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Abstract. In this paper we introduce the mapping Ψp
x,y (t) = (x, x + ty)p ‖x + ty‖−1 , which is

derived from the lower and upper semi-inner product (·, ·)i and (·, ·)s , and study its properties
of monotonicity, boundedness and convexity. We give applications to height functions and to
inequalities in analysis, including a refinement of the Schwarz inequality.

1. Introduction

This paper continues the investigation started by the present authors in [6, 7]. In
[6], we studied the mapping

vx,y(t) =
‖x + ty‖ − ‖x‖

t

defined on R\{0} in order to obtain a refinement of the norm in X as an instrument of
measurement, and obtained refinements of inequalities important in analysis as a result.

In [7] the mapping

γx,y(t) =
‖x + 2ty‖ − ‖x + ty‖

t
, t ∈ R\{0},

was introduced to study the finer points of geometry of the normed linear spaces;
applications included new characterizations of the Birkhoff orthogonality and best ap-
proximants.

Indispensable tools in this process are the lower and upper semi-inner product in
X , defined by

(y, x)i = lim
t→0−

‖x + ty‖2 − ‖x‖2

2t
,

and

(y, x)s = lim
t→0+

‖x + ty‖2 − ‖x‖2

2t
,
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respectively. These limits are well defined for every pair x, y ∈ X , and play a rôle
in normed spaces similar to that of the inner product in an inner product space. For
reference we list some of the main properties of these products that will be used in the
sequel (see [2, 3, 4, 5]). Let p, q ∈ {s, i} , p �= q .

(I) (x, x)p = ‖x‖2 for all x ∈ X ;
(II) (αx, βy)p = αβ(x, y)p if αβ � 0 and x, y ∈ X ;

(III) |(x, y)p| � ‖x‖ ‖y‖ for all x, y ∈ X ;
(IV) (αx + y, x)p = α(x, x)p + (y, x)p if x, y belong to X and α is a real number;
(V) (−x, y)p = −(x, y)q for all x, y ∈ X ;

(VI) (x + y, z)p � ‖x‖ ‖z‖ + (y, z)p for all x, y, z ∈ X ;
(VII) The mapping (·, ·)p is continuous and subadditive (superadditive) in the first

variable for p = s (or p = i );
(VIII)We have the inequality

(y, x)i � (y, x)s for all x, y ∈ X;

(IX) If the norm ‖·‖ is induced by an inner product (·, ·) , then

(y, x)i = (y, x) = (y, x)s for all x, y ∈ X.

In the present paper we introduce the mappings Ψp
x,y by (2.1), and start investigat-

ing their monotonicity, boundedness and convexity. These properties are then applied
to height functions, and to obtaining refinements of the Schwarz inequality, and other
inequalities useful in analysis.

2. Properties of the mapping Ψp
x,y

Let x, y be two fixed linearly independent vectors in the normed linear space
(X, ‖·‖) . We consider the two mappings

Ψp
x,y (t) :=

(x, x + ty)p

‖x + ty‖ , p ∈ {s, i}, (2.1)

well defined for all t ∈ R , which often arise in analytic and geometric considerations
of normed linear spaces employing the lower and upper semi-inner product. (See,
for instance [7], where the authors used Ψp

x,y to investigate the mapping γx,y(t) =
(‖x + 2ty‖ − ‖x + ty‖)/t .) This paper is devoted to a systemic study of the mapping
Ψp

x,y , which plays an important role in geometry of normed linear spaces and the theory
of inequalities in analysis.

The following theorem describes the main properties of this mapping.

THEOREM 2.1. Let (X, ‖·‖) be a real normed linear space and x, y two linearly
independent vectors in X . Then

(i) The mapping Ψp
x,y is bounded on R with∣∣Ψp

x,y (t)
∣∣ � ‖x‖ for all t ∈ R; (2.2)
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(ii) We have the inequality

δx, y (t) � Ψi
x,y (t) � Ψs

x,y (t) � ‖x‖ for all t ∈ R (2.3)

and

δx, y (t) � Ψs
x,y (2t) � Ψi

x,y (2t) � ‖x + 2ty‖ − 2|t| ‖y‖

�

⎧⎪⎪⎨⎪⎪⎩
(x, y)s

‖y‖ if t � 0

− (x, y)i

‖y‖ if t < 0,

(2.4)

where δx,y(t) = 2 ‖x + ty‖ − ‖x + 2ty‖ .
(iii) Ψp

x,y is continuous at 0 , and we have the limits

lim
t→+∞Ψp

x,y (t) =
(x, y)s

‖y‖ (2.5)

and

lim
t→−∞Ψp

x,y (t) = − (x, y)i

‖y‖ ; (2.6)

(iv) Ψp
x,y is increasing on (−∞, 0] and decreasing on [0, +∞) .

Proof. (i) follows from the Schwarz inequality.
(ii) Using the basic properties of the lower and upper semi-inner products as set

out in the Introduction,we have

‖x + 2ty‖ ‖2x + 2ty‖ � (x + 2ty, 2x + 2ty)s

= (2x + 2ty − x, 2x + 2ty)s = ‖2x + 2ty‖2 − (x, 2x + 2ty)i

which yields

‖x + 2ty‖ − ‖2x + 2ty‖ � −(x, 2x + 2ty)i ‖2x + 2ty‖−1 ;

this is equivalent to

2 ‖x + ty‖ − ‖x + 2ty‖ � (x, x + ty)i

‖x + ty‖
for all t ∈ R . This proves the first inequality in (2.3). The second inequality is clear.
To obtain the third inequality we apply (III): (x, x + ty)s � ‖x + ty‖ ‖x‖ .

The Schwarz inequality is used to prove the first inequality in (2.4):

‖2x + 2ty‖ ‖x + 2ty‖ � (2x + 2ty, x + 2ty)s

= (x + x + 2ty, x + 2ty)s = ‖x + 2ty‖2 + (x, x + 2ty)s,

hence
2 ‖x + ty‖ − ‖x + 2ty‖ � (x, x + 2ty)s ‖x + 2ty‖−1 = Ψs

x,2y (t)

for all t ∈ R .
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Now suppose that t � 0 . Then ‖x + 2ty‖ − 2|t| ‖y‖ = ‖x + 2ty‖ − 2t ‖y‖ , and
by the Schwarz inequality we have

‖x + 2ty‖ ‖y‖ � (x + 2ty, y)s = (x, y)s + 2t ‖y‖2
,

which implies

‖x + 2ty‖ − 2t ‖y‖ � (x, y)s

‖y‖ .

For t < 0 we replace t by −t and y by −y in the preceding argument, and the last
inequality in (2.3) follows.

(iii) We observe that
lim
t→0

δx, y (t) = ‖x‖ ;

then by inequality (2.3) the limit limt→0 Ψp
x,y (t) exists and equals ‖x‖ . Hence Ψp

x,y is
continuous at 0 .

To establish limits (2.5) and (2.6) we observe that

lim
α→0+

‖y + αx‖ − ‖y‖
α

=
(y, x)s

‖y‖ .

After substitution α = t−1 for t > 0 and a short calculation we obtain

2 ‖x + ty‖ − ‖x + 2ty‖ = 2
‖y + αx‖ − ‖x‖

α
−
∥∥y + 1

2α
∥∥− ‖y‖

1
2α

=: Fx,y(α).

Consequently,

lim
t→+∞ δx, y (t) = lim

α→0+
Fx,y(α) =

(y, x)s

‖y‖ .

(2.5) then follows by applying inequality (2.3). Using this result, we have

lim
t→−∞Ψp

x,y (t) = lim
u→+∞Ψp

x,−y (u) =
(−y, x)s

‖−y‖ = − (y, x)i

‖y‖ ,

and (2.6) obtains.
(iv) This was already proved in [7] as an intermediate step in the proof of mono-

tonicity of γx,y(t) = (‖x + 2ty‖−‖x + ty‖)/t . For the sake of completeness, we include
a simplified proof here.

To take advantage of the properties of the upper and lower semi-inner products we
introduce the mapping

Φp
x,y (t) :=

(y, x + ty)p

‖x + ty‖ , p ∈ {i, s}.

We have

Ψp
x,y (t) = Φp

y,x

(
1
t

)
if t > 0,

Ψp
x,y (u) = Φq

y,x

(
1
u

)
if u < 0,
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where q ∈ {s, i} , q �= p . The proof will be completed when we show that Φy,x is
increasing on R .

Suppose that p ∈ {i, s} and t2 > t1 . Then, by the Schwarz inequality,

‖y + t2x‖ ‖y + t1x‖ � (y + t2x, y + t1x)p

for all x, y ∈ X . Using properties of the norm derivatives, we obtain

(y + t2x, y + t1x)p = ((t2 − t1)x + y + t1x, y + t1x)p

= ‖y + t1x‖2 + (t2 − t1)(x, y + t1x)p,

and the above inequality yields

‖y + t2x‖ ‖y + t1x‖ � ‖y + t1x‖2 + (t2 − t1)(x, y + t1x)p.

Hence

Φp
y,x (t1) =

(x, y + t1x)p

‖y + t1x‖ � ‖y + t2x‖ − ‖y + t1x‖
t2 − t1

.

Let t := t2 − t1 > 0 and let q ∈ {s, i} , q �= p . Then

‖y‖ ‖y + tx‖ � (y, y + tx)q = (y + tx − tx, y + tx)q

= ‖y + tx‖2 + (−tx, y + tx)q = ‖y + tx‖2 − t(x, y + tx)p,

and

(‖y + tx‖ − ‖y‖)t−1 � Φp
y,x (t) .

Consequently,

‖y + t2x‖ − ‖y + t1x‖
t2 − t1

=
‖y + t1x + tx‖ − ‖y + t1x‖

t
� Φp

y+t1x,x (t) = Φp
y,x (t2) .

This proves Φp
y,x(t1) � Φp

y,x(t2) and (iv) follows.
�

REMARK 2.2. The graphs of Ψp
x,y , p ∈ {i, s} , in the case of a normed linear space

are depicted in Fig. 1. They are drawn in a dashed line to suggest that there is no
information about the convexity of Ψp

x,y , p ∈ {i, s} . The absolute maximum is ‖x‖ ,
attained at t = 0 . The graph has two horizontal asymptotes, (x, y)s/ ‖y‖ as t → ∞
and −(x, y)i/ ‖y‖ as t → −∞ .
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Figure 1.

Fig. 1 depicts the graph in the case that (x, y)s > 0 . Then −(x, y)i � −(x, y)s ,
but −(x, y)i may be positive, negative or zero.

We now turn our attention to the case when X is an inner product space. While we
have no information about the convexity properties of Ψp

x,y in a general normed linear
space, we are able to determine the convexity and concavity of Ψx,y in an inner product
space from its second derivative.

PROPOSITION 2.3. Let (X, (·, ·)) be a real inner product space and x, y two
linearly independent vectors in X . The mapping Ψx,y : R → R defined by

Ψx,y (t) =
‖x‖2 + t(x, y)

‖x + ty‖
is twice differentiable on R with

dΨx,y (t)
dt

= t
(x, y)2 − ‖x‖2 ‖y‖2

‖x + ty‖3 (2.7)

and
d2Ψx,y (t)

dt2
=

‖x‖2 ‖y‖2 − (x, y)2

‖x + ty‖5 (2t2 ‖x‖2 + t(y, x) − ‖x‖2). (2.8)

Moreover, the mapping Ψx,y is strictly convex on (−∞, t1) ∪ (t2,∞) and strictly
concave on (t1, t2) , where

t1 =
−(x, y) −√Δx,y

4 ‖y‖2 , t2 =
−(x, y) +

√
Δx,y

4 ‖y‖2 (2.9)

and Δx,y = 8 ‖x‖2 ‖y‖2 + (x, y)2 > 0 .

Proof. For notational convenience we introduce the mapping nx,y(t) = ‖x + ty‖ ,
and find that

d
dt

nx,y(t) =
(x, y) + t ‖y‖2

nx,y(t)
.
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Then

dΨx,y (t)
dt

=
1

n2
x,y(t)

[
d
dt

(‖x‖2 + t(x, y))nx,y(t) − (‖x‖2 + t(x, y))
dnx,y(t)

dt

]
=

1
n2

x,y(t)

[
(x, y)nx,y(t) − (‖x‖2 + t(x, y))

(x, y) + t ‖y‖2

nx,y(t)

]

=
1

n3
x,y(t)

[
(x, y)n2

x,y(t) − (‖x‖2 + t(x, y))((x, y) + t ‖y‖2)
]

=
1

n3
x,y(t)

[
(x, y)(‖x‖2 + 2t(x, y) + t2 ‖y‖2)

−(‖x‖2 + t(x, y))((x, y) + t ‖y‖2)
]

= t
(x, y)2 − ‖x‖2 ‖y‖2

n3
x,y(t)

,

and equation (2.7) is proved. Further,

d2Ψx,y (t)
dt2

=
(x, y)2 − ‖x‖2 ‖y‖2

n6
x,y(t)

(n3
x,y(t) − 3tn2

x,y(t)n
′
x,y(t))

=
(x, y)2 − ‖x‖2 ‖y‖2

n4
x,y(t)

[
nx,y(t) − 3t((y, x) + t ‖y‖2)

nx,y(t)

]

=
(x, y)2 − ‖x‖2 ‖y‖2

n5
x,y(t)

(n2
x,y(t) − 3t(y, x) − 3t2 ‖y‖2)

=
‖x‖2 ‖y‖2 − (x, y)2

n5
x,y(t)

(2t2 ‖y‖2 + t(y, x) − ‖x‖2),

which proves (2.8).
The quadratic equation

2t2 ‖y‖2 + t(y, x) − ‖x‖2 = 0

has two distinct solutions t1 , t2 given in the statement of the proposition. Then
Ψ

′′
x,y (t) > 0 if t ∈ (−∞, t1)∪ (t2,∞) and Ψ

′′
x,y (t) < 0 if t ∈ (t1, t2) . The proposition

is now proved.
�

REMARK 2.4. The graph of Ψx,y in an inner product space is given in Fig. 2,
this time for the case (x, y) < 0 . The t -intercept t0 is obtained from the equation
‖x‖2 + t(x, y) = 0 . In the case of an inner product space, the convexity behaviour of
Ψx,y is known from Proposition 2.3; in particular, t1 and t2 defined by (2.9) are the
inflection points of Ψx,y .
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Figure 2.

The graph of Ψx,y for the case of two orthogonal vectors x, y is given in Fig. 3;
then Ψx,y is even and the graph is asymptotic to the t -axis.

Figure 3.

3. Applications to height functions

Alsina, Guijarro andTomas [1] considered the following so-called height functions:

h1(x) = y +
‖y‖2 − (y, x)s

‖x − y‖2 (x − y),

h2(x) = y +
‖y‖2 − (x, y)s

‖x − y‖2 (x − y),

h3(x) = y +
(y, y − x)s

‖x − y‖2 (x − y),

where x, y are two distinct vectors in a real normed linear space X , and applied them in
characterizing inner product spaces in the class of normed spaces. For their interesting
results see paper [1].

We observe that the function h3 is related to the mappings introduced in this paper,
namely,

‖y − h3(−tx, y)‖ =
∣∣Ψs

y,x (t)
∣∣ for all t ∈ R.
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For two given linearly independent vectors x, y in a normed linear space (X, ‖·‖)
we define the following objects:

cosp
̂(x, y) :=

(y, x)p

‖y‖ ‖x‖ where p = s or p = i,

Ap(x, y) := ‖x‖ ‖y‖ sinp
̂(x, y) where p = s or p = i,

A[k]
h (x, y) := 1

2 ‖hk(x, y)‖ ‖x − y‖ where k = 1, 2 or 3.

If X is an inner product space, then h1 = h2 = h3 = h , and the following proposition
is true.

PROPOSITION 3.1. Let (X, ‖·‖) be an inner product space. Then for all x, y ∈ X
with x �= y we have the identity

Ah(x, y) = 1
2 ‖y‖ ‖y − x‖ sin ̂(y, y − x). (3.1)

Proof. A simple calculation in inner product spaces gives

‖h(x, y)‖2 = ‖y‖2 − 2
(y, y − x)2

‖y − x‖2 +
(y, y − x)2

‖y − x‖4 ‖y − x‖2

=
‖y‖2 ‖y − x‖2 − (y, y − x)2

‖y − x‖2 .

As cos ̂(y, y − x) = (y, y − x) ‖y‖−1 ‖y − x‖−1 , we have

‖h(x, y)‖2 =
‖y‖2 ‖y − x‖2 − ‖y‖2 ‖y − x‖2 cos2 ̂(y, y − x)

‖y − x‖2

= ‖y‖2 sin2 ̂(y, y − x)

which implies
‖h(x, y)‖ = ‖y‖ sin ̂(y, y − x),

and (3.1) is obtained.
�

The following result reveals the geometric nature of the height function h3 in a
normed linear space.

PROPOSITION 3.2. Let (X, ‖·‖) be a normed linear space. Then, for all x, y ∈ X
with x �= y , we have the representation

h3(x, y) = coss
̂(y, y − x)

‖y‖
‖y − x‖ x − coss

̂(x, y − x)
‖x‖

‖y − x‖ y, (3.2)

and the inequality

A[3]
h � 1

2 ‖x‖ ‖y‖
(| coss

̂(y, y − x)| + | coss
̂(x, y − x)|) � ‖x‖ ‖y‖ . (3.3)
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Proof. Using the properties of the upper and lower semi-inner products we have in
succession

h3(x, y) = y +
(y, y − x)s

‖y − x‖2 (x − y)

=
(
1 − (y, y − x)s

‖y − x‖2

)
y +

(y, y − x)s

‖y − x‖2 x

=
‖y − x‖2 − (y, y − x)s

‖y − x‖2 y +
(y, y − x)s

‖y − x‖2 x

=
(y − x − y, y − x)s

‖y − x‖2 y +
(y, y − x)s

‖y − x‖2 x

= − (x, y − x)s

‖y − x‖2 y +
(y, y − x)s

‖y − x‖2 x

=
(y, y − x)s

‖y‖ ‖y − x‖
‖y‖

‖y − x‖ x − (x, y − x)s

‖x‖ ‖y − x‖
‖x‖

‖y − x‖ y

and the identity (3.2) is obtained.
We have

A[3]
h (x, y) = 1

2 ‖h3(x, y)‖ ‖x − y‖

=
1
2

∥∥∥∥∥ (y, y − x)s

‖y − x‖2 x − (x, y − x)s

‖y − x‖2 y

∥∥∥∥∥ ‖y − x‖

� |(y, y − x)s|
‖y‖ ‖y − x‖ ‖x‖ ‖y‖ +

|(x, y − x)s|
‖y − x‖ ‖y‖ ‖x‖ ‖y‖ ,

and the first part of the inequality (3.3) is proved. The second part is obvious.
�

4. Applications to inequalities

The inequalities obtained in Section 2 can be applied in concrete Banach spaces to
obtain improvements of classical inequalities.

EXAMPLE 4.1. Theorem 2.1 can be applied to the space L1(Ω) of all μ -integrable
real valued functions on the measure space (Ω, A ,μ) , where A is a σ -algebra of
subsets of Ω , and μ a complete positive measure on A . The norm on L(Ω) is given
by ‖x‖ =

∫
Ω |x| dμ . A modification of the argument in [9] gives

(x, y)p = ‖y‖
(∫

Ω1(y)
sgn(y)x dμ + ε(p)

∫
Ω0(y)

|x| dμ
)

,
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where ε(i) = −1 and ε(s) = +1 , Ω0(y) = {t ∈ Ω : y(t) = 0} , and Ω1(y) =
Ω\Ω0(y) . If x, y are linearly independent vectors in L(Ω) and t > 0 , we get∫

Ω1(y)
sgn(y)x dμ −

∫
Ω0(y)

|x| dμ �
∫
Ω1(y)

sgn(y)x dμ +
∫
Ω0(y)

|x| dμ

�
∫
Ω
|x + 2ty| dμ − 2t

∫
Ω
|y| dμ

�
∫
Ω1(x+2ty)

sgn(x + 2ty)x dμ −
∫
Ω0(x+2ty)

|x| dμ

�
∫
Ω1(x+2ty)

sgn(x + 2ty)x dμ +
∫
Ω0(x+2ty)

|x| dμ

�
∫
Ω

2|x + ty| dμ −
∫
Ω
|x + 2ty| dμ

�
∫
Ω1(x+ty)

sgn(x + ty)x dμ −
∫
Ω0(x+ty)

|x| dμ

�
∫
Ω1(x+ty)

sgn(x + ty)x dμ +
∫
Ω0(x+ty)

|x| dμ

�
∫
Ω
|x| dμ.

If t < 0 , the only change in the above inequalities occurs in the first two lines, which
become

−
∫
Ω1(y)

sgn(y)x dμ −
∫
Ω0(y)

|x| dμ � −
∫
Ω1(y)

sgn(y)x dμ +
∫
Ω0(y)

|x| dμ

�
∫
Ω
|x + 2ty| dμ + 2t

∫
Ω
|y| dμ.

EXAMPLE 4.2. Let C(Ω) be the space of all continuous real valued functions on
the compact metric space Ω equipped with the norm ‖x‖ = sup {|x(u)| : u ∈ Ω} .
Then

(x, y)s = sup {x(u)y(u) : |y(u)| = ‖y‖}, (4.1)
(x, y)i = inf {x(u)y(u) : |y(u)| = ‖y‖}. (4.2)

This result can be found in [2, Example 12.2] in the case that Ω is a compact subset
of R

m . The proof in [2] depends on the Riesz representation theorem. We give an
elementary proof of (4.1); (4.2) then follows from (x, y)i = −(−x, y)s .

Let x, y be two elements of C(Ω) . The set Ω(y) = {u ∈ Ω : |y(u)| = ‖y‖} is
compact and nonempty. If u ∈ Ω(y) , then

lim
t→0+

(x(u) + ty(u))2 − ‖y‖2

2t
� lim

t→0+

‖y + tx‖2 − ‖y‖2

2t
,

which implies x(u)y(u) � (x, y)s for all u ∈ Ω(y) .
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For each t > 0 there is ut ∈ Ω with ‖y + tx‖ = |y(ut) + tx(ut)| . From the
inequality

‖y‖ − t ‖x‖ � ‖y + tx‖ = |y(ut) + tx(ut)| � |y(ut)| + t ‖x‖

we conclude that 0 � ‖y‖−|y(ut)| � 2t ‖x‖ , and that |y(ut)| → ‖y‖ as t → 0+ . Since
Ω is compact, there exists a sequence (tn) , tn > 0 , tn → 0 , such that wn = utn → w
(as n → ∞ ) for some w ∈ Ω . As |y(w)| = limn→∞ |y(wn)| = ‖y‖ , we have
w ∈ Ω(y) .

Let β be an upper bound for the set {x(u)y(u) : u ∈ Ω(y)} . Then

‖x + tny‖2 − ‖y‖2

2tn
=

(y(wn) + tnx(wn))2 − ‖y‖2

2tn

= x(wn)y(wn) + 1
2 tn|x(wn)|2 +

|y(wn)|2 − ‖y‖2

2tn

� x(wn)y(wn) + 1
2 tn ‖x‖2

.

The proof of (4.1) is completed when we observe that

(x, y)s = lim
n→∞

‖x + tny‖2 − ‖y‖2

2tn
� lim

n→∞(x(wn)y(wn) + 1
2 tn ‖x‖2)

= x(w)y(w) � β .

Suppose that x, y are two linearly independent vectors in C(Ω) . When we apply
Theorem 2.1 with t > 0 , we get

infu∈Ω(y) x(u)y(u)
supv∈Ω |y(v)| �

supu∈Ω(y) x(u)y(u)
supv∈Ω |y(v)|

� sup
v∈Ω

|x(v) + 2ty(v)| − 2t sup
v∈Ω

|y(v)|

�
infu∈Ω(x+2ty) x(u)(x(u) + 2ty(u))

supv∈Ω |x(v) + 2ty(v)|

�
supu∈Ω(x+2ty) x(u)(x(u) + 2ty(u))

supv∈Ω |x(v) + 2ty(v)|
� 2 sup

v∈Ω
|x(v) + ty(v)| − sup

v∈Ω
|x(v) + 2ty(v)|

�
infu∈Ω(x+ty) x(u)(x(u) + ty(u))

supv∈Ω |x(v) + ty(v)|

�
supu∈Ω(x+ty) x(u)(x(u) + ty(u))

supv∈Ω |x(v) + ty(v)|
� sup

v∈Ω
|x(v)|.
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If t < 0 , the only change in the above inequalities occurs in the first two lines, which
become

− supu∈Ω(y) x(u)y(u)
supv∈Ω |y(v)| � − infu∈Ω(y) x(u)y(u)

supv∈Ω |y(v)|
� sup

v∈Ω
|x(v) + 2ty(v)| + 2t sup

v∈Ω
|y(v)|.

EXAMPLE 4.3. For 1 < p < ∞ let �p be the Banach space of all vectors x =
(xj)j∈N with real coordinates such that =

∑∞
j=1 |xj|p converges, equippedwith the norm

‖x‖ = (
∑∞

j=1 |xj|p)1/p . Since �p is a smooth space, the upper and lower semi-inner
products coincide for any pair x, y ∈ �p of nonzero vectors with the semi-inner product

[x, y]p = ‖y‖ d
dt

∣∣∣
0
‖y + tx‖ = ‖y‖

∞∑
j=1

( |yj|
‖y‖
)p−1

sgn(yj)xj

(see [2, Example 12.1]); [·, ·]p is known to induce the norm of �p .
Let x, y be two linearly independent vectors in �p . When we apply Theorem 2.1

with t > 0 , we obtain the following string of inequalities:∑∞
j=1 |yj|p−1sgn(yj)xj(∑∞

j=1 |yj|p
)1/q

�
( ∞∑

j=1

|xj + 2tyj|p
)1/p

− 2t
( ∞∑

j=1

|yj|p
)1/p

�
∑∞

j=1 |xj + 2tyj|p−1sgn(xj + 2tyj)xj(∑∞
j=1 |xj + 2tyj|p

)1/q

� 2
( ∞∑

j=1

|xj + tyj|p
)1/p

−
( ∞∑

j=1

|xj + 2tyj|p
)1/p

�
∑∞

j=1 |xj + tyj|p−1sgn(xj + tyj)xj(∑∞
j=1 |xj + tyj|p

)1/q

�
( ∞∑

j=1

|xj|p
)1/p

,

where q is the conjugate index q = p/(p − 1) for p . Suppose that t < 0 . Then the
only change in the above inequalities occurs in the first line, which becomes

−
∑∞

j=1 |yj|p−1sgn(yj)xj(∑∞
j=1 |yj|p

)1/q
�
( ∞∑

j=1

|xj + 2tyj|p
)1/p

+ 2t
( ∞∑

j=1

|yj|p
)1/p

.

Let us consider the case when X is a general inner product space. For any given
pair x, y of linearly independent vectors, Proposition 2.3 describes the convexity and
concavity of the mapping Ψp

x,y . For this situation we are able to obtain a refinement of
the Schwarz inequality.
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PROPOSITION 4.4. Let (X, (·, ·)) be an inner product space, x, y a pair of linearly
independent vectors in X , and let t1 and t2 be defined by equations (2.9).

(i) If t2 � a < b or a < b � t1 , and if η = sgn( 1
2 (a + b)) , then the following

inequalities hold:

η(x, y) �
∫ b

a

‖x‖2 + t(x, y)
‖x + ty‖ dt

� ‖y‖
2

{
2 ‖x‖2 + (a + b)(x, y)

‖2x + (a + b)y‖

+
1
2

[
‖x‖2 + a(x, y)

‖x + ay‖ +
‖x‖2 + b(x, y)

‖x + by‖

]}

� ‖y‖
2

[
‖x‖2 + a(x, y)

‖x + ay‖ +
‖x‖2 + b(x, y)

‖x + by‖

]
� ‖x‖ ‖y‖ ; (4.3)

(ii) If 0 < a < b � t2 or t1 � a < b � 0 , and if η is as above, then

η (x, y) � ‖y‖
b − a

∫ b

a

‖x‖2 + t(x, y)
‖x + ty‖ dt

� ‖y‖
[

2 ‖x‖2 + (a + b)(x, y)
‖2x + (a + b)y‖

]
� ‖x‖ ‖y‖ . (4.4)

Proof. We note that t1 < 0 < t2 and that |Ψx,y(t)| � ‖x‖ for all t ∈ R .

(i) By (2.4) we have Ψx,y(t) � (x, y) ‖y‖−1 for all t � 0 , from which we deduce

(x, y) � ‖y‖
2

∫ b

a
Ψx,y(t) dt if 0 � a < b.

If we choose a, b in the interval [t2, +∞) , then the function Ψ(t) := Ψx,y(t) is convex
on [a, b] and Hermite-Hadamard’s inequality [10, p.10] can be applied to Ψ :

1
b − a

∫ b

a
Ψ(t) dt � 1

2

[
Ψ
(a + b

2

)
+

Ψ(a) + Ψ(b)
2

]
� Ψ(a) + Ψ(b)

2
� ‖x‖ .

(4.5)
This gives (4.3) with η = 1 . The result for a, b ∈ (−∞, t1] follows from the inequality
Ψ(t) � −(x, y) ‖y‖−1 (valid for t � 0 ) gleaned from (2.4).

(ii) follows from Hermite-Hadamard’s inequality

1
b − a

∫ b

a
Ψ(t) dt � Ψ

(
a + b

2

)
for concave mappings; we omit the details.

�
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COROLLARY 4.5. If x ⊥ y with x, y nonzero, then we have the inequality

1
b − a

∫ b

a

dt
‖x + ty‖ � 1

2

{
1∥∥x + 1

2 (a + b)y
∥∥ +

1
2

[
1

‖x + ay‖ +
1

‖x + by‖
]}

� 1
2

[
1

‖x + ay‖ +
1

‖x + by‖
]

� 1
‖x‖

if s2 � a < b or a < b � s1 , respectively the inequality

1
b − a

∫ b

a

dt
‖x + ty‖ � 1∥∥x + 1

2 (a + b)y
∥∥ � 1

‖x‖
if 0 � a < b � s2 or s1 � a < b � 0 , where

s1 = − ‖x‖√
2 ‖y‖ , s2 =

‖x‖√
2 ‖y‖ .
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