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(communicated by J. Pečarić)

Abstract. We present in this note some sufficient conditions on boundedness of solutions to
higher dimensional Hill equations.

Consider the well known Hill equation

ÿ + a(t)y = 0 (1)

There are many results [1], [2], [4] on the asymptotic behavior of solutions to (1).
One of them is the boundedness of all solutions to (1) under certain conditions imposed
on coefficient function a(t) .

We consider in this note the higher dimensional Hill equation system

Ẍ + A(t)X = 0, (2)

where X ∈ Rn , A(t) = (aij) is a symmetric n × n matrix function of time t . We
are interested in knowing under what condition all solutions to (2) are bounded, becuse
it is significant in investigation of stability and instability of geodesic on Riemannian
manifolds where Jacobi fields can be expressed in form of Hill equation system [3].
This fact has been used by some physicists to study dynamics in Hamiltonian systems
[5].

Certain sufficient conditions for boundedness of solutions to (2) are given in the
main theorem, which may be regarded as a generalization of a corresponding theorem
concerning (1) in [1].

THEOREM. Suppose that there exist two positive constants K and K such that

K‖x‖2 � XTA(t)X � K‖X‖2. (3)

Furthermore, assume that

(i) XTȦ(t)X � 0, or (ii) XTȦ(t)X � 0. (4)

Then every solution to (2) is bounded.
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Proof. Case (i) , XTȦ(t)X � 0 . From (2) one has

〈 Ẋ, Ẍ〉 + 〈 Ẋ, A(t)X〉 = 0.

Integration by parts from 0 to t yields

1
2
‖Ẋ‖2 + 1

2
XTA(t)X − 1

2

t∫

0

XTȦ(t)Xdt = C1.

Accordingly, one has

XTA(t)X � |C1| + 1
2

t∫

0

XTȦ(t)Xdt (A(t) is symmetric)

= |C1| +
t∫

0

XTA(t)X · XTȦ(t)X
XTA(t)X

dt

� |C1| +
t∫

0

XTA(t)X · (trace Ȧ(t))‖X‖2

K‖X‖2
dt, (by (i) in (4))

= |C1| + 1
K

t∫

0

XTA(t)X
( n∑

i=1

ȧii(t)
)
dt.

By Gronwal inequality, one has

XTAX � |C1| exp
(

1
K

t∫

0

n∑
i=1

ȧii(t)
)
dt

= |C1| exp
(

1
K

n∑
i=1

(aii − aii(0)
)

� |C1| exp
(

1
K

n∑
i=1

aii(t)
)
.

Because of inequality (3), we have

|aii(t)| � K.

Therefore

XTA(t)X � |C1| exp
nK
K

,

which implies that X(t) is bounded.
Case (ii) , XTȦX � 0 . Construct a Lyapunov function

V(t, X, Ẋ) = XTA(t)X + ‖Ẋ‖2.
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Derivation of V along the trajectories of (2) yields

V̇ = ẊA(t)X + XTȦ(t)X + XTAẊ + 2〈 Ẋ, Ẍ〉
= 2ẊTA(t)X + XTȦX + 2ẊT(−AX)

= XTAX

= 0

It follows that X(t) is bounded.
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