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THE MAPPING Y%, IN NORMED LINEAR SPACES AND
ITS APPLICATIONS IN THE THEORY OF INEQUALITIES

S. S. DRAGOMIR AND J. J. KOLIHA

(communicated by J. Pecaric)

Abstract. In this paper we introduce the mapping ‘i’iy (1) = (e, x+1y)p [lx + || ™1, which is
derived from the lower and upper semi-inner product (-,-); and (-, -)s, and study its properties
of monotonicity, boundedness and convexity. We give applications to height functions and to
inequalities in analysis, including a refinement of the Schwarz inequality.

1. Introduction

This paper continues the investigation started by the present authors in [6, 7]. In
[6], we studied the mapping

oyl =
t

Vi ()

defined on R\ {0} in order to obtain a refinement of the norm in X as an instrument of
measurement, and obtained refinements of inequalities important in analysis as a result.
In [7] the mapping

[l + 2ey]] = [l + 2]
t )

Yer(1) =

was introduced to study the finer points of geometry of the normed linear spaces;
applications included new characterizations of the Birkhoff orthogonality and best ap-
proximants.

Indispensable tools in this process are the lower and upper semi-inner product in
X, defined by

t € R\{0},

e+ ay[1* = Jlx]1®

(y’x)i - IEI& 2t ’
and ) )
[l + a1 — [Ixll
= lim
(v, %) 0+ 2t ’
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respectively. These limits are well defined for every pair x,y € X, and play a rdle
in normed spaces similar to that of the inner product in an inner product space. For
reference we list some of the main properties of these products that will be used in the
sequel (see [2, 3, 4, 5}) Let p,qg € {s,i}, p #q.

D (x,x)p = ||xH forall x € X;
(1) (ox, By)p = aB(x,y), if af >0 and x,y € X;

M) [(x,y)pl < [Ix][ [Iy]| forall x,y € X;

(IV) (ax+y,x)p = a(x,x), + (y,x)p if x,y belong to X and o is a real number;
(V) (—x,y)p = —(x,y)q forall x,y € X;

(VI) (X+y, 2)p < |Ix[ [zl + (v, 2)p forall x,y,z € X;

(VII) The mapping (+,-)p is continuous and subadditive (superadditive) in the first

variable for p = s (or p =1i);
(VIID) We have the inequality

(y,x); < (y,x)s forall x,y € X;
(IX) If the norm ||-|| is induced by an inner product (-, ), then

(v, x)i = (v,x) = (y,%)s forall x,y € X.

In the present paper we introduce the mappings W%, by (2.1), and start investigat-
ing their monotonicity, boundedness and convexity. These properties are then applied
to height functions, and to obtaining refinements of the Schwarz inequality, and other
inequalities useful in analysis.

2. Properties of the mapping V7,

Let x,y be two fixed linearly independent vectors in the normed linear space
(X, ]|-l) - We consider the two mappings

(x7x + ty)P

2R pe s, i), 2.1
ol {1} @1

W, (1) :=
well defined for all # € R, which often arise in analytic and geometric considerations
of normed linear spaces employing the lower and upper semi-inner product. (See,
for instance [7], where the authors used W, to investigate the mapping ¥.,(r) =
(J]x =+ 2ty|| — ||x + y||)/¢.) This paper is devoted to a systemic study of the mapping
W7, , which plays an important role in geometry of normed linear spaces and the theory
of inequalities in analysis.

The following theorem describes the main properties of this mapping.

THEOREM 2.1. Let (X, ||||) be a real normed linear space and x,y two linearly
independent vectors in X. Then
(i) The mapping Y% is bounded on R with

W2, (0)| < |Ix|| forall t € R; (2.2)
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(i) We have the inequality
Ox,y (1) < ‘I’j” (1) <, (1) < |lx|| forall teR (2.3)
and

Sy (1) = Wi,y (20) 2 W5, (20) >l + 20p]] = 2] Iy

()i if1<0,
Iyl
where 8., (t) =2 ||x + ty|| — ||x + 2ty]|.
(iii) W%, is continuous at 0, and we have the limits
3 (.X', y)Y
lim Y2 (1) = 2.5
A e 0= T >
and (r.7)
. X, Y)i
lim Y2 (1) = — ; (2.6)
r—co Yl

(iv) W, is increasing on (—oc,0| and decreasing on [0, +00).

Proof. (i) follows from the Schwarz inequality.
(ii) Using the basic properties of the lower and upper semi-inner products as set
out in the Introduction,we have

llx + 22y|| [12x + 2ty > (x + 2y, 2x + 2ty);
= (2x 4 2ty — x, 2x + 21y), = ||12x + 21> — (x, 2x + 2ty);
which yields
b+ 209 = 125 + 20| = —(x, 2%+ 22y); |26 + 209 75
this is equivalent to
(x,x + 1y);

[lx + 2|

for all + € R. This proves the first inequality in (2.3). The second inequality is clear.
To obtain the third inequality we apply (II1): (x,x + £y)s < ||x + 2y|| ||x]| -
The Schwarz inequality is used to prove the first inequality in (2.4):

2+ oyl = [+ 2ey]| <

12 + 2ey][ floc + 20yl = (2x + 22y, x + 21y);
= (x4 x + 21y, x + 21y), = ||x + 209|)* + (x, x + 21y)s,
hence
—1 s
2 |+ ayll = lloe 4+ 209(] = (o, x + 2y)s [l + 20y[| 7 = W55, (1)
forall r € R.
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Now suppose that # > 0. Then ||x+ 2ty|| — 2|¢| ||y|| = ||x + 2¢v]| — 2z ||y]| , and
by the Schwarz inequality we have

x4+ 20| Il = (x+ 289, 3)s = (x,)s + 2¢|y])7

which implies
(o, ¥)s
Iyl
For t+ < 0 we replace t by —¢ and y by —y in the preceding argument, and the last
inequality in (2.3) follows.
(iii) We observe that

[l + 22y]| = 2¢ly[| >

limd§, , (1) = ||| ;
t—0

then by inequality (2.3) the limit lim,_o % (7) exists and equals ||x|| . Hence ¥, is
continuous at 0.
To establish limits (2.5) and (2.6) we observe that

el = Iyl (),

a—0+ o Iyl

After substitution o = ¢~ for ¢ > 0 and a short calculation we obtain

O T [

2 |+ 1yl = [l + 22y]| = p T,
2

(Fey(a).

Consequently,
(v, %)s
Iyl
(2.5) then follows by applying inequality (2.3). Using this result, we have

lim 8., (1) = lim Fuy(a) =

t—+o00

lim W () = lim W () = 2% 000
t——c0 u—too BT [l [yl
and (2.6) obtains.

(iv) This was already proved in [7] as an intermediate step in the proof of mono-
tonicity of 7., (¢) = (||lx + 2ty||—||x + ty||) /¢ . For the sake of completeness, we include
a simplified proof here.

To take advantage of the properties of the upper and lower semi-inner products we
introduce the mapping

104 ([) = (y7x+ty)l7

' , € {i,s}.
& ao) o PEbs

We have
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where g € {s,i}, g # p. The proof will be completed when we show that @, is
increasing on R.

Suppose that p € {i,s} and 7, > t; . Then, by the Schwarz inequality,
[y + x| Iy + ax] = (v + 2,y + 11%),
forall x,y € X. Using properties of the norm derivatives, we obtain

(v +tx,y +1x), = (2 — t)x +y + 1ix,y + 11x),,
= |ly + txl|* + (12 — 1) (x, y + 11x),,

and the above inequality yields
ly + taxcl Ly + txl] > Iy + 6x]* + (12 = 1) (x,y + 01%).
Hence

(y +0x)p _ [ly+ x| — |y + 4
Hy“rthH = h—1n

O (1) =

Vs

Lett:=t, —t; >0 andlet g € {s,i}, g #p. Then

Iy + exll = vy +1x)g = (v + 1x — 1x,y + 1x),
= lly+ ol + (=, y + 1x)g = Iy + ix]® = o,y + 1),

and

(ly + exll = Iyl =" < L (1) -

Consequently,

[y + toxl| = lly + auxfl _ [ly + e + x| = [ly + 1]
t2 _ tl = ¢ < CDf’thlx,x (t) = (Df',x (tz) .

This proves @ ,(1;) < @) ,(t2) and (iv) follows.

REMARK 2.2. The graphs of ‘Pf;y , p € {i, s}, in the case of a normed linear space
are depicted in Fig. 1. They are drawn in a dashed line to suggest that there is no
information about the convexity of W%, p € {i,s}. The absolute maximum is |x||,
attained at + = 0. The graph has two horizontal asymptotes, (x,y);/ ||y as t — oo
and —(x,y):/ [ly|| as t — —o0.



372 S. S. DRAGOMIR AND J. J. KOLIHA

g

Figure 1.

Fig. 1 depicts the graph in the case that (x,y); > 0. Then —(x,y); = —(x,y)s,
but —(x,y); may be positive, negative or zero.

We now turn our attention to the case when X is an inner product space. While we
have no information about the convexity properties of %, in a general normed linear
space, we are able to determine the convexity and concavity of ¥, , in an inner product
space from its second derivative.

PROPOSITION 2.3.  Let (X,(-,-)) be a real inner product space and x,y two
linearly independent vectors in X. The mapping ¥,, : R — R defined by

2
(X[l + 2Cx y)

For 0= 0]

xy
is twice differentiable on R with

¥y () _ (e = [l o (2.7)

di e+ oy

and ) s
¥y @) I = ()
ae’ b+ oy
Moreover, the mapping ¥, is strictly convex on (—o0,t;) U (t,00) and strictly
concave on (t1,t;), where

“(xy) - /A — () + VA
H = ('x y) v_V7 = (‘x y) 5y (2.9)

2 2
4yl 4l
2 2
and A,y = 8 ||x|” ly[” + (x,)* > 0.

Proof. For notational convenience we introduce the mapping ny () = [jx + ty||,
and find that

(27 [l¢l1* + 2(r,) = [lx])- (2.8)

d () + 2 [yII°

Enx’y(t) = l’lx,y(t)
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Then
Mo _ 27 LT 1m0 Ol + )
-2 :<x,y>nx,y<r> =l + 1(x.3) %]
- nﬁi(l) )y (0) = (P + 1(e. ) (053) + ¢ 51P)]
= 7 L+ 263) + 2 )

(Il + 1, ) () + 1)

212
_ o) = [Ixl” Iyl
n3 (1) ’

X,y

and equation (2.7) is proved. Further,

Py () _ () = Il s o
i et) 7m0, (1)

G P [, )+ blP)
n;‘;’y(t) Y Ny (1)

x,y)? — x| ’
S ,”(nl T 2 o) = 3103,3) — 32 Iv1P)

3 191 = (,9)? 02 2
= e (t) (2t ||y|| +t(y>x) - ||x|| )>
X,y

which proves (2.8).
The quadratic equation

22 |y|I* + t(y,x) — x> =0

has two distinct solutions #;, #, given in the statement of the proposition. Then
" . 7 . ..
W, (1) >0if 1 € (—00,11) U (f2,00) and ¥, , (1) < 0 if 7 € (t1,12) . The proposition
is now proved.
]

REMARK 2.4. The graph of W, in an inner product space is given in Fig. 2,
this time for the case (x,y) < 0. The 7-intercept #, is obtained from the equation
|Ix[|* + #(x,y) = 0. In the case of an inner product space, the convexity behaviour of
Y., is known from Proposition 2.3; in particular, #; and #, defined by (2.9) are the
inflection points of ¥y, .
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Figure 2.

The graph of ¥, for the case of two orthogonal vectors x,y is given in Fig. 3;
then ¥, is even and the graph is asymptotic to the -axis.

ll=ll

Figure 3.

3. Applications to height functions

Alsina, Guijarro and Tomas [1] considered the following so-called height functions:

2
M) =y + D=0

Ix = y|I?
2

hz(x) :y+ HyH B (xazy)s (X*)’),
[[x =yl

) =y + LX)

2
[lx =l
where x,y are two distinct vectors in a real normed linear space X, and applied them in
characterizing inner product spaces in the class of normed spaces. For their interesting
results see paper [1].
We observe that the function £3 is related to the mappings introduced in this paper,
namely,

Iy = hs(—tx,y)|| = [¥5, ()| forallz € R.
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For two given linearly independent vectors x,y in a normed linear space (X, ||||)
we define the following objects:

— (v, %) .

cosp, (x,y) 1= D H;H where p = sorp =i,

Ap(x,y) == ||x|| [ly]| sinp (x, ) where p = sorp =i,
A0 y) == Lo,y flx = yl| - where k = 1,2 0r 3.

If X is an inner product space, then h; = h, = h3 = h, and the following proposition
is true.

PROPOSITION 3.1. Let (X, ||-||) be an inner product space. Then for all x,y € X
with x # y we have the identity

An(x,y) = 5 I lly — x| sin (v, y — x). (3-1)

Proof. A simple calculation in inner product spaces gives

2 2
y,y—X y,y—X
Ve )P = [yl — 2 Q2 =X Dy =07 e

7 T Z
lly — x|l lly — x|
2 2
Iy =Xl = 6,y —x)?
_ . .
lly — x|l

— o B
As cos (y,y—x) = (y,y —x) |y " [y —x]| ", we have

2 2 2 2 —
_ Iy = Xl = vl lly = x[1" cos? (v, y — x)
= )

Iy — x|

2. —

= [ylI sin® (v, y — %)

(e, )1

which implies
1AGx Y[ = [Iyll sin (y,y — x),
and (3.1) is obtained.
O

The following result reveals the geometric nature of the height function A3 in a
normed linear space.

PROPOSITION 3.2. Let (X, ||-||) be a normed linear space. Then, for all x,y € X
with x # y, we have the representation

— Il — Al
h3(x7y) = COS; (y’y 7.X') Hy — _x|| X — COSy (-xay *.X') Hy — X|| Vs

(3.2)
and the inequality

X . .
A< 3N (| coss 0,y = )] + [ cos, (3 = 0)]) < [l yll. (3.3)
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Proof. Using the properties of the upper and lower semi-inner products we have in
succession

(v,y — x);
hi(x,y) =y + ———= (x —y)
[y — x|
:(wadfx?)Hfmyfx?x
[y — x| lly — x|
2
oy =X =y —x)s (Y —x)s
= 2 2 X
[y — x| lly — x|
_y=x—y,y—x) +(%y*X)sx
- 2 2
[y — x| [y — x|
(X, y —X)s 0,y —x)s
== 2 2 X
ly — || lly — x|l
_Oy=x) bl Gy=x)s ]
V[l [y = [ [ly — x|l (] {ly — x| [ly — x|

and the identity (3.2) is obtained.
We have

AP, y) = s ()| [1x = vl

1| (v,y —x), (x,y — x),
=3 X — =y lly — x|
[ly — x]| |y — x]|
|(v,y — x)s] |(x,y — x)s|
e X[ Iyl + ==t Il Il
S ylHly — | Iy — x| [|y|

and the first part of the inequality (3.3) is proved. The second part is obvious.

4. Applications to inequalities

The inequalities obtained in Section 2 can be applied in concrete Banach spaces to
obtain improvements of classical inequalities.

EXAMPLE 4.1. Theorem 2.1 can be applied to the space L'(Q) of all u -integrable
real valued functions on the measure space (Q,.,u), where &/ is a o-algebra of
subsets of Q, and u a complete positive measure on <7 . The norm on L(Q) is given
by [lx|| = [, x| du. A modification of the argument in [9] gives

(6, ¥)p = ¥l (/Q ( )Sgn(Y)de +&(p) /Q " [ du) ;
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where €(i) = —1 and €(s) = +1, Qo(y) = {r € Q : y(r) = 0}, and Q;(y) =
Q\Qy(y). If x,y are linearly independent vectors in L(Q) and ¢ > 0, we get

| sentwau— [ plau< [ %mnw+/ ] di
Qi(y) Qo(y) Qi(y)
< [ s 2nldn - %/WWM
< / sgn(x + 2ty)xdu — / |x| du
Qi (x+2ty) Qo (x+21y)

< / sgn(x + 2ty)xdu + / |x| du
Q) (x+2ty) Qo (x+21ty)

</2\x+ty\du—/\x+2ty\du
Q Q

</ sgn(x + 1y)xdu —/ |x| du
Qi (x+ty) Qo(x-+ty)

< / sgn(x + ty)xdu +/ |x| du
Qi (xty) Qo(x-+y)

< [ wlan.

If + < 0, the only change in the above inequalities occurs in the first two lines, which
become

—/ sgn(y)xdu—/ x| dp < —/ sgn(y)xdu+/ x| du
() () () ()
</\X+2ty|du+2t/|y|du~
Q Q

EXAMPLE 4.2. Let C(Q) be the space of all continuous real valued functions on
the compact metric space Q equipped with the norm |[x|| = sup {|x(x)| : u € Q}.
Then

(x,y)s = sup{x(u)y(u) : [y()| = [y}, (4.1)
(x,3)i = inf {x(u)y(u) : [y(u)| = [y]l}- (4.2)

This result can be found in [2, Example 12.2] in the case that Q is a compact subset
of R™. The proof in [2] depends on the Riesz representation theorem. We give an
elementary proof of (4.1); (4.2) then follows from (x,y); = —(—x,y)s -

Let x,y be two elements of C(Q). The set Q(y) = {u € Q : [y(u)| = ||y||} is
compact and nonempty. If u € Q(y), then

b 2 2 2
J— t —_
L )l 1 O
—0+ 2t t—0+ 2t

which implies x(u)y(u) < (x,y)s forall u € Q(y).
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For each ¢t > 0 there is u, € Q with ||y + || = |y(u;) + #x(«,)|. From the
inequality

IVl = 2 llxll < Hly 4 xl] = [y(ue) + oxu) | < [y ()| + 2]|x]

we conclude that 0 < ||y|| —|y(u;)| < 2¢]|x||, and that |y(u,;)| — ||y|| as # — 0+ . Since
Q is compact, there exists a sequence (1,), #, > 0, 1, — 0, such that w, = u,, — w
(as n — oo0) for some w € Q. As |[y(w)| = limy—o0 [y(Wn)| = ||¥|l. we have
we Q).

Let B be an upper bound for the set {x(u)y(u) : u € Q(y)}. Then

2 2 2
[+ tayl” — 117 (W) + tax(wa))* — Iyl
2t, 2t,

2
> ywa))? = Iyl

= x(Wn)Y(Wn) + %tn|x(w,,)\ + 2
n
< x(Wn)Y(Wn) + %tn ||xH2 .

The proof of (4.1) is completed when we observe that

2 2
. x+ tn - .
Gy = fim IO o) + L |I%1%)

n—oo Ztn n— 00

= x(w)y(w) < B.

Suppose that x, y are two linearly independent vectors in C(Q). When we apply
Theorem 2.1 with # > 0, we get

lnfMEQ ( )y(u) SupuGQ(y) x(u)y(u)
sup,eq |y(v)] sup,eq [Y(v)|

< sup [x(v) + 2ty(v)| — 2t sup [y(v)|
veQ veQ

< Infueouran) X(u) (x(u) + 21y(u))
sup,cq [X(v) + 21y (v)|
< SUP,cq(vsary) X (1) (x(u) + 21y(u))
sup,cq [X(v) + 21y(v)|
< 2suplx(v) + ty(v)| — sup [x(v) + 2ty(v)]
veQ veQ
< infyco(viry) ¥(u) (x(u) + ty(u))
sup,cq [x(v) + ty(v)|
Py X0 (50 +15(0)
SuvaQ \X(V) +ty(v)]

< sup x(v)|.
veQ




THE MAPPING W%, IN NORMED LINEAR SPACES 379

If + < 0, the only change in the above inequalities occurs in the first two lines, which
become
_ SUPyen(y) x(u)y(u) < _ inquQ(y) x(u)y(u)
SUp,c [Y(V)| T sup,eq [y(V))

< sup [x(v) + 20y(v)| + 2 sup [y(v)|.
veEQ veQ

EXAMPLE 4.3. For 1 < p < oo let /7 be the Banach space of all vectors x =
(%7),eN withreal coordinates such that = > i1 [l converges, equipped with the norm
Ix|| = (ZJOZOI lx;[P)1/P. Since ¢ is a smooth space, the upper and lower semi-inner
products coincide for any pair x,y € ¢ of nonzero vectors with the semi-inner product

fesly = Iyl 2] oz |—||y||2(”yf|) sen()y

(see [2, Example 12.1]); [+, -], is known to induce the norm of ¢ .
Let x,y be two linearly independent vectors in ##. When we apply Theorem 2.1
with ¢ > 0, we obtain the following string of inequalities:

2'0:01 v~ sgn ) x] 1/p > 1/p
: 1/q (Z [x; + 2ty ) - 2I<Z |y/'|p)
(Zj:l vl ) j=1

< Do [+ 237 segn(x + 203)x;

= o 1/q
(Zj:l x; + ZWJ"’)
> 1/p > 1/p
Z(Z ‘Xj + tyj|”) — (Z |Xj + 2tyj‘p)
j=1 j=1
CXab 1y sgn(x; + 1)
= oo 1/q
(Z: lx; + fyj‘\”)

(Z ‘xj‘p)l/p

where g is the conjugate index ¢ = p/(p — 1) for p. Suppose that # < 0. Then the
only change in the above inequalities occurs in the first line, which becomes

Z('):l |yj| Sgn yJ 'xJ 1/p > 1/p
& e (Z lxj + 21yj] ) +2t(z |yj‘p)
(355 k)

Let us consider the case when X is a general inner product space. For any given
pair x,y of linearly independent vectors, Proposition 2.3 describes the convexity and
concavity of the mapping W%, . For this situation we are able to obtain a refinement of
the Schwarz inequality.
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PROPOSITION 4.4. Let (X, (+,+)) be an inner product space, x,y a pair of linearly
independent vectors in X, and let t; and t, be defined by equations (2.9).
(i) Ifn <a<bora<b<t,andif n=sgn(s(a+b)), then the following
inequalities hold:

b 2
[[x)l” + t(x, )
n(x,y) < —r o dt
« |+
2
vl ) 2 [x[I” + (a + b)(x,y)
o2 12x + (a + b)y||
LI ) | el b
2 x+ayl [lx + byl
2 2
M ||x|| +a(x,y) Hx” + b(x,y) < ||x|| ||y|| (4'3)
2 [[x + ay| [|x + byl

(i) If0<a<b<thorti <a<b<O0,andif n is as above, then

bl 7 I+ o)
X, < dt
L S AR T

2P + (a+B)(xy)
< ||y||[ I2x + (a + b)y||

] < [yl (4.4)

Proof. We note that r; < 0 < #, and that |¥,,(7)| < ||x|| forall 7 € R.
(i) By (2.4) we have W, ,(f) > (x,y) |ly||~" forall > 0, from which we deduce

b
(x,y) < HLZH/ ¥, (f)di if 0<a<b.

If we choose a, b in the interval [z, +00), then the function W¥(r) := W, ,(r) is convex
on [a,b] and Hermite-Hadamard’s inequality [10, p.10] can be applied to ¥':

b
bia/a W) di < % {ly(a;—b) +‘P(a);\11(b)} < ‘P(a)—;‘l‘(b) <l
(4.5)

This gives (4.3) with n = 1. Theresult for a, b € (—o0, 1] follows from the inequality
W(r) = —(x,y)|ly]|”" (valid for # < 0) gleaned from (2.4).
(ii) follows from Hermite-Hadamard’s inequality

1 b a+b
¥ <Y
b—a/a (¢) dt < > )

for concave mappings; we omit the details.
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COROLLARY 4.5. If x 1L y with x,y nonzero, then we have the inequality

l/bdt<1 1+1{1+1
b—al, lIx+oll =2\ ||x+3@+b)y] 2 Llx+ayl  [x+byl

<1{ Lo ]<1
2 [le+ayll eyl ] [l

if so <a<bora<b< sy, respectively the inequality

1/b dt 1 1
< 1 g_

b—a), lx+oll = |x+3(@+b)y| x|

fO0<a<b<syors <a<b<0, where

x| _ i

S)]=——F——, Sy = —F—.
V2{lyl V21
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