athematical
nequalities
& Papplications

Volume 2, Number 3 (1999), 343-361

ON NEW ESTIMATION OF THE REMAINDER
IN GENERALIZED TAYLOR’S FORMULA

M. MATIC, J. PECARIC AND N. UJEVIC

(communicated by T. Rassias)

Abstract. We derive some estimations of the remainder in perturbed generalized Taylor’s formula

and apply them to calculations of the logarithmic function.

1. Introduction

Recently, S. S. Dragomir in [2] has obtained the following result:

THEOREM 1. Let f : 1 — R (I C R is a closed interval, a € I) be such that ")

is absolutely continuous. Then we have the Taylor’s perturbed formula:

¥ —q)t! .
£ = Tfsan) + G [ ] + Gulriann),
where
¢ (x—a)k (%)
T,(fa,x) = Z 0 " (a)
k=0 ’
and
{fw.a x} _ ) =)
b ) x _ a
The remainder G,(f ;a,x) satisfies the estimation:
x—a n+1
Go(fsa.9)] < ST (o)L
where

[(x):= sup f™ (1), y(x):= inf fO+V(r)

t€a,x] 1€lax]

forall x > a, x €1.

In this paper we shall give improvement and generalization of this, as well as of

some other results from [2].
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2. Generalized Taylor’s formula

In this section we consider a formula which can be regarded as generalized Taylor’s
formula.

THEOREM 2. Let {P,(x)} be a harmonic sequence of polynomials, that is

P, (x) = Py_1(x), forn € N; Py(x) = 1.

Further, let I C R be a closed interval and a € I. If f : I — R is any function such
that, for some n € N, f") is absolutely continuous, then for any x € I

F@) =1 (@) + 3 (=1 [P W (@) = Prlay P(@)] + Ralf 30,0, 2.1)
k=1

where

R.(f;a,x) = (—1)" / ) P.(0)f "V (1)t (2.2)

Proof. By integration by parts we have:
(-1 [ Puter o

= (—1)y P ()|

= (=1)" [Pl () = Pal@)f ) (@)| + (~1)! / Py (0f ™ (1)

Clearly, we can apply the same procedure to the term (—1)"=! [* P, (t)f ") (¢)dt. So,
by successive integration by parts we obtain

n

(0 [P Y e = 31 [Pl ) Palalr @) +0) -5 @

k=1
and this is equivalent to (2.1). O

We can call (2.1) the generalized Taylor’s formula. Namely, if we set in (2.1)

_(t—=x)"
Palt) = nl
then we get the classical Taylor’s formula:
- (x —a) (k) T
f(x) :f(a) + Z A f (a) +R, (f;a7x)> (2.3)
k=1 ’

where

RI(f;a,x) = l'/x(x — )" (1) d. (2.4)

n:
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For
1 a+x n
Pn(t)_;(t > )
we have
Fx) =T a,x) + RM(fa,x),
where
7Y (f1a,x +z b o) — (-1 (2.5)
n ’ 2kkv ’
and
e e A s R 26)

Here we give another special case of (2.1) by using the well known Bernoulli
polynomials B,(#). These polynomials can be defined by the expansion

1x

> B,(t
aad => (')x”, x| <2m, r€R.
n

e —1

We have
1 2 1 3 2

The numbers B, := B,(0) are called Bernoulli numbers. The polynomials B,(¢) and
the numbers B, have many interesting properties. It can be shown that the polynomials
B, (t) are uniquely determined by the following two properties ([1, 23.1.5 and 23.1.6]):

/

B(t) = nBy_1(1), n € N; Bo(t) = 1 (2.7)

and
B,(t+1)—B,(t) =nt""', n€N. (2.8)

If we set

Py = E=p, (tZ) ,neN, Po(r) = 1,

n!

then it is easy to see, using (2.7), that {P,(¢)} is a harmonic sequence of polynomials.
So, we can apply (2.1) to obtain

+Z 1 8 [ (1) 00— B0 ¥ (@) + B2 309,

where

Rerian) = O [ (20 ) i 29)

X —d
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Setting ¢ = 0 in (2.8) we get B,(1) — B,(0) = 0, for n # 1, thatis B,(1) = B,(0) =
By, for n # 1. Also, B,(1) = —B;(0) = 1/2 so that we have

F@ = fl@)+ =) +/(a)

+3p E g (100 - @) + RE ).
k=2 :
Finally, we can use the fact that By =0 for k= 1,2,---, ([, 23.1.19]), so that
flx) = Tf(f;a>x) +R5(f;a>x)7
where
T2(f:;a,x) (2.10)
B 3,
= @)+ 5=l @)+ (@) - <’“(2k‘)? By [f ™ () - (@]

and RB(f;a,x) is given by (2.9). (Here, as well as in the rest of paper, [z] denotes the
greatest integer less than or equal to z.)

Instead of Bernoulli polynomials B, (7) we can use Euler polynomials E,(¢) which
have the properties similar to those of Bernoulli polynomials. Euler polynomials can
be defined by the expansion

X

o0
E, (1)
:Z ”'1(' X', x| <m teR.

We have
Eo(t) =1, E\(t) =t — X Ex(t) =1t —1t, Ex(t) =1 — Et + 7

It can be shown that the polynomials E,(z) are uniquely determined by the following
two properties ([1, 23.1.5 and 23.1.6]):

/

E,(t) =nE,_1(t), n e N; Ep(t) =1 (2.11)

and
E,(t+ 1)+ E,(t) =2", neN. (2.12)

Using (2.11) we see that

t—a

Pult) = — E( > ,neN, Py(r) =1

form a harmonic sequence of polynomials so that (2.1) yields

)+ Z k+1 ) {Ek(l)f( >( ) —Ek(O)f““)(a)} +Rf(f;a,x),
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where

RE(fa,x) == (—1)”M / E, ()i_—“)ﬂ"“)(t)dt. (2.13)

n! a

Further, since ([1, 23.1.20])

— — 2 n+1

E,(0) = —E,(1) = . 1(2 1)B,11, forn €N,

we get
N (x—a)@"' - 1) *) *)
f(x) +ZZ k1) B |[f7(x) + 7 (a)
+Rf(f;a,x).
Finally, since By+; =0 for k= 1,2,---, we get
fx) =T, (fra,x) + R (f1a,%),

where

Ty (f;a,x) (2.14)

x—a) 4k —1 _ _
— fla)+2 ( )(2k)( )sz 2k 1>(x) 4k 1>(a)}
k=

and RE(f;a,x) is given by (2.13).
The following result is a generalization of Corollary 1.2 from [2].

COROLLARY 1. Under the assumptions and with the notation of Theorem 2, we
have the estimations:

IRu(f:a,x)| < max \P |/ Lf"“ (2.15)
and
\Rn(f;a,X)lémax "“ ‘/ |P(s)|ds. (2.16)
t€avc
Also,

Ru(fa,%)| < (/:Pg(t)art)é (/ v(”+l)(t)‘pdt>% , (2.17)

L1 _
where p > 1, 1_>+§_1'

Proof. The estimations (2.15) and (2.16) are obvious, while the estimation (2.17)
is a simple consequence of Holder inequality. [
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3. Main results

Let a < x and let g, 4 : [a,x] — R be two integrable functions. Define

1 X 1 X X
Hh(t)dt — ——— tdt | h(t)dt
— | stnar - —— [ star [ wio
Then T(g,g) > 0,T(h,h) > 0 and the following inequality is valid: (see [3, p. 209])

T(g,h):=

T*(g,h) < T(g,8)T(h,h). (3.1)
On the other hand, if
a<g(t) <A, B<h(t)<B, Vi€ lax],

for some constants o, A, 3 and B, then the well known Griiss’ inequality

1
IT(s,h)| < (A~ a)(B - B) (3:2)
holds (see [3, p. 206]). We can combine the inequalities (3.1) and (3.2) to obtain the
following result.

LEMMA 1. Let a < x andlet g, h : [a,x] — R be two integrable functions. If
o < () <A, Vi€ o],
for some constants o and A, then

1

T(g,h)| <
T(g.h)| < 3

(A —a)\/T(h,h). (3.3)
Proof. Setting h = g in (3.2) we get

T(s.8) = IT(g.9) < (4~ )"

Combining this with (3.1) we get

Tz(g? h) < (A - Ol)zT(h7 h)a

ENJI,

which is equivalent to (3.3) O

Now we give the generalization of the result stated in Theorem 1. As we shall see,
our result also improves the estimation (1.4).

THEOREM 3. Let {P,(x)} be a harmonic sequence of polynomials. Let I C R
be a closed interval and a € 1. Suppose f : I — R, is such that f") is absolutely
continuous. Then for any x € I we have the generalized Taylor’s perturbed formula:

F) = T(f30,%) + (<1) [Paci (v) = Pan (@] [f x| + Gulf:0,2), (3.4)
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where
To(f:a,x) =f(a) + Z DS P ) - Pelay@(@]  33)

and [f(">;a,x] is defined by (1.3). For x > a the remainder G(f;a,x) satisfies the
estimation

|G(f;a7x)| g %
where T'(x) and y(x) are defined by (1.5)

T(Py, Pu)[T(x) — v (x)], (3.6)

Proof. Taylor’s generalized formula (2.1) can be rewritten as

fFx) =T.(fsa,%) + (= 1)" [Ppi1 (x) — Puy1(a)] {f(’”;a,x} + Gu(f;a,x),
where
Galf50,3) = Ra(f30,%) = (=1)" [Pasa (1) = Pasa (@)] [f7s.]
and this is just the representation (3.4). By (2.2) we have
G,(f;a,x) (3.7)

= o { [ R0 = P 0) ~ Pra(a] [ ]

On the other hand, setting g = f**!) and h = P, in Lemma 1 we get

xia /:Pn(t)f(n+1>(t)dt - ﬁ /:P,,(;)d; /:f<n+1)(t)dt (3.8)
< I v IVTE P
Note that . :
/a Py(r)dt = /u ;+1( 1)dt = Pyy1(x) — Pyia(a)
and

[ 0d =500 -1 @) = (- @) [ M:as]
so that, after multiplying (3.8) by x — a, we have

[ P 0t = 1Prs) ~ Pra (@] [ 50

X—a

< [0 =y @IV T(Po, Pa).

Combining this with (3.7) we get the estimation (3.6). O

The above result gives the following improvement of the estimation (1.4).
COROLLARY 2. Let the assumptions of Theorem 1 be satisfied. Then the remainder
G,(f;a,x) defined by (1.1) satisfies the estimation

n(x o a)n+1

2[(n+ DYV2n+1

|Ga(f5a,x)| < [M(x) =y )] (3.9)
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Proof. If P,(t) = (=3" " then it is easy to see that

n!
(x _ a)n+1

To(f:a,x) = Ty(f:a,x) and (—1)"[Pyy1(x) — Puyi(a)] = NCESI

so that (3.4) becomes (1.1), thatis G,(f;a,x) = G,(f;a,x). Also we have

(P, P) = xla/: (t(:,!))czzn‘” (xja)z (/ (t;!X)ndt>2
x>2

1 1 (t o x)2n+1 x 1 (t _ x)n+1
(n)? |x—a 2n+1 ui(x—a)2 n+1
e n(x —a)"
T(Pus Pu) = (n+1)I2n+ 1 (3.10)

Now we apply the inequality (3.6) to obtain the desired result. [

n*(x —a)*

[(n+D)12(2n+1)

or

REMARK 1. Denote by A, and A, the right hand sides of (1.4) and (3.9). respec-
tively. Then we have

~ 2n
Ay = ————F—=A, <A,
(n+1)vV2n+1
since obviously WI)Z% < 1 for all » € N. Moreover, erf#m tends to zero

when 7 tends to co. So the estimation (3.9) is much better than the estimation (1.4).

Using the generalized Taylor’s perturbed formula (3.4) we can obtain some other
estimations which depend on the choice of the polynomials P, (7). We first prove the
following technical lemma:.

LEMMA 2. (i) If P,(t) = L (1 — %), then

2
ST P R G

(ii) Let P,(t) = (X;—,”WB,,(':—Z) where B,(t) are Bernoulli polynomials. Then

T(Pr Py) = (x— )"y (|§;;|!'

(iii) Let P,(t) = (x_a)nE,,(t:—‘:l) where E,(t) are Euler polynomials. Then

n! X

(41 —1) |Bopsa| {2(2'”2 — 1)B,,+2]2

T(Py, Py) = 2(x — a)n\/ Gt o) (n+2)!
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Proof. (i) We have

/:Pﬁ(t)dt: (n1!)2 /ax (t— a;x)zndt

e (57| -

(X o a)2n+l
()22 (2n + 1)

(x _ a)n+1

= W[ + (=1)"].

So

T(Pa,P,) = xia/:Pﬁ(t)dtﬁ </:P,,(t)dt>2

B (x —a)™ [ 2n+1 (14 (-1)" 2

C (22 (2n 1) | a (n+1)2( 2 )

e L S G VA R G VA

T (n)22(2n + 1) _1 T a1 ( 2(n+1) ) ]

__ —a LJ+PWT
(n)22(2n+1) | 2(n+1)

In calculation we used the fact that [(1 + (—1)")/2]*> = (1 + (—1)")/2. The desired
result follows.

. o e
(ii) By the substitution s = =% we get

Bernoulli polynomials have the following property (see [1, 23.1.12])

n'm!

(n+m)!

/0 Bn(S)Bm(S)dS = (71)”,1

Buym, forn,m=1,2,---,

which for m = n gives

! _ n—1 (n|)2 _ (ny)Z
| Bas = 5 = G .

So
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Further

/:Pn(t)dt: %/:Bn (;Z) g —’3)"“ /Oan(s)ds.

Using (2.7) we get

1 1
1 / Byy1(1) — Byy1(0)
Bn d = B d = = 0’
/O (s)ds n+1/0 i1 (8)ds o)

since for + = 0 (2.8) gives
Bn+1(1) _Bn+l(0) :0 (311)

. This implies [ P,(t)dt = 0 and

T(Py, P,) = xia /:Pg(t)dt - ﬁ (/:Pn(t)dt)z — (x— a)zn%_

The desired result follows.
(iii) The substitution s =

—a :
—7 gives

X

[ o= 5 [ (25 O [ s

Euler polynomials have the following property (see [1, 23.1.12])

! 2 n'm!
/ E (5)E,(s)ds = 4(—1)" (2"t — 1) ,Bn+m+27 forn,m=0,1,---,
0 .

(n+m+2)

which for m = n gives

1 n(an+1 2 n+1 2
4(=1)"(4" = 1)(n!) 44" — 1) (n!)
E2(s)ds = Byyp = ———"—"|By,
/0 n(s)ds (2n+2)! 2 Gngay B
and 1
* 4" — 1) |Bani2|
P2 :4 _ 2n+l( n+
/u n(1)dt = 4(x—a) 2n+2)!
Further

Using (2.11) we get
1 1
1 ' E,i1(1) — Ep1(0
/ E,(s)ds = / E, \(s)ds = n(l) 1 )
0 0

n+1
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Here we use the following property of Euler polynomials (see [1, 23.1,20])

2
E,(0) = —E,(1) = ———(2""" = 1)B,yy, forn=1,2,---, (3.12)
n+1
to get
/JE@MS_Z@H“)_4@“2”&“
0 n+1 (n+1)(n+2) "
This implies
X 4()( _ a)n+l(2n+2 _ 1)Bn ’
[ patoyan = e
and

T(P,,P,) = xla/uxPﬁ(t)dt—ﬁ </:P,,(t)dt>2

_ n (4n+1 - 1) ‘BZnJrZ‘ 2(2n+2 - 1)Bn+2 :
= 4x—ap’ { (2n+2)! [ (n+2)! } }

The desired result follows. [

COROLLARY 3. Let I C R be a closed interval and a,x € I, a < x.. Suppose
f 11— R, issuchthat f ") is absolutely continuous. Let T'(x) and y(x) be defined by
(1.5).

(i) If TM(f ;a,x) is defined by (2.5), then

()C _ Cl)”+1[1 + (—1)”]
(n+ 1)12+T

F) =T (Fra0) + ;a5 + Gl (f1a,%)

and

(X _ a)n+1 |: 1+ (71);1
GM(fra,x)) < —F—e |1 - ——<
’ Y )’ n12mt1/2n + 1

(ii) If TB(f;a,x) is defined by (2.10), then
) =T (f3a,%) + Gi(fa,%)

and
(x - a)nﬂ \an\
2 (2n)!

(iii) If TE(f; a,x) is defined by (2.14), then

|G(f1a,0)] < M) —y(x)]-

A1) — @)™ (2"2 — 1)Buyo
(n+2)!

F) =TE(f3a,x) + [ ®5a,x] +GE(f5ax)
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and
|GE(f a,x)|
(41 = 1) |By, 2(22 — 1)B,12 1"
om0 272 By
Proof. (i) Set P,(t) = L (r—%2)". We have 7,(f;a,x) = T¥(f;a,x) and

G.(fia,x) = G" (f ,Xx). Also

(x _ a)n+1[1 + (71);1}

(S Pasa () = Pasa(@)] = =0 =y

Now apply Theorem 3 and Lemma 2(i).
(ii) Set P,(1) = %Bn (;—2) . Wehave T,(f;a,x) = T?(f;a,x) and G,(f;a,x) =
GB(f;a,x). Also, by (3.11)

(x o a)n+1

(D" Pot () = Par(@)] = (=122,

[BnJrl(l) - Bn+1(0)] =0.

Now apply Theorem 3 and Lemma 2(ii).
(iii) Set P,(r) = “=AF, ('7—“) We have T,(f;a,x) = TE(f;a,x) and

n! x—a

G,(f;a,x) = GE(f;a,x). Also, using (3.12) we get

(1 Paor0) = Prrfa] = (-1 =By (1) = By O]
- ; (x _ a)n+1
= (—1) 4(’1 T 1)' 2En+1(1)
A1) (x — @) (22 — 1)B,.
B (n+2)! '

Now apply Theorem 3 and Lemma 2(iii). O

THEOREM 4. Suppose the assumptions of Theorem 3 are satisfied. Additionally,
suppose ") is differentiable and such that

Then the remainder G, (f;a,x) satisfies the estimation

(x — a)*M"+2) (x)
V12

Gu(fra,x)| < T(Py, Py)

forall x > a, x€l.
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Proof. If g,h : [a,x] — R are absolutely continuous and if g’, 4’ are bounded,
then the following Chebyshev’s inequality is valid (see [3, p. 207])

1
7(g, M| < 5 (x = @) sup [g"(1)] sup [I'(1)].
t€(ax] t€(ax]
Setting h = g we get
| 2
T(g,8) =T(s,8)l < 5 (x—a)* | sup |¢'(1)] | -
12 t€ax]

Combining this with (3.1) we have

2
T(g.h) < 15— a)? ( sup |g’<r>|> (0 1)

t€[a.x]
or ( )
xX—a
T(g,h)| < sup [g'(1)] \/T(h, h). (3.13)
V12 t€ax]
Reviewing the proof of Theorem 3 it is easy to see that
Go(f;a,x) = (—1)"(x —a)T(f "™, P,). (3.14)

So, if we apply (3.13) to g = f "+ and h = P, , then we get

X—da 2
|Gu(f s a,%)| = (x — a) ‘T(f("“>,P,1) < %MW) (X)\/T(P,, P,,).

(Il
COROLLARY 4. Let the assumptions of Theorem 4. be satisfied. Then we have the
representation (1.1) and the remainder G,(f ;a,x) satisfies the estimation:
N n(x _ a)n+2M(n+2) (.X)

G,(f;a,x)| <A, =
Gl ) VI2(n+ 1)2n+ 1

Proof. Set P,(t) = U;’!‘)n and apply Theorem 4. Then use (3.10) to obtain the
desired result. [

REMARK 2. In [2, Theorem 2.4] the following estimation was obtained

(x _ a)n+2M(n+2) (X)
DICE

‘Gn(f;(l,X)‘ < An =

We have
~ V12

Aﬂ - —An
(n+1)v2n+1
Vi2

and IOVIT < 1,for n > 1. So, our estimation established in Corollary 4 is better
than one given in [2].
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As a corollary to Theorem 4 we give further estimations which depend on the
choice of the polynomials P,(7) .

COROLLARY 5. Under the assumptions of Theorem 4 and with the notation of
Corollary 3 we have the following estimations:

|GM(f'a x)| < (X—a)n+2M(n+2)(x) { 14+ (_1)1
R V1201220 + 1 A
_ \n+2pq(n+2)
G (fsa,)| < Em M) 1Bl
V12 (2n)!
and
|GE(f(1 x)| < (X — a)n+2M(n+2>(x) (4n+1 — 1) ‘anJrz‘ B |:2(2n+2 o 1)B”+2:|2
nV > ~ \/§ (2n+2)' (Vl+2)' .

Proof. We use Theorem 4 and Lemma 2 to obtain the desired estimations. [

THEOREM 5. Suppose the assumptions of Theorem 3 are satisfied. Also suppose
that f"+Y is locally absolutely continuous on I, = (a,x) and f"+? € Ly(I) for
every x € I, x > a. Then the remainder G,(f;a,x) satisfies the estimation

(x—a)’

Gu(f1a,x)| < ———No(f "2 a,x)\/T(PuPy),

where

No(f "2 a, x) <x—a/ V"H > , forx > a.

Proof. We recall the result of Lupas (see [3, p. 210]): if g,h: (a,x) — R are
locally absolutely continuous on I = (a,x) and g’,h’ € L,(I), then

(x —a)?
2

T(g,h)| < &'l 11A°[1

where

X 1/2
£, :=( L v<r>|2dt) . forf € L(l).

X—da
Setting h = g we get

(x - a)?

72

2
T(g,8) =|T(g,8)| < lg'll5
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and this, in combination with (3.1), implies

X—a 2 2
e < g T m)
or
X—da
T Wl < '), V). (.15)

Now apply (3.15) to g = f 1) and h = P, and use (3.14) to obtain

(f<n+1)) 2

N2
_ b ﬂa) No(F " a4, x)\/T(PoPy).

X—da

|Gu(f1a.x)] < (x—a) T(P,Py)

COROLLARY 6. Let the assumptions of Theorem 5. be satisfied. Then we have the
representation (1.1) and the remainder G,(f ;a,x) satisfies the estimation:

n(x _ a)"+2N2(f("+2>;a,x)

n(n+ 1)1V2n+ 1

Gu(f3a,%)| <

Proof. Set P,(t) = U;’!‘)n and apply Theorem 5. Then use (3.10) to obtain the
desired result. [

COROLLARY 7. Under the assumptions of Theorem 5 and with the notation of
Corollary 3 we have the following estimations:

_ n+2 (1’!+2>. _1\n
G (1| < SN0 0 {17”( 1)],

n!2/2n + 1 2(n+1)

(x _ a)n+2N2(f(n+2); a,x) ‘an‘

B(r. <
(G0 )] < P (2n)!
and
GE(f:a,x)|
o 20— a)" 2Ny (F " Dsa,x) (4 = 1) B [2(22 = 1)Buia ]’
h n (2n+2)! (n+2)!

Proof. The proof is a simple consequence of Theorem 5 and Lemma 2. [
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4. Applications to the logarithmic mapping

Consider the logarithmic function f : (0,00) — R, f(¢) = Inz. We shall apply
the generalized Taylor’s perturbed formula to this function. We have

oy o DR
f( )(;) D — fort > 0and k € N.

For n € N and x > a > 0 we get

} @ @) (1) (- 1)1 <1 1)_ (4.1)

X" a"

X—da X—da

{f<n>; a,x
Note that f "*1) is strictly monotonic on (0, c0) which implies

y() = inf £ (0) = min {f ) @), 7 V() }

t€]ax]
and
P(x) = sup £ 0(0) = max {f (@), £ V() }
t€[ax]
So
I(x) =y (x) (4.2)

— max {f(nJrl)(a)’f(nJrl)(x)} _ min {f(ﬂJrl)(a)’f(nJrl)(x)}
(@) — £ )

| 1 1
n atl - Pean! '

Now, let us observe four different cases.

Case I: Let P,(t) = (t;fyl for n € N and Py(¢) = 1. By Corollary 2, equality
(1.1) holds. An easy calculation gives

k
T,(In;a,x) = Ina + Z k“ ) ,

while (4.1) gives

(x _ a)n+l

T e =5 (5 5)

So, by (1.1) we have

)k (a—x)" (1 1
lnx—lnaJrZ k“ +n(n—|—1) i + Gy(In; a, x).
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Using (3.9) and (4.2) we get the estimation

< n(x —a)™! < 1 1 >
G (nia,x)| < & = X~ - . 43

In [2] the estimation

|Gu(In; a,x)| < 6, :—M( L ! ) (4.4)

4 at! xtl

was obtained. We have

< 2n
6” - —5n < 6}1,
(n+1)v2n+1
: 2n 2n
since DV < 1 forall n € N. Moreover, DV tends to zero when n tends

to co. So the estimation (4.3) is much better than the estimation (4.4).

Case 2: Let P(1) = L (1 — %)n for n € N and Py(r) = 1. In this case we can

apply Corollary 3 (i). By (2.5) we have
~ (x—a) {(1)kl(k - !

™ (In;a,x) = lna+z

_ (71)k (71)k71(k — 1)!}

2kk! ak xk
k=1
et 1 (CD
- IH‘HZ K2k Xk ak )
k=1

while, using (4.1), we get

s TN

So

Inx = lna+zn: k—af |:l+ (1)k1] +

xk ak

L+ (-1 (1 1 y
(= ) k- a) + GY(Ina, ),
s T (a” x") (x—a)"+ G, (In;a,x)

where, by Corollary 3 (i) and by (4.2), the remainder G (In; a, x) satisfies the estima-

tion ( )+1 1)
x—a)" 14+ (=1)" 1 1
GM(In;a, < 1-— —_ = — .
‘ w (In; a x)‘ 120 + 1 [ 2(n+ 1) ] (an+l xn+l>

Case 3: Let P,(t) = (x;!“len()’(:—Z) for n € N and Py(r) = 1. Now we apply
Corollary 3 (ii). Using (2.10) we easily calculate

xzfaz

1 By (1 1
B (15 _ 2%
T, (Inja,x) =Ina+ o 3 . (a2k - x2k> (x —a)™.
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By Corollary 3 (ii)

B 1 1
2k (ﬁ — ﬁ) (x—a)Zk +fo(ln;a,x),

where, by Corollary 3 (ii) and by (4.2), the remainder G2(In; a, x) satisfies the estima-

tion
B (1. n! ‘BZH‘ 1 1 n+1
|Gn(ln,a,x)|<3“(2n)! pre e (x—a)"".

Case 4: Let P,(t) = (*;—,“)nE,,(;:—‘;) for n € N and Py(r) = 1. In this case we

apply Corollary 3 (iii). Using (2.14) we easily calculate

']
E(In: q.x) — (4 = DBy (1 ! 21
Ty(Ina,x) = Ina + 2 k2k—1) \a% 1 (x = a1,

>
~|+

while (4.1) implies

4(71)"()( o a)n+1(2n+2 o I)Bn+2 (n)
(n+2)! {f ’“’x}

A2 DBy (11 .
T it D(n+2) (Zn‘ﬁ) (x—a)".

By Corollary 3 (iii)

2]
(4% — 1)By; 1 1 21
Inx = na+ —~ k(2k—1) \a*! + T (x—a)™ +

422 —1)B, 12
nn+1)(n+2)

( L l) (x—a)" + GE(In; a, %)

ar
and, by Corollary 3 (iii) and by (4.2), the remainder GZ(In; a, x) satisfies the estimation
)
2
< (41— 1) [Bowsa|  [2(212 = 1)Buia 11 (x — @)™
(2n +2)! (n+2)! atl oyt

REMARK 3. In obvious way, similar estimations can be established for the re-
mainders G,(In;a,x), G¥(In;a,x), GZ(In;a,x) and GE(In;a,x), by application of
Corollaries 4, 5, 6 and 7.

‘Gf(ln; a,x
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