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Abstract. We derive some estimations of the remainder in perturbed generalized Taylor’s formula
and apply them to calculations of the logarithmic function.

1. Introduction

Recently, S. S. Dragomir in [2] has obtained the following result:

THEOREM 1. Let f : I → R ( I ⊂ R is a closed interval, a ∈ I ) be such that f (n)

is absolutely continuous. Then we have the Taylor’s perturbed formula:

f (x) = Tn(f ; a, x) +
(x − a)n+1

(n + 1)!

[
f (n); a, x

]
+ Gn(f ; a, x), (1.1)

where

Tn(f ; a, x) :=
n∑

k=0

(x − a)k

k!
f (k)(a) (1.2)

and [
f (n); a, x

]
:=

f (n)(x) − f (n)(a)
x − a

. (1.3)

The remainder Gn(f ; a, x) satisfies the estimation:

|Gn(f ; a, x)| � (x − a)n+1

4(n!)
[Γ(x) − γ (x)], (1.4)

where
Γ(x) := sup

t∈[a,x]
f (n+1)(t), γ (x) := inf

t∈[a,x]
f (n+1)(t) (1.5)

for all x � a, x ∈ I.

In this paper we shall give improvement and generalization of this, as well as of
some other results from [2].
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2. Generalized Taylor’s formula

In this section we consider a formulawhich can be regarded as generalized Taylor’s
formula.

THEOREM 2. Let {Pn(x)} be a harmonic sequence of polynomials, that is

P
′
n(x) = Pn−1(x), for n ∈ N; P0(x) = 1.

Further, let I ⊂ R be a closed interval and a ∈ I. If f : I → R is any function such
that, for some n ∈ N, f (n) is absolutely continuous, then for any x ∈ I

f (x) = f (a) +
n∑

k=1

(−1)k+1
[
Pk(x)f (k)(x) − Pk(a)f (k)(a)

]
+ Rn(f ; a, x), (2.1)

where

Rn(f ; a, x) = (−1)n
∫ x

a
Pn(t)f (n+1)(t)dt. (2.2)

Proof. By integration by parts we have:

(−1)n
∫ x

a
Pn(t)f (n+1)(t)dt

= (−1)n Pn(t)f (n)(t)
∣∣∣x
a
+ (−1)n−1

∫ x

a
Pn−1(t)f (n)(t)dt

= (−1)n
[
Pn(x)f (n)(x) − Pn(a)f (n)(a)

]
+ (−1)n−1

∫ x

a
Pn−1(t)f (n)(t)dt.

Clearly, we can apply the same procedure to the term (−1)n−1
∫ x

a Pn−1(t)f (n)(t)dt. So,
by successive integration by parts we obtain

(−1)n
∫ x

a
Pn(t)f (n+1)(t)dt =

n∑
k=1

(−1)k
[
Pk(x)f (k)(x) − Pk(a)f (k)(a)

]
+ f (x) − f (a)

and this is equivalent to (2.1). �
We can call (2.1) the generalized Taylor’s formula. Namely, if we set in (2.1)

Pn(t) =
(t − x)n

n!
,

then we get the classical Taylor’s formula:

f (x) = f (a) +
n∑

k=1

(x − a)k

k!
f (k)(a) + RT

n (f ; a, x), (2.3)

where

RT
n (f ; a, x) :=

1
n!

∫ x

a
(x − t)nf (n+1)(t)dt. (2.4)
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For

Pn(t) =
1
n!

(
t − a + x

2

)n

we have

f (x) = TM
n (f ; a, x) + RM

n (f ; a, x),

where

TM
n (f ; a, x) := f (a) +

n∑
k=1

(x − a)k

2kk!

[
f (k)(a) − (−1)kf (k)(x)

]
(2.5)

and

RM
n (f ; a, x) :=

(−1)n

n!

∫ x

a

(
t − a + x

2

)n

f (n+1)(t)dt. (2.6)

Here we give another special case of (2.1) by using the well known Bernoulli
polynomials Bn(t). These polynomials can be defined by the expansion

xetx

ex − 1
=

∞∑
n=0

Bn(t)
n!

xn, |x| < 2π, t ∈ R.

We have

B0(t) = 1, B1(t) = t − 1
2
, B2(t) = t2 − t +

1
6
, B3(t) = t3 − 3

2
t2 +

1
2
t, · · · .

The numbers Bn := Bn(0) are called Bernoulli numbers. The polynomials Bn(t) and
the numbers Bn have many interesting properties. It can be shown that the polynomials
Bn(t) are uniquely determined by the following two properties ([1, 23.1.5 and 23.1.6]):

B
′
n(t) = nBn−1(t), n ∈ N; B0(t) = 1 (2.7)

and

Bn(t + 1) − Bn(t) = ntn−1, n ∈ N. (2.8)

If we set

Pn(t) =
(x − a)n

n!
Bn

(
t − a
x − a

)
, n ∈ N, P0(t) = 1,

then it is easy to see, using (2.7), that {Pn(t)} is a harmonic sequence of polynomials.
So, we can apply (2.1) to obtain

f (x) = f (a) +
n∑

k=1

(−1)k+1 (x − a)k

k!

[
Bk(1)f (k)(x) − Bk(0)f (k)(a)

]
+ RB

n (f ; a, x),

where

RB
n (f ; a, x) := (−1)n (x − a)n

n!

∫ x

a
Bn

(
t − a
x − a

)
f (n+1)(t)dt. (2.9)
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Setting t = 0 in (2.8) we get Bn(1) − Bn(0) = 0, for n �= 1, that is Bn(1) = Bn(0) =
Bn, for n �= 1. Also, B1(1) = −B1(0) = 1/2 so that we have

f (x) = f (a) +
x − a

2
[f ′(x) + f ′(a)]

+
n∑

k=2

(−1)k+1 (x − a)k

k!
Bk

[
f (k)(x) − f (k)(a)

]
+ RB

n (f ; a, x).

Finally, we can use the fact that B2k+1 = 0 for k = 1, 2, · · · , ([1, 23.1.19]), so that

f (x) = TB
n (f ; a, x) + RB

n (f ; a, x),

where

TB
n (f ; a, x) (2.10)

:= f (a) +
x − a

2
[f ′(x) + f ′(a)] −

[ n
2 ]∑

k=1

(x − a)2k

(2k)!
B2k

[
f (2k)(x) − f (2k)(a)

]

and RB
n (f ; a, x) is given by (2.9). (Here, as well as in the rest of paper, [z] denotes the

greatest integer less than or equal to z .)
Instead of Bernoulli polynomials Bn(t) we can use Euler polynomials En(t) which

have the properties similar to those of Bernoulli polynomials. Euler polynomials can
be defined by the expansion

2etx

ex + 1
=

∞∑
n=0

En(t)
n!

xn, |x| < π, t ∈ R.

We have

E0(t) = 1, E1(t) = t − 1
2
, E2(t) = t2 − t, E3(t) = t3 − 3

2
t2 +

1
4
, · · · .

It can be shown that the polynomials En(t) are uniquely determined by the following
two properties ([1, 23.1.5 and 23.1.6]):

E
′
n(t) = nEn−1(t), n ∈ N; E0(t) = 1 (2.11)

and
En(t + 1) + En(t) = 2tn, n ∈ N. (2.12)

Using (2.11) we see that

Pn(t) =
(x − a)n

n!
En

(
t − a
x − a

)
, n ∈ N, P0(t) = 1

form a harmonic sequence of polynomials so that (2.1) yields

f (x) = f (a) +
n∑

k=1

(−1)k+1 (x − a)k

k!

[
Ek(1)f (k)(x) − Ek(0)f (k)(a)

]
+ RE

n (f ; a, x),
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where

RE
n (f ; a, x) := (−1)n (x − a)n

n!

∫ x

a
En

(
t − a
x − a

)
f (n+1)(t)dt. (2.13)

Further, since ([1, 23.1.20])

En(0) = −En(1) = − 2
n + 1

(2n+1 − 1)Bn+1, for n ∈ N,

we get

f (x) = f (a) + 2
n∑

k=1

(−1)k+1 (x − a)k(2k+1 − 1)
(k + 1)!

Bk+1

[
f (k)(x) + f (k)(a)

]
+RE

n (f ; a, x).

Finally, since B2k+1 = 0 for k = 1, 2, · · · , we get

f (x) = TE
n (f ; a, x) + RE

n (f ; a, x),

where

TE
n (f ; a, x) (2.14)

:= f (a) + 2

[ n+1
2 ]∑

k=1

(x − a)2k−1(4k − 1)
(2k)!

B2k

[
f (2k−1)(x) + f (2k−1)(a)

]

and RE
n (f ; a, x) is given by (2.13).

The following result is a generalization of Corollary 1.2 from [2].

COROLLARY 1. Under the assumptions and with the notation of Theorem 2, we
have the estimations:

|Rn(f ; a, x)| � max
t∈[a,x]

|Pn(t)|
∫ x

a

∣∣∣f (n+1)(s)
∣∣∣ ds (2.15)

and

|Rn(f ; a, x)| � max
t∈[a,x]

∣∣∣f (n+1)(t)
∣∣∣ ∫ x

a
|Pn(s)| ds. (2.16)

Also,

|Rn(f ; a, x)| �
(∫ x

a
Pq

n(t)dt

) 1
q
(∫ x

a

∣∣∣f (n+1)(t)
∣∣∣p dt

) 1
p

, (2.17)

where p > 1, 1
p + 1

q = 1.

Proof. The estimations (2.15) and (2.16) are obvious, while the estimation (2.17)
is a simple consequence of Hölder inequality. �
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3. Main results

Let a � x and let g, h : [a, x] → R be two integrable functions. Define

T(g, h) :=
1

x − a

∫ x

a
g(t)h(t)dt − 1

(x − a)2

∫ x

a
g(t)dt

∫ x

a
h(t)dt

Then T(g, g) � 0 ,T(h, h) � 0 and the following inequality is valid: (see [3, p. 209])

T2(g, h) � T(g, g)T(h, h). (3.1)

On the other hand, if

α � g(t) � A, β � h(t) � B, ∀t ∈ [a, x] ,

for some constants α, A, β and B, then the well known Grüss’ inequality

|T(g, h)| � 1
4
(A − α)(B − β) (3.2)

holds (see [3, p. 206]). We can combine the inequalities (3.1) and (3.2) to obtain the
following result.

LEMMA 1. Let a � x and let g, h : [a, x] → R be two integrable functions. If

α � g(t) � A, ∀t ∈ [a, x] ,

for some constants α and A , then

|T(g, h)| � 1
2
(A − α)

√
T(h, h). (3.3)

Proof. Setting h = g in (3.2) we get

T(g, g) = |T(g, g)| � 1
4
(A − α)2.

Combining this with (3.1) we get

T2(g, h) � 1
4
(A − α)2T(h, h),

which is equivalent to (3.3) �

Now we give the generalization of the result stated in Theorem 1. As we shall see,
our result also improves the estimation (1.4).

THEOREM 3. Let {Pn(x)} be a harmonic sequence of polynomials. Let I ⊂ R
be a closed interval and a ∈ I . Suppose f : I → R, is such that f (n) is absolutely
continuous. Then for any x ∈ I we have the generalized Taylor’s perturbed formula:

f (x) = T̃n(f ; a, x) + (−1)n [Pn+1(x) − Pn+1(a)]
[
f (n); a, x

]
+ G̃n(f ; a, x), (3.4)
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where

T̃n(f ; a, x) = f (a) +
n∑

k=1

(−1)k+1
[
Pk(x)f (k)(x) − Pk(a)f (k)(a)

]
(3.5)

and
[
f (n); a, x

]
is defined by (1.3). For x � a the remainder G̃(f ; a, x) satisfies the

estimation ∣∣G̃(f ; a, x)
∣∣ � x − a

2

√
T(Pn, Pn)[Γ(x) − γ (x)], (3.6)

where Γ(x) and γ (x) are defined by (1.5)

Proof. Taylor’s generalized formula (2.1) can be rewritten as

f (x) = T̃n(f ; a, x) + (−1)n [Pn+1(x) − Pn+1(a)]
[
f (n); a, x

]
+ G̃n(f ; a, x),

where

G̃n(f ; a, x) := Rn(f ; a, x) − (−1)n [Pn+1(x) − Pn+1(a)]
[
f (n); a, x

]
,

and this is just the representation (3.4). By (2.2) we have

G̃n(f ; a, x) (3.7)

= (−1)n

{∫ x

a
Pn(t)f (n+1)(t)dt − [Pn+1(x) − Pn+1(a)]

[
f (n); a, x

]}

On the other hand, setting g = f (n+1) and h = Pn in Lemma 1 we get∣∣∣∣ 1
x − a

∫ x

a
Pn(t)f (n+1)(t)dt − 1

(x − a)2

∫ x

a
Pn(t)dt

∫ x

a
f (n+1)(t)dt

∣∣∣∣ (3.8)

� 1
2
[Γ(x) − γ (x)]

√
T(Pn, Pn)

Note that ∫ x

a
Pn(t)dt =

∫ x

a
P

′
n+1(t)dt = Pn+1(x) − Pn+1(a)

and ∫ x

a
f (n+1)(t)dt = f (n)(x) − f (n)(a) = (x − a)

[
f (n); a, x

]
so that, after multiplying (3.8) by x − a , we have∣∣∣∣

∫ x

a
Pn(t)f (n+1)(t)dt − [Pn+1(x) − Pn+1(a)]

[
f (n); a, x

]∣∣∣∣
� x − a

2
[Γ(x) − γ (x)]

√
T(Pn, Pn).

Combining this with (3.7) we get the estimation (3.6). �
The above result gives the following improvement of the estimation (1.4).

COROLLARY 2. Let the assumptions of Theorem 1 be satisfied. Then the remainder
Gn(f ; a, x) defined by (1.1) satisfies the estimation

|Gn(f ; a, x)| � n(x − a)n+1

2[(n + 1)!]
√

2n + 1
[Γ(x) − γ (x)]. (3.9)
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Proof. If Pn(t) = (t−x)n

n! , then it is easy to see that

T̃n(f ; a, x) = Tn(f ; a, x) and (−1)n [Pn+1(x) − Pn+1(a)] =
(x − a)n+1

(n + 1)!
,

so that (3.4) becomes (1.1), that is G̃n(f ; a, x) = Gn(f ; a, x). Also we have

T(Pn, Pn) =
1

x − a

∫ x

a

(t − x)2n

(n!)2
dt − 1

(x − a)2

(∫ x

a

(t − x)n

n!
dt

)2

=
1

(n!)2

⎡
⎣ 1

x − a
(t − x)2n+1

2n + 1

∣∣∣∣
x

a

− 1
(x − a)2

(
(t − x)n+1

n + 1

∣∣∣∣
x

a

)2
⎤
⎦

=
n2(x − a)2n

[(n + 1)!]2(2n + 1)

or √
T(Pn, Pn) =

n(x − a)n

(n + 1)!
√

2n + 1
. (3.10)

Now we apply the inequality (3.6) to obtain the desired result. �

REMARK 1. Denote by Δn and Δ̃n the right hand sides of (1.4) and (3.9). respec-
tively. Then we have

Δ̃n =
2n

(n + 1)
√

2n + 1
Δn < Δn,

since obviously 2n
(n+1)

√
2n+1

< 1 for all n ∈ N . Moreover, 2n
(n+1)

√
2n+1

tends to zero

when n tends to ∞ . So the estimation (3.9) is much better than the estimation (1.4).
Using the generalized Taylor’s perturbed formula (3.4) we can obtain some other

estimations which depend on the choice of the polynomials Pn(t) . We first prove the
following technical lemma:.

LEMMA 2. (i) If Pn(t) = 1
n!

(
t − a+x

2

)n
, then

√
T(Pn, Pn) =

(x − a)n

n!2n
√

2n + 1

[
1 − 1 + (−1)n

2(n + 1)

]
.

(ii) Let Pn(t) = (x−a)n

n! Bn( t−a
x−a ) where Bn(t) are Bernoulli polynomials. Then

√
T(Pn, Pn) = (x − a)n

√
|B2n|
(2n)!

.

(iii) Let Pn(t) = (x−a)n

n! En( t−a
x−a ) where En(t) are Euler polynomials. Then

√
T(Pn, Pn) = 2(x − a)n

√
(4n+1 − 1) |B2n+2|

(2n + 2)!
−
[
2(2n+2 − 1)Bn+2

(n + 2)!

]2
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Proof. (i) We have∫ x

a
P2

n(t)dt =
1

(n!)2

∫ x

a

(
t − a + x

2

)2n

dt

=
1

(n!)2(2n + 1)

(
t − a + x

2

)2n+1
∣∣∣∣∣
x

a

=
(x − a)2n+1

(n!)222n(2n + 1)

and∫ x

a
Pn(t)dt =

1
n!

∫ x

a

(
t − a + x

2

)n

dt

=
1

(n + 1)!

(
t − a + x

2

)n+1
∣∣∣∣∣
x

a

=
(x − a)n+1

(n + 1)!2n+1
[1 + (−1)n].

So

T(Pn, Pn) =
1

x − a

∫ x

a
P2

n(t)dt − 1
(x − a)2

(∫ x

a
Pn(t)dt

)2

=
(x − a)2n

(n!)222n(2n + 1)

[
1 − 2n + 1

(n + 1)2

(
1 + (−1)n

2

)2
]

=
(x − a)2n

(n!)222n(2n + 1)

[
1 − 1 + (−1)n

n + 1
+
(

1 + (−1)n

2(n + 1)

)2
]

=
(x − a)2n

(n!)222n(2n + 1)

[
1 − 1 + (−1)n

2(n + 1)

]2

In calculation we used the fact that [(1 + (−1)n)/2]2 = (1 + (−1)n)/2 . The desired
result follows.

(ii) By the substitution s = t−a
x−a we get

∫ x

a
P2

n(t)dt =
(x − a)2n

(n!)2

∫ x

a
B2

n

(
t − a
x − a

)
dt =

(x − a)2n+1

(n!)2

∫ 1

0
B2

n(s)ds.

Bernoulli polynomials have the following property (see [1, 23.1.12])∫ 1

0
Bn(s)Bm(s)ds = (−1)n−1 n!m!

(n + m)!
Bn+m, for n, m = 1, 2, · · · ,

which for m = n gives∫ 1

0
B2

n(s)ds = (−1)n−1 (n!)2

(2n)!
B2n =

(n!)2

(2n)!
|B2n| .

So ∫ x

a
P2

n(t)dt =
(x − a)2n+1

(2n)!
|B2n| .
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Further ∫ x

a
Pn(t)dt =

(x − a)n

n!

∫ x

a
Bn

(
t − a
x − a

)
dt =

(x − a)n+1

n!

∫ 1

0
Bn(s)ds.

Using (2.7) we get

∫ 1

0
Bn(s)ds =

1
n + 1

∫ 1

0
B

′
n+1(s)ds =

Bn+1(1) − Bn+1(0)
n + 1

= 0,

since for t = 0 (2.8) gives

Bn+1(1) − Bn+1(0) = 0. (3.11)

. This implies
∫ x

a Pn(t)dt = 0 and

T(Pn, Pn) =
1

x − a

∫ x

a
P2

n(t)dt − 1
(x − a)2

(∫ x

a
Pn(t)dt

)2

= (x − a)2n |B2n|
(2n)!

.

The desired result follows.
(iii) The substitution s = t−a

x−a gives

∫ x

a
P2

n(t)dt =
(x − a)2n

(n!)2

∫ x

a
E2

n

(
t − a
x − a

)
dt =

(x − a)2n+1

(n!)2

∫ 1

0
E2

n(s)ds.

Euler polynomials have the following property (see [1, 23.1.12])
∫ 1

0
En(s)Em(s)ds = 4(−1)n(2n+m+2 − 1)

n!m!
(n + m + 2)!

Bn+m+2, for n, m = 0, 1, · · · ,

which for m = n gives∫ 1

0
E2

n(s)ds =
4(−1)n(4n+1 − 1)(n!)2

(2n + 2)!
B2n+2 =

4(4n+1 − 1)(n!)2

(2n + 2)!
|B2n+2|

and ∫ x

a
P2

n(t)dt = 4(x − a)2n+1 (4n+1 − 1) |B2n+2|
(2n + 2)!

.

Further ∫ x

a
Pn(t)dt =

(x − a)n

n!

∫ x

a
En

(
t − a
x − a

)
dt =

(x − a)n+1

n!

∫ 1

0
En(s)ds.

Using (2.11) we get

∫ 1

0
En(s)ds =

1
n + 1

∫ 1

0
E

′
n+1(s)ds =

En+1(1) − En+1(0)
n + 1

.
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Here we use the following property of Euler polynomials (see [1, 23.1,20])

En(0) = −En(1) = − 2
n + 1

(2n+1 − 1)Bn+1, for n = 1, 2, · · · , (3.12)

to get ∫ 1

0
En(s)ds =

2En+1(1)
n + 1

=
4(2n+2 − 1)Bn+2

(n + 1)(n + 2)
.

This implies ∫ x

a
Pn(t)dt =

4(x − a)n+1(2n+2 − 1)Bn+2

(n + 2)!

and

T(Pn, Pn) =
1

x − a

∫ x

a
P2

n(t)dt − 1
(x − a)2

(∫ x

a
Pn(t)dt

)2

= 4(x − a)2n

{
(4n+1 − 1) |B2n+2|

(2n + 2)!
−
[
2(2n+2 − 1)Bn+2

(n + 2)!

]2
}

.

The desired result follows. �

COROLLARY 3. Let I ⊂ R be a closed interval and a, x ∈ I, a � x. . Suppose
f : I → R, is such that f (n) is absolutely continuous. Let Γ(x) and γ (x) be defined by
(1.5).

(i) If TM
n (f ; a, x) is defined by (2.5), then

f (x) = TM
n (f ; a, x) +

(x − a)n+1[1 + (−1)n]
(n + 1)!2n+1

[
f (n); a, x

]
+ GM

n (f ; a, x)

and ∣∣GM
n (f ; a, x)

∣∣ � (x − a)n+1

n!2n+1
√

2n + 1

[
1 − 1 + (−1)n

2(n + 1)

]
[Γ(x) − γ (x)].

(ii) If TB
n (f ; a, x) is defined by (2.10), then

f (x) = TB
n (f ; a, x) + GB

n (f ; a, x)

and ∣∣GB
n (f ; a, x)

∣∣ � (x − a)n+1

2

√
|B2n|
(2n)!

[Γ(x) − γ (x)].

(iii) If TE
n (f ; a, x) is defined by (2.14), then

f (x) = TE
n (f ; a, x) +

4(−1)n(x − a)n+1(2n+2 − 1)Bn+2

(n + 2)!

[
f (n); a, x

]
+ GE

n (f ; a, x)
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and ∣∣GE
n (f ; a, x)

∣∣
� (x − a)n+1

√
(4n+1 − 1) |B2n+2|

(2n + 2)!
−
[
2(2n+2 − 1)Bn+2

(n + 2)!

]2

[Γ(x) − γ (x)].

Proof. (i) Set Pn(t) = 1
n!

(
t − a+x

2

)n
. We have T̃n(f ; a, x) = TM

n (f ; a, x) and
G̃n(f ; a, x) = GM

n (f ; a, x). Also

(−1)n [Pn+1(x) − Pn+1(a)] =
(x − a)n+1[1 + (−1)n]

(n + 1)!2n+1
.

Now apply Theorem 3 and Lemma 2(i).

(ii) Set Pn(t) = (x−a)n

n! Bn

(
t−a
x−a

)
. Wehave T̃n(f ; a, x) = TB

n (f ; a, x) and G̃n(f ; a, x) =

GB
n (f ; a, x). Also, by (3.11)

(−1)n [Pn+1(x) − Pn+1(a)] = (−1)n (x − a)n+1

(n + 1)!
[Bn+1(1) − Bn+1(0)] = 0.

Now apply Theorem 3 and Lemma 2(ii).

(iii) Set Pn(t) = (x−a)n

n! En

(
t−a
x−a

)
. We have T̃n(f ; a, x) = TE

n (f ; a, x) and

G̃n(f ; a, x) = GE
n (f ; a, x). Also, using (3.12) we get

(−1)n [Pn+1(x) − Pn+1(a)] = (−1)n (x − a)n+1

(n + 1)!
[En+1(1) − En+1(0)].

= (−1)n (x − a)n+1

(n + 1)!
2En+1(1)

=
4(−1)n(x − a)n+1(2n+2 − 1)Bn+2

(n + 2)!
.

Now apply Theorem 3 and Lemma 2(iii). �

THEOREM 4. Suppose the assumptions of Theorem 3 are satisfied. Additionally,
suppose f (n+1) is differentiable and such that

M(n+2)(x) := sup
t∈[a,x]

∣∣∣f (n+2)(t)
∣∣∣ < ∞, for a � x.

Then the remainder G̃n(f ; a, x) satisfies the estimation

∣∣G̃n(f ; a, x)
∣∣ � (x − a)2M(n+2)(x)√

12

√
T(Pn, Pn)

for all x � a, x ∈ I.
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Proof. If g, h : [a, x] → R are absolutely continuous and if g′, h′ are bounded,
then the following Chebyshev’s inequality is valid (see [3, p. 207])

|T(g, h)| � 1
12

(x − a)2 sup
t∈[a,x]

|g′(t)| sup
t∈[a,x]

|h′(t)| .

Setting h = g we get

T(g, g) = |T(g, g)| � 1
12

(x − a)2

(
sup

t∈[a,x]
|g′(t)|

)2

.

Combining this with (3.1) we have

T2(g, h) � 1
12

(x − a)2

(
sup

t∈[a,x]
|g′(t)|

)2

T(h, h)

or

|T(g, h)| � (x − a)√
12

sup
t∈[a,x]

|g′(t)|
√

T(h, h). (3.13)

Reviewing the proof of Theorem 3 it is easy to see that

G̃n(f ; a, x) = (−1)n(x − a)T(f (n+1), Pn). (3.14)

So, if we apply (3.13) to g = f (n+1) and h = Pn , then we get

∣∣G̃n(f ; a, x)
∣∣ = (x − a)

∣∣∣T(f (n+1), Pn)
∣∣∣ � (x − a)2

√
12

M(n+2)(x)
√

T(Pn, Pn).

�

COROLLARY 4. Let the assumptions of Theorem 4. be satisfied. Then we have the
representation (1.1) and the remainder Gn(f ; a, x) satisfies the estimation:

|Gn(f ; a, x)| � Δ̃n :=
n(x − a)n+2M(n+2)(x)√

12(n + 1)!
√

2n + 1

Proof. Set Pn(t) = (t−x)n

n! and apply Theorem 4. Then use (3.10) to obtain the
desired result. �

REMARK 2. In [2, Theorem 2.4] the following estimation was obtained

|Gn(f ; a, x)| � Δn :=
(x − a)n+2M(n+2)(x)

12[(n − 1)!]
.

We have

Δ̃n =
√

12

(n + 1)
√

2n + 1
Δn

and
√

12
(n+1)

√
2n+1

< 1 , for n > 1 . So, our estimation established in Corollary 4 is better

than one given in [2].
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As a corollary to Theorem 4 we give further estimations which depend on the
choice of the polynomials Pn(t) .

COROLLARY 5. Under the assumptions of Theorem 4 and with the notation of
Corollary 3 we have the following estimations:

∣∣GM
n (f ; a, x)

∣∣ � (x − a)n+2M(n+2)(x)√
12n!2n

√
2n + 1

[
1 − 1 + (−1)n

2(n + 1)

]
,

∣∣GB
n (f ; a, x)

∣∣ � (x − a)n+2M(n+2)(x)√
12

√
|B2n|
(2n)!

and

∣∣GE
n (f ; a, x)

∣∣ � (x − a)n+2M(n+2)(x)√
3

√
(4n+1 − 1) |B2n+2|

(2n + 2)!
−
[
2(2n+2 − 1)Bn+2

(n + 2)!

]2

.

Proof. We use Theorem 4 and Lemma 2 to obtain the desired estimations. �

THEOREM 5. Suppose the assumptions of Theorem 3 are satisfied. Also suppose
that f (n+1) is locally absolutely continuous on Ix = (a, x) and f (n+2) ∈ L2(Ix) for
every x ∈ I, x > a. Then the remainder G̃n(f ; a, x) satisfies the estimation

∣∣G̃n(f ; a, x)
∣∣ � (x − a)2

π
N2(f (n+2); a, x)

√
T(PnPn),

where

N2(f (n+2); a, x) =
(

1
x − a

∫ x

a

∣∣∣f (n+2)(t)
∣∣∣2)1/2

, for x > a.

Proof. We recall the result of Lupaş (see [3, p. 210]): if g, h : (a, x) → R are
locally absolutely continuous on I = (a, x) and g′, h′ ∈ L2(I) , then

|T(g, h)| � (x − a)2

π2
‖g′‖2 ‖h′‖2 ,

where

‖f ‖2 :=
(

1
x − a

∫ x

a
|f (t)|2 dt

)1/2

, for f ∈ L2(I).

Setting h = g we get

T(g, g) = |T(g, g)| � (x − a)2

π2
‖g′‖2

2 ,
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and this, in combination with (3.1), implies

T2(g, h) � (x − a)2

π2
‖g′‖2

2 T(h, h)

or

|T(g, h)| � x − a
π

‖g′‖2

√
T(h, h). (3.15)

Now apply (3.15) to g = f (n+1) and h = Pn and use (3.14) to obtain

∣∣G̃n(f ; a, x)
∣∣ � (x − a)

x − a
π

∥∥∥∥(f (n+1)
)′∥∥∥∥

2

√
T(PnPn)

=
(x − a)2

π
N2(f (n+2); a, x)

√
T(PnPn).

�

COROLLARY 6. Let the assumptions of Theorem 5. be satisfied. Then we have the
representation (1.1) and the remainder Gn(f ; a, x) satisfies the estimation:

|Gn(f ; a, x)| � n(x − a)n+2N2(f (n+2); a, x)
π(n + 1)!

√
2n + 1

.

Proof. Set Pn(t) = (t−x)n

n! and apply Theorem 5. Then use (3.10) to obtain the
desired result. �

COROLLARY 7. Under the assumptions of Theorem 5 and with the notation of
Corollary 3 we have the following estimations:

∣∣GM
n (f ; a, x)

∣∣ � (x − a)n+2N2(f (n+2); a, x)
πn!2n

√
2n + 1

[
1 − 1 + (−1)n

2(n + 1)

]
,

∣∣GB
n (f ; a, x)

∣∣ � (x − a)n+2N2(f (n+2); a, x)
π

√
|B2n|
(2n)!

and

∣∣GE
n (f ; a, x)

∣∣
� 2(x − a)n+2N2(f (n+2); a, x)

π

√
(4n+1 − 1) |B2n+2|

(2n + 2)!
−
[
2(2n+2 − 1)Bn+2

(n + 2)!

]2

.

Proof. The proof is a simple consequence of Theorem 5 and Lemma 2. �
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4. Applications to the logarithmic mapping

Consider the logarithmic function f : (0,∞) → R , f (t) = ln t. We shall apply
the generalized Taylor’s perturbed formula to this function. We have

f (k)(t) =
(−1)k−1(k − 1)!

tk
, for t > 0 and k ∈ N.

For n ∈ N and x � a > 0 we get

[
f (n); a, x

]
=

f (n)(x) − f (n)(a)
x − a

=
(−1)n−1(n − 1)!

x − a

(
1
xn

− 1
an

)
. (4.1)

Note that f (n+1) is strictly monotonic on (0,∞) which implies

γ (x) = inf
t∈[a,x]

f (n+1)(t) = min
{

f (n+1)(a), f (n+1)(x)
}

and
Γ(x) = sup

t∈[a,x]
f (n+1)(t) = max

{
f (n+1)(a), f (n+1)(x)

}
.

So

Γ(x) − γ (x) (4.2)

= max
{

f (n+1)(a), f (n+1)(x)
}
− min

{
f (n+1)(a), f (n+1)(x)

}
=

∣∣∣f (n+1)(a) − f (n+1)(x)
∣∣∣

= n!

(
1

an+1
− 1

xn+1

)
.

Now, let us observe four different cases.

Case 1: Let Pn(t) = (t−x)n

n! for n ∈ N and P0(t) = 1 . By Corollary 2, equality
(1.1) holds. An easy calculation gives

Tn(ln; a, x) = ln a +
n∑

k=1

(−1)k+1 (x − a)k

kak
,

while (4.1) gives

(x − a)n+1

(n + 1)!

[
f (n); a, x

]
=

(a − x)n

n(n + 1)

(
1
an

− 1
xn

)
.

So, by (1.1) we have

ln x = ln a +
n∑

k=1

(−1)k+1 (x − a)k

kak
+

(a − x)n

n(n + 1)

(
1
an

− 1
xn

)
+ Gn(ln; a, x).
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Using (3.9) and (4.2) we get the estimation

|Gn(ln; a, x)| � δ̃n :=
n(x − a)n+1

2(n + 1)
√

2n + 1

(
1

an+1
− 1

xn+1

)
. (4.3)

In [2] the estimation

|Gn(ln; a, x)| � δn :=
(x − a)n+1

4

(
1

an+1
− 1

xn+1

)
(4.4)

was obtained. We have

δ̃n =
2n

(n + 1)
√

2n + 1
δn < δn,

since 2n
(n+1)

√
2n+1

< 1 for all n ∈ N . Moreover, 2n
(n+1)

√
2n+1

tends to zero when n tends

to ∞ . So the estimation (4.3) is much better than the estimation (4.4).

Case 2: Let Pn(t) = 1
n!

(
t − a+x

2

)n
for n ∈ N and P0(t) = 1 . In this case we can

apply Corollary 3 (i). By (2.5) we have

TM
n (ln; a, x) = ln a +

n∑
k=1

(x − a)k

2kk!

[
(−1)k−1(k − 1)!

ak
− (−1)k (−1)k−1(k − 1)!

xk

]

= ln a +
n∑

k=1

(x − a)k

k2k

[
1
xk

+
(−1)k−1

ak

]
,

while, using (4.1), we get

(x − a)n+1[1 + (−1)n]
(n + 1)!2n+1

[
f (n); a, x

]
=

1 + (−1)n

n(n + 1)2n+1

(
1
an

− 1
xn

)
(x − a)n.

So

ln x = ln a +
n∑

k=1

(x − a)k

k2k

[
1
xk

+
(−1)k−1

ak

]
+

1 + (−1)n

n(n + 1)2n+1

(
1
an

− 1
xn

)
(x − a)n + GM

n (ln; a, x),

where, by Corollary 3 (i) and by (4.2), the remainder GM
n (ln; a, x) satisfies the estima-

tion ∣∣GM
n (ln; a, x)

∣∣ � (x − a)n+1

2n+1
√

2n + 1

[
1 − 1 + (−1)n

2(n + 1)

](
1

an+1
− 1

xn+1

)
.

Case 3: Let Pn(t) = (x−a)n

n! Bn( t−a
x−a ) for n ∈ N and P0(t) = 1. Now we apply

Corollary 3 (ii). Using (2.10) we easily calculate

TB
n (ln; a, x) = ln a +

x2 − a2

2ax
− 1

2

[ n
2 ]∑

k=1

B2k

k

(
1

a2k
− 1

x2k

)
(x − a)2k.
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By Corollary 3 (ii)

ln x = ln a +
x2 − a2

2ax
− 1

2

[ n
2 ]∑

k=1

B2k

k

(
1

a2k
− 1

x2k

)
(x − a)2k + GB

n (ln; a, x),

where, by Corollary 3 (ii) and by (4.2), the remainder GB
n (ln; a, x) satisfies the estima-

tion ∣∣GB
n (ln; a, x)

∣∣ � n!
2

√
|B2n|
(2n)!

(
1

an+1
− 1

xn+1

)
(x − a)n+1.

Case 4: Let Pn(t) = (x−a)n

n! En( t−a
x−a ) for n ∈ N and P0(t) = 1. In this case we

apply Corollary 3 (iii). Using (2.14) we easily calculate

TE
n (ln; a, x) = ln a +

[ n+1
2 ]∑

k=1

(4k − 1)B2k

k(2k − 1)

(
1

a2k−1
+

1
x2k−1

)
(x − a)2k−1,

while (4.1) implies

4(−1)n(x − a)n+1(2n+2 − 1)Bn+2

(n + 2)!

[
f (n); a, x

]

=
4(2n+2 − 1)Bn+2

n(n + 1)(n + 2)

(
1
an

− 1
xn

)
(x − a)n.

By Corollary 3 (iii)

ln x = ln a +
[ n+1

2 ]∑
k=1

(4k − 1)B2k

k(2k − 1)

(
1

a2k−1
+

1
x2k−1

)
(x − a)2k−1 +

4(2n+2 − 1)Bn+2

n(n + 1)(n + 2)

(
1
an

− 1
xn

)
(x − a)n + GE

n (ln; a, x)

and, by Corollary 3 (iii) and by (4.2), the remainder GE
n (ln; a, x) satisfies the estimation∣∣GE

n (ln; a, x)
∣∣

� n!

√
(4n+1 − 1) |B2n+2|

(2n + 2)!
−
[
2(2n+2 − 1)Bn+2

(n + 2)!

]2 ( 1
an+1

− 1
xn+1

)
(x − a)n+1.

REMARK 3. In obvious way, similar estimations can be established for the re-
mainders Gn(ln; a, x), GM

n (ln; a, x), GB
n (ln; a, x) and GE

n (ln; a, x) , by application of
Corollaries 4, 5, 6 and 7.
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Department of Mathematics

University of Split
Teslina 12

21000 Split
Croatia

e-mail: ujevic@pmfst.hr

Mathematical Inequalities & Applications
www.ele-math.com
mia@ele-math.com


