Ω,Ω′} .

The existence of the Brocard points is obvious if we consider a variable angle ω ,
and three lines AD , BE and CF making an angle ω with the respective sides, see
Figure 2. For small values of ω these lines define an inner triangle Δ(ω) , similar to
ΔABC . For ω = 0 , Δ(0) coincides with the original triangle. As ω increases, the
triangles Δ(ω) shrink, reducing to a point (the Brocard point) when ω is the Brocard
angle. The same angle ω gives both the positive and negative Brocard points because
these points are isogonal conjugates.
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Figure 2. Illustration of the triangles Δ(ω) that shrink to the Brocard points.

The Brocard points of a triangle are intersections of lines passing through the
vertices, and as such are subject to the following theoremgenerally attributed toGiovanni
Ceva [1648 – 1734]. Beutelspacher and Rosenbaum [3], citing Hogendijk [11], indicate
that this theorem was stated and proved by Al-Mutaman in the 11th century.

THEOREM 1. (Ceva’s Theorem) Given a triangle ΔABC and points D, E, F on
the sides, a necessary and sufficient condition for the lines AD , BE and CF to intersect
at a point is

|AF|
|FB|

|BD|
|DC|

|CE|
|EA| = 1 , (2)
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or equivalently,
sin<) BAD
sin<) ABE

sin <) CBE
sin<) BCF

sin<) ACF
sin <) CAD

= 1 . (3)
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Figure 3. Illustration of Ceva’s Theorem.

The theorems of Ceva and Menelaus were brought to a common denominator and
generalized to polygons in dimension two and higher by Grünbaum and Shephard, [6]–
[8]. Ceva’s Theorem can be used to establish the well-known bound π/6 on the Brocard
angle. (For an account of this idea, due to Abi-Khuzam and pursued by Veldkamp, then
by Hoogland and Stroeker, see [18].)

In this paper an idea analogous to the shrinking triangles Δ(ω) (of Figure 2) is
developed in the context of Ceva’s Theorem. Writing the condition (3) as

f (ω1,ω2,ω3) :=
sinω1

sin(α − ω1)
sinω2

sin(β − ω2)
sinω3

sin(γ − ω3)
= 1 , (4)

it follows that the inequalities

f (ω1,ω2,ω3) < 1 and f (ω1,ω2,ω3) > 1

correspond to cases where the lines AD , BE and CF are not concurrent. In this paper
we discuss these inequalities for general convex polygons.

2. Complementary Halfspaces

Consider the n –dimensional Euclidean space R
n , n � 1 . We make free use of

the usual vector space structure and affine geometry on R
n , as well as of the usual

notion of convex sets in R
n and the usual topology. We call a set concave when its

complement in R
n is convex.

Recall that for a subset H ⊂ R
n the following conditions are equivalent:

(i) H is closed and it is both convex and concave, H �= ∅ and H �= R
n ,

(ii) H is the set of solution vectors x = (x1, x2, · · · , xn) of a linear inequality, of
the form

a1x1 + · · · + anxn � b , or a1x1 + · · · + anxn � b , (5)

where (a1, · · · , an) is not the zero vector.
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A set satisfying these conditions is called a closed half-space. For every closed
half-space H there exists a unique closed half-space H− such that

H ∪ H− = R
n and H ∩ H− is a hyperplane.

The half-spaces H and H− are said to be complementary. Clearly (H−)− = H . Note
that if H is the solution set of (5), then H− is the solution set of

a1x1 + · · · + anxn � b

and the hyperplane H ∩ H− is the solution set of the equation

a1x1 + · · · + anxn = b .

The intersection of any family of closed half-spaces is always a closed convex
set (perhaps empty). It is well known that every closed convex subset of R

n is the
intersection of a (possibly empty) family of closed half-spaces.

LEMMA 1. For any family (Hi : i ∈ I ) of closed half-spaces we have one and
only one of the following cases:

(a) ∩{Hi : i ∈ I } = ∩{H−
i : i ∈ I } is a singleton,

(b) each one of the intersections ∩{Hi : i ∈ I } and ∩{H−
i : i ∈ I } is either

unbounded or empty,
(c) one of the intersections ∩{Hi : i ∈ I } and ∩{H−

i : i ∈ I } is nonempty
and bounded, and the other is empty.

Proof. Clearly the three cases are mutually exclusive. We need to show that they
cover all possibilities. This is obvious if one of ∩Hi or ∩H−

i is empty, so we may
assume that both intersections are nonempty.

For each i ∈ I the closed half-space Hi is the solution set of an inequality

ai1x1 + · · · + ainxn � bi. (6)

We shall use the fact that if x ∈ ∩Hi and y ∈ ∩H−
i then the vector 2x − y also

belongs to ∩Hi . This is so because for every i ,

ai1x1 + · · · + ainxn � bi (7)
ai1y1 + · · · + ainyn � bi (8)

imply
ai1(2x1 − y1) + · · · + ain(2xn − yn) � bi. (9)

Actually, for any positive k , (7) and (8) imply

ai1((k + 1)x1 − ky1) + · · · + ain((k + 1)xn − kyn) � bi. (10)

It follows from this that if ∩Hi is a singleton {x} , then (a) holds, and clearly
the same is true if ∩H−

i is a singleton. It also follows that if ∩H−
i is unbounded, then

∩Hi is also unbounded, and vise versa, and then we are in case (b) .
Suppose now that ∩Hi is a non-singleton and bounded. We have to rule out

the possibility that ∩H−
i is nonempty. Choose vectors x = (x1, · · · , xn) ∈ ∩Hi



COMPLEMENTARY HALFSPACES AND TRIGONOMETRIC CEVA-BROCARD INEQUALITIES FOR POLYGONS311

and y = (y1, · · · , yn) ∈ ∩H−
i . Since ∩Hi is a non-singleton, we can choose these

vectors to be distinct, x − y �= 0 . According to (10), for all positive k the vectors
(k + 1)x − ky belong to ∩Hi . But since k can be arbitrarily large, the set of these
vectors is unbounded, contradicting the assumption that ∩Hi is bounded. �

Note that none of the three cases of Lemma 1 is vacuous in any dimension. Exam-
ples are easily constructed in dimension 1 or 2 and generalized to higher dimensions.
In fact case (b) has three subcases, according to whether both, only one, or none of the
intersections is empty. All the three subcases occur in any dimension higher than 1.

Lemma 1 can be expressed in terms of inequalities as follows. Let ((ai1 , · · · , ain) :
i ∈ I ) be a family of n –vectors, and let (bi : i ∈ I ) be a corresponding family of
scalars. Consider the system of inequalities

ai1x1 + · · · + ainxn � bi , i ∈ I , (11)

and the complementary system

ai1x1 + · · · + ainxn � bi , i ∈ I . (12)

If one of the systems (11) or (12) is inconsistent, then the other may well be also
inconsistent, or have a unique solution, or have multiple but bounded solutions, or have
an unbounded solution set. If both systems are consistent, then we have one and only
one of the following two cases:

(i) both systems have a unique solution, and these solutions coincide,
(ii) both systems have infinite unbounded solution sets.

3. Circular Products of Trigonometric Ratios

LEMMA 2. Let 0 < α < π . Then the function

f (ω) :=
sinω

sin(α − ω)
(13)

is monotone increasing for ω ∈ [0,α) , mapping [0,α) to [0,∞) .

Proof. The derivative

f ′(ω) =
sinα

sin2(α − ω)

is positive in the given domain. �

LEMMA 3. Let α := (α1,α2, · · · ,αn) where each 0 < αi < π , and let

f (ω) :=
n∏

i=1

sinωi

sin(αi − ωi)
(14)

for ω := (ω1,ω2, · · · ,ωn) with 0 < ωi < αi . Then

ω1 � ω2 =⇒ f (ω1) � f (ω2) (15)

where vector inequality is interpreted componentwise. Moreover, if ω1 � ω2 and
ω1 �= ω2 then f (ω1) < f (ω2) .
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Proof. Apply Lemma 2 to each component of ω . �

4. Convex Polygons
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Figure 4. A pentagon P and the intersection P−(ω) .

Let P be a bounded convex n –polygon, number its vertices V1, V2, · · · , Vn

counterclockwise, and let α1,α2, · · · ,αn be the corresponding angles of P , where
the indexing integers are modulo n (thus Vn = V0 , Vn+1 = V1 ) and each αi is less than
π . For i = 1, · · · , n let Li be a line through the vertex Vi separating Vi−1 from Vi+1

i.e. such that none of the two closed complementary half-planes (half-spaces of R
2 )

containing Li contains both Vi−1 and Vi+1 . Of these two complementary half-planes,
there is only one whose interior contains {Vi−1} \ Li but not {Vi+1} \ Li . Let L−

i
denote this closed half-plane, and let L+

i denote the complementary closed half-plane.
Note that the line Li = L−

i ∩L+
i makes an angle ωi , 0 � ωi � αi , with the side ViVi+1

of P .
The notation Li(ωi) is used when the angle ωi varies, causing the line Li to rotate

around Vi . We also denote

P−(ω) :=
n⋂

i=1

L−
i (ωi) (16)

P+(ω) :=
n⋂

i=1

L+
i (ωi) (17)

for ω = (ω1,ω2, · · · ,ωn) . Clearly

P−(0) = P = P+(α) ,

for α = (α1,α2, · · · ,αn) , suggesting that the intersection P−(ω) “shrinks” from P
to the empty set as ω increases, componentwise, from 0 to α .

Therefore let us apply the classification of Lemma 1 to the family (L−
i : i =

1, · · · , n) of closed half-spaces and seek corresponding bounds on the value f (ω)
defined in (14). Let us assume 0 < ωi < αi for every i .
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In the case (a) , the lines Li are concurrent at a point Q in the interior of P . In
the case where P is a triangle, n = 3 , the trigonometric form of the classical Ceva
Theorem tells us precisely that f (ω) = 1 (see Shively [19]). Ceva’s Theorem has
been generalized to polygons and beyond by Grünbaum and Shephard ([6], [7], [8]).
From these results, in particular as stated e.g. in [6, Theorem 2] one can derive that
f (ω) = 1 for arbitrary n by using an argument similar to the one in Shiveley [19].
A short direct argument goes as follows. Note that the product of the areas of the n
triangles ΔQViVi+1 can be represented, denoting by XY the distance between any two
points X, Y , as

1
2n

∏
i

ViVi+1 sinωi QVi (18)

but also as
1
2n

∏
i

ViVi−1 sin(αi − ωi) QVi. (19)

Thus the quotient of these two expressions, simplifying to f (ω ), is 1 .
Since both P−(ω) and P+(ω) are subsets of the polygon P , case (b) of

Lemma 1 is possible only when both P−(ω) and P+(ω) are empty. This is not
possible in the case of the triangle, n = 3 , but possible for any given convex polygon
with at least four vertices. Also, by taking sufficiently elongated rectangles, it is easy
to show that f (ω) can assume any positive value while P−(ω) and P+(ω) are both
empty.

Finally, in the case (c) two subcases are possible: either P−(ω) �= ∅ or
P+(ω) �= ∅ . Note that these sets are contained in the interior of the polygon P .

If P−(ω) �= ∅ (and P+(ω) = ∅ ), then choose any point Q in P−(ω) .
Replace each line Li by the line Li through Vi and Q . These new lines (some of
which may coincide with the old ones) now make angles ω = (ω1, · · · ,ωn) with
the sides ViVi+1 . We have ωi � ω i for all i , with at least one inequality strict. By
Lemma 3, f (ω) < f (ω) . But since the new lines are concurrent at Q , we have

P−(ω) = P+(ω) = {Q} and f (ω) = 1.

Therefore f (ω) < 1 .
Similarly one can show that if P+(ω) �= ∅ (and P−(ω) = ∅ ) then 1 < f (ω) .
We summarize:

THEOREM 2. Let P be a bounded convex n –polygon with angles α =
(α1, · · · ,αn) in a circular enumeration of the vertices. For 0 � ω � α let

f (ω) :=
∏

i

sinωi

sin(αi − ωi)
.

Then for any 0 � ω � α there are four possible cases:
(a) P−(ω) = P+(ω) is a singleton {Q} , the lines Li(ωi) are concurrent at

Q , and f (ω) = 1 .
(b) P−(ω) �= ∅ , P+(ω) = ∅ and 0 � f (ω) < 1 .
(c) P+(ω) �= ∅ , P−(ω) = ∅ and 1 < f (ω) < ∞ .
(d) Both P−(ω) and P+(ω) are empty.
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5. An Inequality for the Brocard Angle of a Polygon

Given a polygon P , the point of concurrency P of the lines Li(ωi) in case (a)
of Theorem 2 is called the Brocard point of the polygon if all angles ωi are the same. It
follows from Theorem 2 that a polygon has atmost oneBrocard point: the corresponding
ω1 = ω2 = · · · = ωn can be called the Brocard angle. Not every polygon has a Brocard
point: a counter-example is provided by any non-square rectangle. Obviously every
regular polygon has a Brocard point.
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Figure 5. A non-regular pentagon with a Brocard point.

Figure 5 exhibits a non-regular pentagon that has a Brocard point, with a Bro-
card angle of π/4 . The polygon has vertices V1 = (−1,−1), V2 = (0,−1), V3 =
(1, 0), V4 = (0, 1) and the vertex V5 is the intersection, with negative ordinate, of the
line through (−1, 0) and (0, 1) , and the circle through (0, 0) , (−1, 1) and (−1,−1) .

Let the n –polygon P have a Brocard point, and let ω = (ω ,ω , · · · ,ω) be such
that P−(ω) is non-empty. Then the angle ω is not greater than the Brocard angle,
and

sinn ω �
n∏

i=1

sin (αi − ω) (20)

with equality if and only if ω is the Brocard angle. Taking the n th root we get

sin ω �
(

n∏
i=1

sin (αi − ω)

)1/n

� 1
n

n∑
i=1

sin (αi − ω) (21)

where the second inequality is the arithmetic–geometric inequality, with equality if and
only if the angles αi are equal, in which case

αi =
(n − 2)

n
π , i = 1, · · · , n. (22)

Using the formula sin (αi − ω) = sinαi cosω − sinω cosαi and simplifying we get
from (21) ⎛

⎜⎜⎝1 +

n∑
i=1

cosαi

n

⎞
⎟⎟⎠ sinω �

⎛
⎜⎜⎝

n∑
i=1

sinαi

n

⎞
⎟⎟⎠ cosω
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or

tanω �

n∑
i=1

sinαi

n +
n∑

i=1
cosαi

(23)

since cos ω must be positive. Equality holds in (23) if and only if ω is the Brocard

angle and all αi = α =
(n − 2)

n
π . In this case the Brocard angle is half the angle α ,

and (23) reduces to the identity

tan
α
2

=
sinα

1 + cosα
.

TheBrocard point andBrocard angle of course always exist in the case of a triangle.
If the three angles of the triangle are α, β , γ , then (23) says that the tangent of the
Brocard angle is bounded above by

sin α + sin β + sin γ
3 + cos α + cos β + cos γ

.
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