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STOLARSKY-TOBEY MEAN IN n VARIABLES

J. PECARIC AND V. SIMIC

(communicated by B. Carlson)

Abstract. In this paper, an n—dimensional weighted Stolarsky—Tobey mean is defined via mea-
sure. This mean includes as special cases various generalizations of the logarithmic mean. Some
elementary properties are listed and various inequalities derived. Attention is given to the case
when the mean is specialized to Dirichlet measure. Relations to hypergeometric function are
exhibited. An explicit form is given for the mean in the special case when all variables have
equal weights.

1. Introduction and notation

Throughout the paper we assume that R is a set of real numbers and R is a set
of strictly positive real numbers. Let x denote n-tuple (xi,x»...,x,) € R% and let
E,_1 C R"™! represent the simplex

n—1
E,1={(u,up,...;up—1): u; 20 (1<i<n—1), Zui <1}
i=1
n—1
and u = (uy,uz, ..., u,), where u, =1 — > u,.
i=1
Let du = du, . ..du,—; denote the differential of the volume in E,_;, and u be
a probability measure on E,_; .
The power mean of order r of positive numbers xj,xp,...,x, with weights
Ui, Uy, ..., Uy 1S

1
(Zuixf) if r#0,
Myxu) = { NF (1)
[T x4 if r=0.
i=1
The logarithmic mean L(x,y) of positive numbers x and y is

xX—y .
S :
L(x7y) = Inx — lny o # Y (2)

X if x=y.
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Following Carlson’s integral representation [4] for logarithmic mean

1 1 -1
L(x,y) = [/0 Py S —— dt] ,

Pittenger [11] studied unweighted logarithmic mean in n variables:

—1

" —1
L(x1,%2, .., %) = | (n— 1)!/E (Z u,-xl-> du . (3)

i=1

Further generalization of L are the weighted logarithmic mean

[/ (n xiui>rdu(u)]r ifr#0,
E,_, \i=l

Li(xip) = ()
exp (/ In <Z x,-u,-> d,u(u)) ifr =0,
Ep_) i=1
so that, for du(u) = (n— 1)!ldu, L_i(x;u) = L(x1,X2,...,%)-
Neuman [8] gives another integral formula for logarithmic mean
1
L(x,y) = / Xy!=tdr,
0
and considers the weighted logarithmic mean of several numbers :
coxp) = [ []xdutw. (5)
En—1 j=|
Stolarsky mean [12], for distinct positive numbers x and y is
1
Fy } if r(s—r)#£0,
sy —x"
1 r r 1
{—u} if r£0, s=0,
E.s(x,y) = riny —Inx (6)
1
xxr =y
e Vr <7> if s=r=#0,
Y
/Xy if r=5=0

and
E,s(x,x) =x.
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An integral representation for Stolarsky mean (6) is given in [10]. Alzer ([1], [2])
considers generalized logarithmic mean F,(x,y) as a special case of the Stolarsky
mean for two positive numbers x and y :

xr+1 _ oyl

r M

— if 0,1
r+1 xr_yr 1 r#?’ x#y’
xX—y .
— f r=0
Fit,y) = { Tnx—Iny =0 x#y )
Inx —1
nxr- Ay it r=-1, x#y,
xX=)
X if x=y,

so that L(x,y) = Fo(x,y).
Set m,x(u) = M,(x;u). An integral representation for (7) is given in [9]. It can
be verified easily that

Fr(x>y) = /0 mr,(x,y)(t) dt. (8)

Also, in [9] a multidimensional weighted generalized logarithmic mean is defined as

1
/ ( u,-x{) du(u) if r#£0,
E, i=1

Fr(x; ) = /E myx(w) dp(u) = T ©)
n—1 H Xl d‘u(u) if r=0,

By, i=1

so that Fo(x;u) = L(x; ).

2. The weighted Stolarsky-Tobey mean

In the previous part of the paper we listed some mean values which have been
discussed by various authors, mostly since 1975. It should be noted, however, that all
the means mentioned are special cases of a two-parameter homogeneous mean value,
which has been studied by Tobey ([13], 1967). With some change of notation, his
definition is:

Definition 1. For x = (x1,x2,...,x,) € R and r,t € R, the two-parameter
homogeneous mean value is

Ly (5 1) = My (mex(w); ), (10)
where M, is a integral power mean.

The integral power mean ([6], Chapter 3) of a positive real function f on E,_;
with probability measure y on E,_; is

VE (f(u))fdu(u)]> it £0,

exp ( [

n—1

Mr(f#l) =
In(f (u)) du(u)) , ifr=0,
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where we suppose that all expressions are well defined.
Now, a weighted Stolarsky-Tobey mean in n variables will be defined.

Definition 2. For x = (x1,X2,...,x,) € R} and r,s € R, the Stolarsky-Tobey
mean is

Er,s(x; “) = Lr,sfr(xa “’)7 (12)
that is

1

s—=r

du(u)} , if r(s—r)#£0,

N

/ ( uixf)
E,—; \i=l
; 1
exp (/ In (Z u,-x{) du(u)) , if s=r#0,
Eyy i1

E s(x;u) = | (13)

[/ ( xﬁ“) d,u(u)] , if r=0,5#0,
E,_; \i=l

exp (/ ln(Hxi“)du(u)) if s=r=0.
E,_, i=1

Remark 2.1. The Stolarsky-Tobey mean includes weighted logarithmic means L, (x; 1)
and F,(x; 1) defined in (4) and (9), ie.

r

(i) Ly(x;u) = Erpi(xs ) and Eyo(x;p) = L(x; )3
(i) Fr(xsu) = Erpri(x;p) and  Eo(x;sp) = L(xX;p)

Following ( [13], Theorem 1.-3.), we list below some properties which are peculiar
for the mean E, ;(x; u). The next properties for E, (x; i) follow from the definition:

(i) Jim Epo(xs i) = Hm By (%5 1) = Xonaxs

(i) M B (cp) = limEpu (i) =
(i) lm By (510) = 3 0):Lim (3 11) = (00
(iv) lim E,.,(x; i) = Eoo(x; 1);

(v) E, (xsp) = Eyji(X'su), 1 #0,

where x' = (x{,x},...,x})

By application of L'Hospital’s rule, it is not difficult to calculate the limits in (iii) ,
and (iv). Differentiation with respect to r and s under the integral sign is allowed.
Thus E,.(x; 1) is continuous in both r and s.

The next properties for E, (x; i) follow from properties of mean (1) and (11),
see [6]:

(vi) min{x; : 1 <i<n} <E(x;u) <max{x;: 1 <i<n};
u )

(vif) E s(x,x,...,x0u) =x, x> 0;
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(viii) E,  (;x; 1) = tE,s(x; 1), t >0, where tx := (tx1,...,0x,);

(ix) If x; < y; forall i and x; < y; for some j, then E,;(x; 1) < E,5(y; 1),

i.e. E,; is a strictly increasing function of x.
(x) If Xmin < Xmax, then E, is strictly increasing function of s.
(i) If Xmin < Xmax and s1 — 5o < r; — rp, < 0, then
Er 5 (X 1) < Epypsy (X5 1)
Denote by
w; = / u;dp (u) (1<i<gn) (14)
E

n—1
the i-th weight associated to probability measure u on E,_;. Clearly, w; >0 (1 <
i<n)andw;+---+w,=1.
The following theorem shows that many means are special case of the E, .

THEOREM 2.2. If w; denotes weights defined by (14) and w = (wy,...,wy),
then
Er,2r(x; “) = Mr(x; W)
is a power mean, and
Erp(xiu) = A(x;w),  Eoo(xip) = G(xiw),  E_j »(xsu) = H(x;w),
are the weighted arithmetic, geometric and harmonic means, respectively.

Proof. If r # 0 then

Enor(xsp) = UE (Zn:"ixz*) du(u)r = lzx/ i du(u)l

n—1 j=1
1

= lz xl-’w,-] = M,(x;w).
i=1
For »r = 0 we have

Eoo(x; 1) = exp
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3. Inequalities for Stolarsky-Tobey mean

In the first theorem of this section we will use the the following lemma ([7],
Theorem 4.2)

LEMMA 3.1. If f is a convex function on a closed interval [a,b] and w; are
weights defined in (14), then for 71,22, -..,2: € |a, D]

n

f (ZI: wm) < /Enlf (Zl: btiZi) du(u) < Zwif(zi)- (15)

i=1
The inequalities in(15) are strict provided f is not a polynomial of degree one or less
and they are reversed if f is concave on [a,b].

THEOREM 3.2. (Jensen) Let E, s(x; u) be a Stolarsky-Tobey mean defined in (13)
and let w; be weights defined in (14). Then

M, (x;w) < E s(x; 1) < My (x5w), if s=2r
and reversed inequalities hold if s < 2r.

Proof. For f (1) =t 7, r(s—r) # 0, applying (15) the result is obtained. Other
cases for r(s — r) = 0 follow from continuity of E, in r and s.
O

COROLLARY 3.3. For weighted logarithmic means L,(x; 1) and F,(x; ) defined
in (4) and (9) we have
(i)
Mi(x;w) < Lo(x;u) < M(x; W) if r>1,
and reversed inequalities hold if r < 1. For r = —1 we have
H(Xa W) < L*l(X; “’) = L(X; “’) < A(X7 W)

where L(X; ) is the logarithmic mean defined in (3).
(i)
Mi(x;w) < Fr(xsu) < M (x; W) if r>1,
and reversed inequalities hold if r < 1. For r = 0 we have

G(x,w) < Fo(x; ) = L{x; u) <A(x, W),
where L(X; W) is the logarithmic mean defined in (5).

THEOREM 3.4. Let o and B be real positive numbers with oo+ 3 = 1. For r,s €
R we have
Er,S(Xayﬁ; u) < Er,S(aX + By; u),
where
x“yP = (9], xyh)
and
ox + By = (ax; + By1, - -, xy + Byu).



STOLARSKY-TOBEY MEAN IN 7 VARIABLES 331

Proof. By the arithmetic-geometric inequality
xP <ax+ By, x>0,y>0,

and the fact that E,’s(x; u) isincreasing in x, the following is obtained

Er,s(xayﬁ; u) < E;s(ax+ By; u).

O

The following three theorems are the same as in ([13], Theorem 5.-7.). We give
them without proofs. We use the notation

X+y:(xl+yl>"'7xn+yn) and Xy:(-xly17"'7xnyn)~

THEOREM 3.5. (Minkowski) Let x = (x1,x2,...,%,) andy = (y1,¥2,---,Yn) be
n-tuples with x; > 0 and y; > 0, 1 < i < n. Then, unless r = 1,5 =2 or x; = ky;,
1 <i < n wehave

Es(x+y;u) <Eqs(x;u) +Es(y; 1) (for 1<r<s—1),
with reversed inequality if s — 1 < r < 1. Equality holds in the exceptional cases.

COROLLARY 3.6. For weighted logarithmic means L,(x; 1) and F,(x; 1) defined
in (4) and (9) we have

() L(x+yu) <L(p)+Ly;p)  (for r>1),
with reversed inequality if r < 1;

(@)  Fx+yu) <Fxp)+Fy;p) o (for r>1),
with reversed inequality if r < 1.

Equalities hold for r = 1 or x; = ky;, (1 <i < n);

THEOREM 3.7. (Holder) Let X = (x1,...,%1), Y = (V1. ..,¥n) be n-tuples with
xi>0and y; >0, 1 <i<nandlet o, B be real positive numbers such that
o+ B =1. Then, unless s =r =0 orxl/a*kyil/ﬂ, 1<i<n

o B
Entxvit) < B 0] (B w] (or s> r>0),
with reversed inequality if s < r < 0. Equality holds in the exceptional cases.

COROLLARY 3.8. For weighted logarithmic means L,(x; 1) and F.(x; ) defined
in (4) and (9) we have

) Lxyiw) < [L&%50)° LeYw)” (for r>0);
(i) Flxyw) < [FEVEGw]S [FEVEw)” Gor r20)
Equalities hold for xl/a ky,-l/ﬁ.



332 J. PECARIC AND V. SIMIC

THEOREM 3.9. (Rennie) Let x = (x1,%2,...,X,) and0 <A< x; < B,1<i<n,
thenif s #r

Ei‘;r(x;‘u) _"_As—rBs—rEsfr (x_l;,u) <As—r+Bs—r’

—r,s—2r
with equality if and only if x; = A or x; = B,1 <i < n.
COROLLARY 3.10. Forweighted logarithmic means L,(x; u) and F,(x; 1) defined
in (4) and (9) we have
(i) Lixsu) +A'BLTi(x;u) <A+ B if r #0;
(i)  F(xsu)+ABF_.(x Lu)<A+B
Equalities hold if and only if x; = A or x; = B,1 <i < n.

THEOREM 3.11. (Kantorovich) Let x = (x1,x2,...,%,) and 0 < A < x; < B,
1 <i < n. Then for s > r we have

)

AT 4 Bsr:| 1/(s=r) |:Ars + BrS:| 1/(s=r)

1< E”,S(X;M)Efr,szr(Xil;H) < |: 2 >

with equality on the left if and only if Xmax = Xmin, and equality on the right if and only
if A= B. If s <r we have reversed inequality.

COROLLARY 3.12. Forweighted logarithmic means L,(x; u) and F,(x; 1) defined
in (4) and (9) we have

A’ B’ 1/r AT B’ 1/r
*] { * ] ifr>0,

0 1< LsaL ) < |25 !
and reversed inequality holds if r < 0;
(A+ B)?
4AB
The equalities hold on the left if and only if Xmax = Xmin, and equalities on the
right ifand only if A = B.

(i) 1<Fp)F(xu) <

4. Stolarsky-Tobey mean and Dirichlet measure

An important example of probability measure on simplex E,_; is Dirichlet mea-
sure Wy ([5], Sec.4.4), because it is connected with hypergeometric functions.
Let b = (b1,b2,...,b,) € R, , n > 2. Beta function of n variables is defined by

B(b) — B(bl,bZa . 7bn) = Ha

where I is gamma function.
An integral representation for B ([5], Sec.4.3) is

B(by,bs, ... b,) = / [T "dus- - du s,
E,

n—1 j=]
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n—1

where u, =1— > u;.

i=1
The Dirichlet measure u;, is defined by

1 17 e
d,ub(u) = m H M?’ ldul ce dun_l s
i=1

so that

/Enldub(u) =1

A simple calculation gives

b;
w; = / u,dub(u) = s 1 < I < n.
Enfl Z bi
i=1
For z = (z1,...,2z,) € R the hypergeometric R— function ([5],Sec.5.9) has an

integral representation
R/(z;b) :=R,(z1, -y zZu3 b1, -, by) = /E (Zn: w;iz;) duy(u)
n—1 =1
and its derivative with respect to ¢ is a
Dy(z:b) = Dilz1, . zmibty ) = /E 5wz 0> i),
n—1 =1 i=1
The confluent hypergeometric S-function ([5], Sec.5.8) has an integral representation
S(z;b) :=S(z1y. -y 2u3b1, ..., by) = /E exp (2,': uizi> duy(u).
n—1 i=1
We will write E, ;(x;b) instead
E.s(x;tp) = Ers(x1,. .., %05 b1, ..., by).

On the basis of the facts mentioned above, Stolarsky-Tobey mean generated by the
Dirichlet measure (4, can be expressed as

RICT(xb) it r(s—r)#0
EM(X; b) — exp [%Do(x’; b] if s=r 75 0, (16)

S(Inx*; b) if r=0,5#0

exp[S(Inx,b)] if,r=s5s=0,
where X" = (x{,x},...,x},) and

r'n

In(x*) = (In(x}), In(x3), ..., In(x})).



334 J. PECARIC AND V. SIMIC

For logarithmic means defined by (4) and (9) we have

b RY"(x;b) if r#0 (17)
T exp [Do(x;b)] if r=0.
[ Ry (xb)if r#£0

The relation between Stolarsky-Tobey mean and hypergeometric functions makes pos-
sible that some properties for E, ((x;b) are derived from the known results for hyperge-
ometric functions. The following theorem is an example of this. From ( [3], Theorem 1)
and from the fact that E, is continuous in both s and r we have

THEOREM 4.1. Let c,wi,wy,...,w, be strictly positive real numbers. Let us

n
assume that Y w; = 1, and define cw = (cwy,cwa, ..., cwy). Then
i=1

l_in(l)Erﬁs(x;cw) =M,_,(x;w) and lim E,(x;cw) = M,(x; W)
COROLLARY 4.2. Let ¢, and cw be as in the previous theorem and let L, and F,
be means defined in (4) and (9), respectively. Then, we have
lin(l)f,(x;cw) =M, (x;w) =A(x;w), and lim F.(x;cw) = M, (X; W);

lirr(l)L,(x;cw) =M,(x;w), and lim L.(x;cw) = M;(x; W) = A(x; W)

The next theorem shows that the multiple integral in the definition of Stolarsky-
Tobey mean (13) generated by p, can be reduced to a single integral.

THEOREM4.3. Let a = (by,...,b, ) ER oo =by+---+b, 1,B =b, and
let H(a,p) be Dirichlet measure on E|, that is

v (1 — v)ﬁ’1
d = -
IJ’(O‘:B)(V) B(Ol,ﬁ)
andfori=1,2,...,n—1 we define
_{[vx;+<1v>x;r/f i r£0

i _ .
xxlY if r=0.

dv

Then

1

s—r

1
(Of E57(y: ) o) () dv) iFris — 1) #0,

1
exp (f InE, (y;2)Uiap)(v) dv) ifs=r#0,
Em(x; b) = 0

1 1/s
(f Ep (s a)lap)(v) dV) ifr=0,s#0,
0

1
exp (f In Eoo(y; a)t(ap)(v) dv) ifs=r=0.
0
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n—1
Proof. Let v = > u; and p; =4

v
i=1

i=1,....,.n—1. Then u, =1—v

n—2

and > p;, = 1. For this substitution Jacobian is v'~*. We will use the notation

i=1
dp = dpidp; - - - dp,—» for the differential of the volume in E,_,.
A simple computation gives

B(b) = B(a)B(a., B).
If r(s — r) # 0 then

s—r

E;(x:b) = / (Z) dutp ()
n—1 \ j=1

f i - -V
r r i=1 n—2
vpixl- + (1 —=v)x, V'™ dvdp

s—r

n 1 r
{ Zp;y,) dpa(p) | Bap)(v) dv

S O Y——__

Eﬁ; "(y:a)U(ap)(v) dv.

I
o _

For s = r # 0 we have

n 1/r
/ In (Z u,-xf) duy(u)
Ep—y i

- i=1

In [E,,(x;b)]

n—1

r L=t (1= !

1/r
[ / ln me) dua(p) | M(ap)(v) dv
Eqp—» i=1

n—1
(vpix; + (1 —v)x, = V72 dvd
[ m 5 ( P + (1) >> o p
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For r =0 and s # 0 we have

/Enl (Hx) ‘ dpy(u

i=1

[EO,S (x; b)]s

n—1

Hl(vpi)”"*l(l ot
/,1 2 (Hx“) X, B(b) V' dvdp

( ) dua(p)l W) (v) dv

I
_ o\_

Finally, we have

In[Ego(x;b)] = /E In (Hﬁt) duy(u)

I
| S—__
O\ —
| — | \
gq\ b _
L =3
=3 oy
A o
= =
=
5 Cl
~ )
L SN—
‘: | I
: -~
i
I—l
Q
= =
= =
QL
(3]
Q
.
iS)

- / In [Eoo(y:8)] fiap) (v) dv.
0

O

In the rest of this section, several relations which are peculiar to the important
case n = 2 will be established. In this case, many of the most important special
functions can be represented as R-function or S-function ([5], Sec.5), in some cases as
Stolarsky-Tobey means. Here are some examples. We use Appell’s symbol for shifted
factorial:

(a,0)=1,(a,n) =ala+ 1)(@a+2)---(a+n—1),n > 1.
Let us recall that ([5], Sec.2) »F; is the Gauss’s hypergeometric function represented
by hypergeometric series as

2F1(a,bic;z) = Zw in'

m=0

lzZ] <1, ¢#0,-1,

c,m)
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and | F; is the Kummer’s confluent hypergeometric function represented by hypergeo-
metric series as
o 7"
1F1(1bZ: P b#oafla

m:O

Applying results from ([5], Sec.5) on (16) we obtain the following theorem.

THEOREM 4.4. Let x = (x,y) € R2, b= (a,f) € R% and x <y
(i) For s #r(n+1),n € N we have
ys_’2F1<—¥,a;a+B;l—f,—:) if r>0
E(xy;a,B) = x“‘"zFl(é so0+ Bl — y—r) fr<o
¥ LF) (a;aJrB;sln;—f) ifr=0
(ii) For s=r(n+1),n €N and r # 0 we have

(i)
a B
Eoo(x,y; o, B) = x@Byab;
S. Explicit form for unweighted Stolarsky-Tobey mean

When a measure L, reduces to Lebesgue measure, then
dup(u) = (n—1)lduy - -dup—y = (n—1)du .

A sample calculation gives

1 1
duy---du,_1 = and w; :/ udu(u) = — .
/E,,l ! ! (n—1)! E Hw) n

n—1

In this case, we will write E,,(x) for E, (x;u) . In the proof of the next theorem a
well-known relations is used:

R Z nf t) f" n ( u-t,-> du, (19)
E,_

i=1 H ti — 1)
]7"
where [t1,...,1,]f stands for the divided difference of order n — 1 of f with knots

att,...,t,, and f € C" Y(a,b) ;a =min(t;) ,b = max(t;) ,1 <i<n. Also, the
following lemma [11] will be used.
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LEMMA 5.1. Let ay,...,a, be distinct, nonzero real numbers. For 0 < k <

n—2

)

B}
T~

THEOREM 5.2. For r,s € R, x = (x1,x2.. .,
we have:

xn) € R and x; # xj (for i # )

1

s—r

) (n— 1)1t . Xf+(n_2>r
() Enlx) s@+0~%swnbﬁg;ﬁw—g) |
J#i
r#0,s# —kr, 0 <k<n-2;
S
n (n—k—2)rln(xl)

J#i
r#0 ,0<k -2
1
-
(i) B0 = | Ut S s
N Xi
T [[in(2)
J=1
JA
r(n—1) n_ll
1 n i lnx,- — Z %
(iv) E..(x)=exp| - - k=1 ,r#0;
TE T x)
=1
i
n 0
o) Enalx) = ({1)
i=1
Proof. (i) For f(t) =142 gq="2 2, we have

and
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Using (19) for t; = x/ (1 <i<n) we obtain (7).
(ii) From the explicit form (i) for E, (x) and using (20), we obtain a formula
for E, 4 (0 < k< n—2) asalimit
E,_i(x) = lim E,(x)

s——kr

(I’l . 1) ! n x(q+n72)r

lim
rglg T g TR g2 &y
J=1

n— n xl(nfk72)r 11’1()6')
S IS G | G0
Q+Julnwm

j=1
L i#

This completes the proof of (i) . In particular, for k = 0 we obtain

. ° x‘?
EO,S (X) = }5% Er,s (X) - sn_l Z n lxt’fx'f

o 1/s
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1/r

E. . (x)=exp | (n— l)!/ In Zx{u,- du |,
E i=1

n—1

that is
—1)! .
In(E,,(x)) = (717)/ In Zx{u,- du.
r En— i=1
For
tn—l

H
=
—
-~
=
\
M1
ST
S
WV
~

k=1
we have f"~1)(f) = Int and from ( 19) we obtain (iv).

v)

Eoo(x) = exp | (n—1)! / > i In(x;)du
En—1 =1
n n 1 ,
= exp Zwiln(x,-) = exp Z nx)
n
i=1 i=1
1/n

n
[
i=1

O

Remark 5.3. For r = 1 from (21) we have a explicit form for logarithmic mean
in n variables given in [11].
Remark 5.4. For s = 1 from (iii) we have the result given in [8]:

Eo’l(X) = E(X) = (}’l — 1)' i B ——
= G/ x)

i#

Xi
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