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RIESZ’S FUNCTIONS AND CARLESON INEQUALITIES

TAKAHIKO NAKAZI

(communicated by H. M. Srivastava)

Abstract. Let μ be a finite positive Borel measure on the open unit disc D and H a set of all
analytic functions on D . For each a in D , put

r(μ, a) = sup |f (a)|2

where f ∈ H and
∫
D
|f |2dμ � 1 . Unless the support set of μ is a finite set,

∫
D

r(μ, a)dμ(a) =

∞ . However

sup
z∈D

∫
Dt(z)

r(μ, a)dμ(a) < ∞

may happen where Dt(z) denotes the Bergman disc in D . We study when this is possible.

When ν is a discrete measure such that dν =
∑
a∈A

s(μ, a)δa ,

sup
z∈D

∫
Dt(z)

r(μ, a)dν(a) = sup
z∈D

∑
a∈A∩Dt(z)

1.

Under some condition on μ , we show that sup
z∈D

∫
Dt(z)

r(μ, a)dν(a) < ∞ for a finite positive

Borel measure ν on D if and only if (ν,μ) -Carleson inequality is valid.

1. Introduction

Let D be the open unit disc in C and H a set of all analytic functions on D .
When μ is a finite positive Borel measure on D and a ∈ D , put

s(μ) = s(μ, a) = inf{
∫

D
|f |2dμ ; f ∈ H and f (a) = 1}

and

r(μ) = r(μ, a) = sup{|f (a)|2 ; f ∈ H and
∫

D
|f |2dμ � 1}.
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In the previous paper [2], we noted the following : r(μ, a)s(μ, a) = 1 for a ∈ D ,
assuming ∞×0 = 1, r(μ) is lower semicontinuous and s(μ) is upper semicontinuous
on D. r and s are called Riesz’s functions. Corollary 2 in [2] shows that∫

D
r(μ, a)dμ(a) = ∞

if supp μ is not a finite set. By Theorem 8 and Lemma 2 in [2], when (supp μ) ∩ D
is a uniqueness set for H, L2

a(μ) = H ∩ L2(μ) is closed if and only if for all compact
sets K in D ∫

K
r(μ, a)dμ(a) < ∞.

For any z in D , let φz be the Möbius function on D and put

β(z, w) =
1
2

log(1 + |φz(w)|)(1 − |φz(w)|)−1 (z, w ∈ D).

For 0 < t < ∞ and z in D , set

Dt(z) = {w ∈ D ; β(z, w) < t}
which is called the Bergman disc with “center” z and “radius” t . For all compact sets

K in D
∫

K
r(μ, a)dμ(a) < ∞ if and only if for any z in D,

∫
Dt(z)

r(μ, a)dμ(a) < ∞ .

We are interested in when

sup
z∈D

∫
Dt(z)

r(μ, a)dμ(a) < ∞.

In Section 2, we study a finite positive Borel measure μ such that

sup
z∈D

∫
Dt(z)

r(μ, a)dμ(a) < ∞.

If sup
z∈D

∫
Dt(z)

r(μ, a)dμ(a) < ∞ and ν is a finite positive Borel measure on D with

ν � μ then sup
z∈D

∫
Dt(z)

r(μ, a)dν(a) < ∞ . Even if sup
z∈D

∫
Dt(z)

r(μ, a)dμ(a) = ∞ ,

sup
z∈D

∫
Dt(z)

r(μ, a)dν(a) < ∞ may happen when ν is enough small. In Section 3, we

study a finite positive Borel measure ν for each μ such that sup
z∈D

∫
Dt(z)

r(μ, a)dν(a) <

∞ .
Throughout this paper, the measure m denotes the normalized Lebesgue area

measure on D . We define an average of a finite positive Borel measure μ on Dt(z) by
μ̂t(z) = μ(Dt(z))/m(Dt(z)) (z ∈ D) . We say that ν and μ satisfy the (ν,μ) -Carleson
inequality, if there is a constant C > 0 such that∫

D
|f |2dν � C

∫
D
|f |2dμ
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for all f in H . Under some condition on μ , the (ν,μ) -Carleson inequality is valid if
and only if ν̂t � γ μ̂t on D for some positive constant γ > 0 (see [1]). In Section 4,
under the same condition above on μ , we show that the (ν,μ) -Carleson inequality is

valid if and only if sup
z∈D

∫
Dt(z)

r(μ, a)dν(a) < ∞ . If dν =
∑
a∈A

s(μ, a)δa where A is a

discrete set in D and δa denotes a po int mass measure at a , then note that

sup
z∈D

∫
Dt(z)

r(μ, a)dν(a) = sup
z∈D

∑
a∈A∩Dt(z)

1.

Hence our result implies a generalization of a theorem of K.Zhu in [4, Theorem 1] when
μ = m .

For a finite positive Borel measure μ on D , put

μ̃(a) =
∫

D
|ka(z)|2dμ(z) (a ∈ D)

where ka(z) = (1 − |a|2)/(1 − āz)2 . When dμ = wdm , we denote the function by w̃
instead of μ̃ . We say that w is in (A2)∂ if there exists a finite positive constant γ such
that

w̃(a) × (w−1)∼(a) � γ
for all a in D .

2. r(μ, a)dμ(a)

It is easy to see that sup
z∈D

∫
Dt(z)

r(m, a)dm(a) < ∞ . In fact,

sup
z∈D

∫
Dt(z)

(1 − |a|2)−2dm(a)

� sup
z∈D

{
sup

a∈Dt(z)
(1 − |a|2)−2

}
m(Dt(z))

= sup
z∈D

⎧⎨
⎩ sup

w∈Dt(0)

(
1 −

∣∣∣∣ z − w
1 − z̄w

∣∣∣∣
2
)−2

⎫⎬
⎭ (1 − |z|2)2k2

(1 − |z|2k2)2

� sup
z∈D

(1 − |z|2k2)−2 × 16
k2

sup
w∈Dt(0)

(1 − |w|2)−2 < ∞

because k = tanh t ∈ (0, 1) . When dμ =
∑
a∈A

s(μ, a)δa and A is a set of finitely

many separated sequences in D , sup
z∈D

∫
Dt(z)

r(μ, a)dμ(a) < ∞ because r(μ, a)dμ(a) =∑
a∈A

δa . Put

R = {μ ; sup
z∈D

∫
Dt(z)

r(μ, a)dμ(a) < ∞},
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then m belongs to R and dμ =
∑
a∈A

s(μ, a)δa belongs to A if and only if A is a set of

finitely many separated sequences in D , that is, the supremum of the number of points
in A ∩ Dt(z) is finite.

LEMMA 1. Suppose dμ = wdm and w is in (A2)∂ , and fix t > 0 . If β(z, a) < t
then there exists a constant C > 0 such that

1
C

� μ(Dt(a))
μ(Dt(z))

� C.

Proof. When β(z, a) < t, Dt(a) ⊂ D2t(z) and so it is enough to prove that

sup
z∈D

μ(D2t(z))
μ(Dt(z))

< ∞.

This is equivalent to that

sup
z∈D

μ̂2t(z)
μ̂t(z)

< ∞.

μ̂t � μ̃ on D for any t by Lemma 4.3.3 in [5]. By hypothesis on w , there exists a finite
positive constant γ such that μ̃ � γ μ̂t on D for any t (see [1, p157]). This implies
that sup

z∈D
μ̂2t(z)/μ̂t(z) < ∞.

LEMMA 2. Suppose dμ = wdm and w is in (A2)∂ , and fix t > 0 . Then there
exists a constant C > 0 such that

1
C

� s(μ, z)
μ(Dt(z))

� C (z ∈ D).

Proof. Since w ∈ (A2)∂ , there exists a positive constant γ

γ−1w̃ � (w̃−1)−1 � exp(log w̃)

on D . By Proposition 4 in [2]

γ−1w̃(z) � s(μ, z)
(1 − |z|2)2

� w̃(z).

on D . By the proof of Lemma 1, w̃(z) is equivalent to μ̂t(z) = (1 − |z|2)−2μ(Dt(z))
on D . This implies that s(μ, z) is equivalent to μ(Dt(z)) on D .

THEOREM 1. Let μ be a finite positive Borel measure on D .
(1) If μj (j = 1, 2) belong to R , and λj (j = 1, 2) is a positive constant, then

λ1μ1 + λ2μ2 belongs to R.

(2) Suppose dμ =
∑
a∈A

v(a)δa and each point in A is isolated in D . Then μ

belongs to R if and only if A is a set of finitely many separated sequences.

(3) Suppose sup
z∈D

∫
Dt(z)

(1−|a|2)−9/2dμ(a) < ∞. If dμ = wdm and
∫

Kc
w−1dm <

∞ for some compact set K in D , then μ belongs to R .
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(4) If dμ = wdm and w is in (A2)∂ , then μ belongs to R .
(5) If dμ = wdm and w = |f |2 for some f in H , then μ belongs to R .

Proof. (1) Note that for j = 1, 2, λjμj � λ1μ1 + λ2μ2 and so λjr(μj, a) �
r(λ1μ1 + λ2μ2, a) (a ∈ D). Then

sup
z∈D

∫
Dt(z)

r(λ1μ1 + λ2μ2, a)d(λ1μ1 + λ2μ2)(a)

� λ 2
1 sup

z∈D

∫
Dt(z)

r(μ1, a)dμ1(a) + λ 2
2 sup

z∈D

∫
Dt(z)

r(μ2, a)dμ2(a) < ∞.

(2) Since A is isolated in D , for each a ∈ A there exists a function f in H such
that f (a) = 1 and f = 0 on A\{a} (cf. [3, Theorem 15.11]). This implies that
s(μ, a) = v(a) and so r(μ, a) = v(a)−1 . Hence

sup
z∈D

∫
Dt(z)

r(μ, a)dμ(a) = sup
z∈D

∑
a∈Dt(z)∩A

1.

This implies that μ belongs to R if and only if A is a set of finitely many separated
sequences.

(3) By Theorem 5 in [2], if
∫

Kc
w−1dm < ∞ for some compact set K in D , then

s(μ, a) � C(1 − |a|2)9/2 (a ∈ D)

for some positive constant C . Hence by hypothesis on μ ,

sup
z∈D

∫
Dt(z)

r(μ, a)dμ(a) � C sup
z∈D

∫
Dt(z)

(1 − |a|2)−9/2dμ(a) < ∞.

Thus μ belongs to R .
(4) By Lemmas 1 and 2,

sup
z∈D

∫
Dt(z)

r(μ, a)dμ(a)

� sup
z∈D

{(
sup

a∈Dt(z)
r(μ, a)

)
× μ(Dt(z))

}

= sup
z∈D

{(
sup

a∈Dt(z)

1
s(μ, a)

)
× μ(Dt(z))

}

� C1 sup
z∈D

{(
sup

a∈Dt(z)

1
μ(Dt(a))

)
× μ(Dt(z))

}

� C2 sup
z∈D

{
1

μ(Dt(z))
× μ(Dt(z))

}
= C2

where C1 and C2 are finite positive constant.
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(5) Since w = |f |2 and f ∈ H, exp(logw)∼(a) � w(a) (a ∈ D) . For

(log |f |2)∼(a) =
∫

D
log |f ◦φa(z)|2dm(z) � log |f ◦φa(0)|2.

Hence by (2) of Proposition 4 in [2]

sup
z∈D

∫
Dt(z)

r(μ, a)dμ(a)

= sup
z∈D

∫
Dt(z)

1
s(μ, a)

w(a)dm(a)

� sup
z∈D

∫
Dt(z)

w(a)
(1 − |a|2)2 exp(log w)∼(a)

dm(a)

� sup
z∈D

∫
Dt(z)

(1 − |a|2)−2dm(a)

By the remark in the first line in this section, m ∈ R and so μ belongs to R .

3. r(μ, a)dν(a)

If v is a Borel function such that 0 � v � s(μ) on D , and dν = vdm , then

sup
z∈D

∫
Dt(z)

r(μ, a)dν(a) �
∫

D
r(μ, a)v(a)dm(a) � 1.

Put

Rμ = {ν ; sup
z∈D

∫
Dt(z)

r(μ, a)dν(a) < ∞, ν is a finite positive Borel measure}

for each finite positive Borel measure μ . Then the above measure vdm belongs to
Rμ . In this section, we study the set Rμ .

THEOREM 2. μ, ν and σ denote finite positive Borel measures on D .
(1) If μ is in R and ν � γ μ for some positive constant γ then ν belongs to

Rμ .
(2) Suppose dμ = wdm and w is in (A2)∂ . If ν is in Rμ and σ̂t � γ ν̂t on D

for some γ > 0 and some t > 0 then σ belongs to Rμ .
(3) When λ is a (not necessarily finite) positive Borel measure on D and dν =

s(μ, a)dλ (a), ν belongs to Rμ if and only if sup
z∈D

λ (Dt(z)) < ∞ for some t > 0 . In

particular, when dλ =
∑
a∈A

δa and A is a discrete set in D, ν belongs to Rμ if and

only if A is a set of finitely many separated sequences.

Proof. (1) is clear.
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(2) Suppose w ∈ (A2)∂ . By Lemmas 1 and 2, there exists a positive finite constant
C such that

1
C

sup
z∈D

α(Dt(z))
μ(Dt(z))

� sup
z∈D

∫
Dt(z)

r(μ, a)dα(a) � C sup
z∈D

α(Dt(z))
μ(Dt(z))

because r(μ, a) s(μ, a) ≡ 1 . These inequalities imply (2) by applying it for α = ν
and α = σ . In fact, as α = ν in the above inequalities

sup
z∈D

ν(Dt(z))
μ(Dt(z))

< ∞

because ν ∈ Rμ . As α = σ,

sup
z∈D

σ(Dt(z))
μ(Dt(z))

� sup
z∈D

ν(Dt(z))
μ(Dt(z))

sup
z∈D

σ(Dt(z))
ν(Dt(z))

< ∞

because σ̂t � γ νt .
(3) If dν = s(μ, a)dλ (a) , then

sup
z∈D

∫
Dt(z)

r(μ, a)dν(a) = sup
z∈D

λ (Dt(z)).

This implies (3).

4. (ν,μ) -Carleson inequality

If
∫

D
r(μ, a)dν(a) < ∞ then (ν,μ) -Carleson inequality is valid (see [2, Theorem

7]). The following question is natural. Is (ν,μ) -Carleson inequality valid for ν in
Rμ ? Theorems 2 and 3 answer for it positively when dμ = wdm and w is in (A2)∂ .
Corollary 1 is a generalization of a result of K.Zhu [4, Theorem 1].

THEOREM 3. Let μ be a finite positive Borel measure and λ a (not necessarily
finite) positive Borel measure on D . Suppose dμ = wdm and w is in (A2)∂ , and
dν = s(μ, a)dλ (a). sup

z∈D
λ (Dt(z)) < ∞ if and only if (ν,μ) -Carleson inequality is

valid.

Proof. By Theorem 3 in [1], in order to prove this theorem, it is sufficient to show
that sup

z∈D
λ (Dt(z)) < ∞ if and only if

sup
z∈D

ν̂t(z)
μ̂t(z)

< ∞.

The proof of Theorem 2 shows this.

COROLLARY 1. Suppose dμ = wdm is a finite positive Borel measure with w in
(A2)∂ and dν =

∑
a∈A

s(μ, a)δa with a discrete set A in D. A is a set of finitely many

separated sequences in D if and only if (ν,μ) -Carleson inequality is valid.
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