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ON GENERALIZED LORENTZ––ZYGMUND SPACES

B. OPIC AND L. PICK

(communicated by J. Pečarić)

Abstract. WestudygeneralizedLorentz–Zygmund spaceswith broken logarithmic functions. We
derive necessary and sufficient conditions for embeddings between them. We give a complete
characterization of their associate spaces. We establish necessary and sufficient conditions for
a generalized Lorentz–Zygmund space to be a Banach function space and to have absolutely
continuous (quasi-)norm. We describe completely relations between these spaces and Orlicz
spaces.
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1. Introduction

In 1980, Bennett and Rudnick [BR] introduced the three-parameter scale of the
so-called Lorentz–Zygmund spaces. The Lorentz–Zygmund space Lp,q;α , where 0 <
p, q � ∞ and α ∈ R , is the set of all functions f on an appropriate measure space
(R,μ) , whose non-increasing rearrangement f ∗ , defined by

f ∗(t) = inf
{
λ > 0;μ({x ∈ R; |f (x)| > λ}) � t

}
, t ∈ [0,∞),
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satisfies

‖t 1
p− 1

q (1 + | log t|)α f ∗(t)‖q,(0,μ(R)) < ∞.

Bennett and Rudnick successfully applied Lorentz–Zygmund spaces to the develop-
ment of a powerful interpolation theory involving operators satisfying certain a-priori
rearrangement inequality. This way they considerably improvedmany results describing
the behaviour of operators, especially in limiting cases. The class of Lorentz–Zygmund
spaces is very important as it contains such classes as Lebesgue spaces, Lorentz spaces
or Zygmund classes, and at the same time it is a class of quite easily tractable func-
tion spaces. Another very important example of a Lorentz–Zygmund space is the one
normed by

‖f ‖ = ‖t− 1
n (1 + | log t|)−1f ∗(t)‖n,(0,1)

(in the above notation, L∞,n;−1 ). This space was discovered independently by Hansson
([H]) and by Brézis and Wainger ([BW]) as the appropriate target for the limiting case
of the Sobolev-type embedding of the space W1,n , where n is the dimension of the
underlying domain. The significance of this space was recently approved by Edmunds,
Kerman and Pick ([EKP]) who showed that it cannot be replaced by any essentially
smaller rearrangement invariant space, and by Cwikel and Pustylnik [CP] who proved
the same fact in a stronger sense.

Recently, an investigation of double-exponential integrability of convolution oper-
ators was carried out by Edmunds, Gurka and Opic ([EGO1]). The authors extended the
theory of Lorentz–Zygmund spaces by introducing a second tier of logarithms, calling
the outcoming structure generalized Lorentz–Zygmund (GLZ) spaces. In [EOP1], a
variety of sharp interpolation theorems in the sense of Bennett and Rudnick was ob-
tained by simple techniques; the results of [BR] were extended to the context of GLZ
spaces, many of them were improved, and their sharpness was shown. In particular, the
important scaling property of GLZ spaces was discovered, and the cross-case interpola-
tion was treated. For technical reasons dictated by various limiting versions of Hardy’s
inequality behind the proofs, the results of [EOP1] were restricted throughout to the case
when the underlying measure space is of finite measure, similarly as in [BR] or [GM].
This difficulty was removed later in [EOP2], where the so-called broken-logarithmic
functions were introduced. This enabled us to carry out a comprehensive interpola-
tion theory for functions defined on a non-atomic σ -finite measure space. Using the
abbreviations �(t) = 1 + | log t| and ��(t) = 1 + log

(
�(t)

)
, t ∈ (0,∞) , we define

broken-logarithmic functions by

�A(t) =
{

�α0(t), 0 < t � 1;

�α∞(t), 1 < t < ∞,

where A = (α0,α∞) ∈ R2 ; ��A(t) is defined analogously. Similarly as A we shall use
few other symbols for two-dimensional vectors, namely B = (β0, β∞) , D = (δ0, δ∞) ,
L = (λ0, λ∞) , E = (ε0, ε∞) , S = (σ0,σ∞) , and W = (ω0,ω∞) . These symbols
should not be confused with the usual letters N and R which traditionally denote the
set of all natural numbers and the set of all real numbers, respectively.
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The present paper is devoted to a detailed study of two types of GLZ spaces with
broken-logarithmic terms, namely

Lp,q;A,B =
{
f ∈ M (R,μ); ‖f ‖p,q;A,B = ‖t 1

p− 1
q �A(t)��B(t)f ∗(t)‖q,(0,μ(R)) < ∞}

and

L(p,q;A,B) =
{
f ∈ M (R,μ); ‖f ‖(p,q;A,B) = ‖t 1

p− 1
q �A(t)��B(t)f ∗∗(t)‖q,(0,μ(R)) < ∞}

,

where f ∗∗(t) = t−1
∫ t

0 f ∗(s) d s . An extension to the cases involving more tiers of
logarithms is just a technical matter (cf. e.g. [EGO4]).

In several directions of our recent research (let us name, for example, the investi-
gation of limiting cases of convolution inequalities ([EGO1]), the study of embeddings
of Bessel potential spaces based upon GLZ spaces ([EGO2], [EGO3], [EGO4], [GO]),
the development of real interpolation theory with broken logarithmic functors ([EOP1],
[EOP2], [EO]), or the investigation of embedding theorems for Bessel potential spaces
with logarithmic smoothness ([OT])), we found a reasonably complete information on
basic properties of GLZ spaces indispensable. Thus, guided by requirements coming
directly from applications, we have been collecting for several years pieces of informa-
tion until we reached a point of being able to write up a self-contained comprehensive
“primer” on GLZ spaces. Such a primer is presented in this paper. Since the information
is complete and exhaustive, we believe that the list of results can be found handy by
many authors (by those interested in the area of limiting behaviour of operators and
also by those seeking non-trivial examples or counterexamples). Therefore, we are con-
vinced that our primer is worth publishing although some of the results are not strictly
“new” as they might be obtained (usually via a tedious and time-consuming calculation)
from more general criteria, scattered in existing literature. Needless to say, when we
first started this work, some of the papers that appeared recently were not available (for
example, [GHS], [So], [CS3], [CPSS] etc.).

A typical more general context is that of classical Lorentz spaces. The spaces
Λq(w) , determined by the quantity

‖f ‖Λq(w) =
( ∞∫

0

(f ∗(t))qw(t) d t

)1/q

,

which were introduced in [Lo1] and later studied by many authors, contain all the spaces
Lp,q;A,B as long as q ∈ (0,∞) . Similarly, for q ∈ (0,∞) , the spaces L(p,q;A,B) are
particular examples of the spaces Γq(w) , introduced by Sawyer in [Sa], where

‖f ‖Γq(w) =
( ∞∫

0

(f ∗∗(t))qw(t) d t

)1/q

.

The situation is not so straightforward when q = ∞ ; in such case many (but not
all) of the GLZ spaces are covered by weak modifications of classical Lorentz spaces
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Λq,∞(w) , Γq,∞(w) , respectively (cf. [CS1]), where

‖f ‖Λq,∞(w) = sup
0<t<∞

f ∗(t)
( t∫

0

w(s) d s

)1/q

,

and

‖f ‖Γq,∞(w) = sup
0<t<∞

f ∗∗(t)
( t∫

0

w(s) d s

)1/q

.

Now we shall give a detailed outline of the paper with the discussion of its relations
to the existing literature.

Section 2 contains preliminaries and notation. In Section 3 we collect very basic
facts about GLZ spaces (frequently needed in subsequent sections), such as the char-
acterization of those parameters p, q, A, B , for which the corresponding GLZ space
is non-trivial, that is, not equal to {0} , the list of the fundamental functions of GLZ
spaces, and some inclusion relations between both types of GLZ spaces. All these
facts follow simply from definitions, apart perhaps from the inclusion relations in The-
orems 3.8 and 3.16. For more general spaces, inclusion relations can be found, e.g., in
[Sa, Theorem 2], [CS2, Theorem 3.2], and [So, Proposition 2.7, Theorem 4.1 (i), and
Theorem 4.2 (ii)]. For the questions of non-triviality and fundamental functions, cf.
also [CPSS, Lemma 3.6].

In Sections 4 and 5 we review embedding relations between the spaces Lp,q;A,B

and L(p,q;A,B) , respectively. To be more precise, in Section 4 we give a complete
characterization of the parameters involved for which the embedding

LP1,Q;L,E ↪→ LP2,R;S,W

holds. Almost all the results can be obtained from more general criteria provided by
[Sa, Remark, p. 148] (1 < Q, R < ∞ ), [St, Proposition 1] (0 < Q, R < ∞ ) and [So,
Proposition 2.7] (some particular cases when Q = ∞ and/or R = ∞ ); we thus omit
the proofs. Analogously, in Section 5 we deal with the embeddings

L(P1,Q;L,E) ↪→ L(P2,R;S,W).

General criteria for this type of embedding were obtained by a discretization method in
[GHS]. However, in some cases the conditions are very implicit and hard to verify. For
this reason, we present detailed and self-contained proofs in the Appendix.

In Section 6 we give a complete characterization of associate spaces of GLZ
spaces. We present elementary proofs based on rearrangement techniques in the spirit
of [BS]. Again, for some cases, certain more general results are known. In [Sa, Remark,
p. 147], the associate space of Λq(w) is characterized provided that 1 < q < ∞ and∫ ∞

0 w(s) d s = ∞ . Similarly, in [GHS, Theorem 3.1], the associate space of Γq(w) is
described, but, again, in the case 1 < q < ∞ , the criteria are given in rather implicit
terms involving discretization. For some further results and references see [CPSS,
Section 9].
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Our next concern is the question when a GLZ space satisfies all the axioms of
the so-called Banach function space in the sense of Luxemburg (cf. [BS, Chapters 1
and 2]). Clearly, neither of the quantities ‖ · ‖p,q;A,B or ‖ · ‖(p,q;A,B) is necessarily
a norm; consider, for example, the cases when q ∈ (0, 1) . In Section 7 we give a
full characterization of those GLZ spaces which are rearrangement-invariant Banach
function spaces. These results are, as far as we know, new.

In Section 8 we present a comprehensive analysis of the problem when a GLZ
space Lp,q;A,B or L(p,q;A,B) coincides with an appropriate Orlicz space. For μ(R) <
∞ , related particular results can be found, for example, in [BR], cf. also [EGO1,
Lemma 3.10], [EGO2, Lemma 4.2] or [EOP1, Lemma 2.2]. Since the situation is in
general rather complicated and most of the results are new, we include detailed proofs.

Finally, in Section 9 we characterize all GLZ spaces whose norm is absolutely
continuous (cf. [BS, Chapter 1, Section 3]).

2. Preliminaries

The symbol C will denote various constants independent of appropriate quantities.
We write A� B whenever A � CB , and A ≈ B whenever both A �B and B� A . For
a set E we denote by χE the characteristic function of E . We shall use the convention
1/∞ = 0 and ∞/∞ = 0 , and for 0 < q � ∞ we define q′ by 1

q + 1
q′ = 1 when

q �= 1 , and q = +∞ when q = 1 (note that q′ < 0 when 0 < q < 1 ).
Throughout the paper, (R,μ) denotes a totally σ -finite measure space with a

non-atomic measure μ , and M (R,μ) is the set of all extended complex-valued μ -
measurable functions on R . By M +(R,μ) we denote the set of all non-negative func-
tions from M (R,μ) . In the case when R = (0,∞) and μ is the Lebesgue measure
on (0,∞) , we simply write M +(0,∞) instead of M +(R,μ) . By M +(0,∞; ↓) we
mean the subset of M +(0,∞) , consisting of all non-increasing functions on (0,∞) .

Let X, Y be two (quasi-)normed linear spaces of functions from M (R,μ) . We
say that X coincides with Y (and write X = Y ) if X and Y are equal in the algebraic
and the topological sense (their (quasi-)norms are equivalent).

We shall use the symbol ↪→ for the continuous embedding of (quasi-)normed
linear spaces.

Following Luxemburg ([Lu], cf. also [BS]), we say that a Banach space X of
extended complex-valued μ -measurable functions defined on R is a Banach function
space (BFS), if the following axioms hold:

(P1) the norm ‖ · ‖X is defined for every f ∈ M (R,μ) , and such f belongs to
X if and only if ‖f ‖X < ∞ ;

(P2) ‖f ‖X = 0 if and only if f = 0 μ -a.e.;
(P3) ‖f ‖X = ‖ |f | ‖X whenever f ∈ M (R,μ) ;
(P4) 0 � g � f μ -a.e. implies ‖g‖X � ‖f ‖X ;
(P5) 0 � f n ↗ f μ -a.e. implies ‖f n‖X ↗ ‖f ‖X ;
(P6) ‖χE‖X < ∞ whenever μ(E) < ∞ ;
(P7) If μ(E) < ∞ , then there is a constant CE such that

∫
E |f | � CE‖f ‖X for all

f ∈ X .
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We shall use the following

CONVENTION. Let X = (X, ‖ · ‖X) be a (quasi-)normed linear space of functions
from M (R,μ) . By saying “X is a BFS” we mean that there is a norm ‖ · ‖ on X ,
equivalent to ‖ · ‖X , such that the space (X, ‖ · ‖) is a BFS.

Let X be a quasi-normed linear space of functions f ∈ M (R,μ) satisfying
(P1)–(P6), modified in the sense that ‖ · ‖X may be a quasi-norm. The space X is said
to have absolutely continuous (quasi-)norm if every f ∈ X satisfies the axiom

(ACN) ‖f χEn‖X → 0 for every sequence {En} ⊂ R such that En ↘ ∅ μ -a.e.

(Recall that En ↘ ∅ μ -a.e. if χEn ↘ 0 μ -a.e.) Moreover, the set X′ , given by

X′ =
{

f ∈ M (R,μ);
∫
R

|f g| d μ < ∞ for all g ∈ X
}
,

and endowed with the norm

‖f ‖X′ = sup
{∫

R

|f g| dμ; ‖g‖X � 1
}
,

is called the associate space of X . The Hölder inequality∫
R

|f g| dμ � ‖f ‖X‖g‖X′

holds for every f ∈ X , g ∈ X′ , and moreover

‖f ‖X = sup
{∫

R

|f g| d μ; ‖g‖X′ � 1
}
.

By [BS, Chapter 1, Theorem 2.7], X′′ = (X′)′ = X provided that X is a BFS.
Let f ∈ M (R,μ) . The distribution function μf of f is defined by

μf (λ ) = μ
({

x ∈ R; |f (x)| > λ
})

, λ ∈ [0,∞).

The non-increasing rearrangement f ∗ of f is given by

f ∗(t) = inf
{
λ > 0;μf (λ ) � t

}
, t ∈ [0,∞),

and the maximal function f ∗∗ of f ∗ by

f ∗∗(t) =
1
t

t∫
0

f ∗(s) d s, 0 < t < ∞.

Recall that supp f ∗ ⊂ [0,μ(R)] and f ∗(t) � f ∗∗(t) for every f and t .
Let X be a quasi-normed linear space of functions f ∈ M (R,μ) , satisfying

the axioms (P1)–(P6) (modified again in the sense that the norm of X may be a
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quasi-norm) and such that ‖f ‖X = ‖g‖X whenever f ∗ = g∗ . Then X is called a
rearrangement-invariant (r.i.) space.

Let X be an r.i. space. For each finite t ∈ [
0,μ(R)

]
, let E be any subset of R

with μ(E) = t , and
ϕX(t) = ‖χE‖X.

The function ϕX so defined is called the fundamental function of X . Let us note that
for two r.i. spaces X and Y such that X ↪→ Y , we necessarily have ϕY(t) �ϕX(t) for
all finite t ∈ [0,μ(R)) .

Since μ is non-atomic, for every finite t ∈ (0,μ(R)] there is a μ –measurable
subset E of R such that μ(R) = t , and therefore (χE)∗ = χ(0,t) . Hence (cf. [BS]),
for every f ∈ M (R,μ) and every finite t ∈ (0,μ(R)] ,

t∫
0

f ∗(s) d s =

∞∫
0

f ∗(s)χ∗
E(s) d s � ‖χE‖X‖f ‖X′,

which yields

(2.1)

t∫
0

f ∗(s) d s � ϕX(t) ‖f ‖X′ .

We write ϕ ∈ F provided that
(i) ϕ(t) = 0 if and only if t = 0 ,
(ii) ϕ is continuous except perhaps at 0,
(iii) ϕ is equivalent to a non-decreasing concave function on (0,μ(R)) .

If X is an r.i. BFS, then ϕX ∈ F (cf. [BS]). Moreover, the fundamental function
ϕX′ of X′ satisfies

(2.2) ϕX′(t) =
t

ϕX(t)
, t ∈ (0,μ(R)), ϕX′(0) = 0.

Conversely, if ϕ ∈ F , then ϕ is a fundamental function of some r.i. Banach function
space(s). Among all such spaces, two are of an extraordinary importance. Namely, the
spaces Λϕ and Mϕ , defined as the families of all functions in M (R,μ) for which the
functionals

(2.3) ‖f ‖Λϕ =

μ(R)∫
0

f ∗(t) dϕ(t),

and

(2.4) ‖f ‖Mϕ = sup
0<t<μ(R)

f ∗∗(t)ϕ(t),

respectively, are finite. Both Λϕ and Mϕ are rearrangement-invariant Banach function
spaces with fundamental function ϕ , and, in fact, Λϕ is the smallest and Mϕ is the
largest such a space. In particular, for any r.i. BFS X ,

(2.5) ΛϕX ↪→ X ↪→ MϕX .
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It follows that (cf. [Sh] or [BS, Chapter 4, Exercise 21 (d)])

(2.6) (Λϕ)′ = Mϕ̃ , (Mϕ)′ = Λϕ̃ ,

where ϕ̃(t) = t/ϕ(t) .

A typical example of an r.i. space is the Lebesgue space Lp = Lp(R,μ) with
0 < p � ∞ , whose (quasi-)norm is defined by

(2.7) ‖f ‖p =

⎧⎨⎩
( ∫

R

|f (x)|p dμ
)1/p

if 0 < p < ∞;

ess supx∈R |f (x)| if p = ∞.

When R = (a, b) , −∞ � a < b � ∞ , and μ is the Lebesguemeasure, we sometimes
write ‖ · ‖q,(a,b) for the (quasi-)norm (2.7). We recall that Lp is a BFS if and only if
1 � p � ∞ . Moreover, for t ∈ [0,μ(R)) , ϕLp(t) = t1/p when 0 < p < ∞ , and
ϕL∞(t) = χ(0,μ(R)) .

Another important example of an r.i. BFS is the Orlicz space LΦ = LΦ(R,μ) ,
generated by a Young function Φ : [0,∞) → [0,∞) , which is an increasing convex
function satisfying

(2.8) lim
t→0+

Φ(t)
t

= lim
t→∞

t
Φ(t)

= 0.

The space LΦ is the collection of functions f ∈ M (R,μ) for which there exists
a λ > 0 such that

∫
R

Φ(|f (x)|/λ ) d μ < ∞ . If Φ satisfies the Δ2 –condition, that

is, Φ(2t) �Φ(t) for all t � 0 , then f ∈ LΦ if and only if
∫
R

Φ(|f |) d μ < ∞ . The
(Luxemburg) norm in LΦ is given by

‖f ‖LΦ = inf
{
λ > 0;

∫
R

Φ
( |(x)|

λ

)
d μ � 1

}
,

and (LΦ)′ = LΦ̃ , where Φ̃ is the complementary function of Φ ,

Φ̃(t) = sup
s�0

(
st −Φ(s)

)
, 0 � t < ∞.

Let us also recall the Young inequality

st � Φ(s) + Φ̃(t), s, t ∈ [0,∞).

The fundamental function of the space LΦ endowed with the Luxemburg norm reads
(cf. [KR, (9.23)])

(2.9) ϕLΦ(t) =
1

Φ−1(1/t)
, t ∈ [0,μ(R)).

Let 0 < q � ∞ and let w be a weight function (an a.e. positive measurable
function on (0,∞) ). If μ(R) = ∞ , we define the classical Lorentz spaces Λq(w)
and Γq(w) (cf. [Lo1] and [Sa]) as the sets of all functions f ∈ M (R,μ) such that

‖f ∗w‖q,(0,∞) < ∞ and ‖f ∗∗w‖q,(0,∞) < ∞,
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respectively. It isworth noting that, for 1 � q � ∞ , Γq(w) is a rearrangement-invariant
BFS if and only if w satisfies, for every t ∈ (0,∞) ,

(2.10) ‖w(s)‖q,(0,t) < ∞ and ‖s−1w(s)‖q,(t,∞) < ∞.

Indeed, the axioms (P1)–(P5) readily follow from elementary properties of rearrange-
ments (cf. [BS, Chapter 2]). The axiom (P6) is a consequence of (2.10) and the identity

(2.11) χ∗∗
(0,t)(s) = χ(0,t)(s) + ts−1χ(t,∞)(s).

As for (P7), note that for a set E with μ(E) = t ,∫
E

|f |dμ �
t∫

0

f ∗(s) d s = Ct ‖s−1w(s)‖q,(t,∞)

t∫
0

f ∗(s) d s � Ct ‖f ‖Γq(w),

where Ct = (‖s−1w(s)‖q,(t,∞))−1 < ∞ . If, conversely, (2.10) is not satisfied, then
evidently (P6) does not hold and therefore Γq(w) is not a BFS.

Let 1 < q < ∞ . By [Sa, Theorem 4], Λq(w) is a Banach space (that is, there is
a norm ‖ · ‖ on Λq(w) equivalent to the original one) if and only if Λq(w) = Γq(w) .

If, additionally,
∞∫
0

w(t) d t = ∞ , then
[
Λq(w)

]′ = Γq′(w̃) , where 1
q + 1

q′ = 1 , and

w̃(t) = tq
′
w(t)

( t∫
0

w(s) d s
)−q′

.

Important examples of classical Lorentz spaces are the generalized Lorentz–
Zygmund spaces, defined in Section 3 below.

3. The GLZ spaces – definitions and basic properties

As usual, the symbols R and N stand for the set of all real numbers and the set
of all natural numbers, respectively. Moreover, we shall use the letters A, B, D, L, E, S
and W for two-dimensional real vectors, that is, A = (α0,α∞) , B = (β0, β∞) ,
D = (δ0, δ∞) , L = (λ0, λ∞) , E = (ε0, ε∞) , S = (σ0,σ∞) , and W = (ω0,ω∞) ∈
R2 . Given σ ∈ R , we shall use the convention A + σ = (α0 + σ,α∞ + σ) and
σA = (σα0,σα∞) . We also write A < B and A � B when αi < βi and αi � βi ,
respectively, i = 0,∞ . If A = (α0,α∞) ∈ R2 , we put Ã = (α∞,α0) .

We shall use the abbreviations

�(t) = 1 + | log t|, ��(t) = 1 + log
(
�(t)

)
, ���(t) = 1 + log

(
��(t)

)
, t > 0.

If A = (α0,α∞) ∈ R2 , we define

�A(t) =
{

�α0(t), 0 < t � 1

�α∞(t), 1 < t < ∞,

and analogously for ��A(t) and ���A(t) .
We are in a position to define generalized Lorentz–Zygmund spaces with broken

logarithmic functions.
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3.1. DEFINITION. Let 0 < p, q � ∞ and A, B ∈ R2 . The generalized Lorentz–
Zygmund (GLZ) space Lp,q;A,B is given by

Lp,q;A,B =
{
f ∈ M (R,μ); ‖f ‖p,q;A,B = ‖t 1

p− 1
q �A(t)��B(t)f ∗(t)‖q,(0,∞) < ∞}

.

3.2. REMARKS. (i) Generalized Lorentz–Zygmund spaces Lp,q;A,B include many
familiar ones: When A = B = (0, 0) , we obtain just the Lorentz space Lp,q . If,
moreover, p = q , then Lp,q;A,B = Lp is the classical Lebesgue space, and the (quasi-)
norms coincide. If μ(R) < ∞ , α ∈ R , and A = (α,α) , B = (0, 0) , then Lp,q;A,B is
the Lorentz–Zygmund space Lp,q(logL)α , considered by Bennett and Rudnick ([BR]),
which coincides with the Zygmund class Lp(logL)α when p = q .

(ii) Note that the use of different powers near 0 and near ∞ is reasonable only if
μ(R) = ∞ .

When μ(R) < ∞ , the space Lp,q;A,B coincides with Lp,q;α0,β0 introduced in
[EGO1]. Below we shall use the following slight modification of these spaces.

Let 0 < p, q � ∞ , α, β ∈ R , and T ∈ (0,μ(R)] . Then we put

Lp,q;α,β (0, T) =
{
f ∈ M (R,μ); ‖f ‖p,q;α,β ,(0,T) < ∞

}
,

where, for 0 � t < T � μ(R) ,

‖f ‖p,q;α,β ,(t,T) = ‖s 1
p− 1

q �α(s)��β (s)f ∗(s)‖q,(t,T).

If 0 < T < ∞ , then it is easy to see that

f ∈ Lp,q;α,β (0, T) if and only if f ∈ Lp,q;α,β (0, 1),

and for all f ∈ M (R,μ) ,

‖f ‖p,q;α,β ,(0,T) ≈ ‖f ‖p,q;α,β ,(0,1).

We put
Lp,q;α,β := Lp,q;α,β (0,μ(R)) = Lp,q;(α,α),(β ,β)

and
‖ · ‖p,q;α,β := ‖ · ‖p,q;(α,α),(β ,β).

In addition to the above notation we write for g ∈ M (R,μ) , p, q ∈ (0,∞] ,
A, B ∈ R2 , and 0 � t < T � μ(R) ,

‖g‖p,q;A,B,(t,T) = ‖s 1
p− 1

q �A(s)��B(s)g∗(s)‖q,(t,T).

Besides the spaces Lp,q;A,B we also introduce their analogues L(p,q;A,B) by replacing
the non-increasing rearrangement f ∗ by the maximal function f ∗∗ . Let us be more
precise.

3.3. DEFINITION. Let 0 < p, q � ∞ and A, B ∈ R2 . The generalized Lorentz–
Zygmund (GLZ) space L(p,q;A,B) is given by

L(p,q;A,B) =
{
f ∈ M (R,μ); ‖f ‖(p,q;A,B) = ‖t 1

p− 1
q �A(t)��B(t)f ∗∗(t)‖q,(0,μ(R)) < ∞}

.
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3.4. REMARKS. (i) Let 0 < p, q � ∞ , α, β ∈ R , A, B ∈ R2 , and 0 � t <
T � ∞ . The spaces L(p,q;α,β)(0, T) , L(p,q;α,β) , and the quantities ‖f ‖(p,q;α,β)(t,T) ,
‖f ‖(p,q;α,β) , and ‖f ‖(p,q;A,B)(t,T) , are defined in an obvious way (cf. Remark 3.2 (ii)).

(ii) Occasionally we shall use a third tier of logarithms (cf. e.g. Section 6). In such
cases we work with the spaces

Lp,q;A,B,D =
{
f ∈ M (R,μ); ‖f ‖p,q;A,B,D < ∞}

,

and
L(p,q;A,B,D) =

{
f ∈ M (R,μ); ‖f ‖(p,q;A,B,D) < ∞}

,

where
‖f ‖p,q;A,B,D = ‖t 1

p− 1
q �A(t)��B(t)���D(t)f ∗(t)‖q,(0,μ(R)),

and
‖f ‖(p,q;A,B,D) = ‖t 1

p− 1
q �A(t)��B(t)���D(t)f ∗∗(t)‖q,(0,μ(R)).

As we have already mentioned (cf. Remark 3.2 (ii)), the use of different powers
near 0 and near ∞ is reasonable only if μ(R) = ∞ . We thus adopt the following

CONVENTION. Throughout the paper we assume that μ(R) = ∞ unless it is
explicitly said that μ(R) < ∞ .

Since f ∗ � f ∗∗ , we have

(3.1) L(p,q;A,B) ↪→ Lp,q;A,B.

Let us first clarify when the spaces Lp,q,A,B and L(p,q,A,B) are non-trivial.

3.5. LEMMA. Let 0 < p, q � ∞ , A = (α0,α∞) , and B = (β0, β∞) .
(i) The space Lp,q;A,B is not trivial, that is, not equal to {0} , if and only if one of

the following conditions holds:

(3.2)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
p < ∞;

p = ∞, α0 + 1
q < 0;

p = ∞, α0 + 1
q = 0, β0 + 1

q < 0;

p = ∞, q = ∞, α0 = 0, β0 = 0.

(ii) The space L(p,q;A,B) is not trivial, that is, not equal to {0} , if and only if one
of the following conditions holds:

(3.3)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 < p < ∞;

p = ∞, α0 + 1
q < 0;

p = ∞, α0 + 1
q = 0, β0 + 1

q < 0;

p = ∞, q = ∞, α0 = 0, β0 = 0;

p = 1, α∞ + 1
q < 0;

p = 1, α∞ + 1
q = 0, β∞ + 1

q < 0;

p = 1, q = ∞, α∞ = 0, β∞ = 0.
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Proof. The proof of (3.3) is an easy modification of that of Corollary 2.3 in [EOP2].
For (3.2), cf. also [EOP1, Lemma 6.1]. �

3.6. REMARK. Let 0 < p � ∞ , 1 � q � ∞ , A = (α0,α∞) , and B =
(β0, β∞) ∈ R2 . Then X = L(p,q;A,B) is a rearrangement-invariant BFS if and only if

X �= {0} . This follows from the fact that the function w(t) = t
1
p− 1

q �A(t)��B(t) obeys
(2.10) if and only if one of the conditions in (3.3) holds.

We shall now list the fundamental functions of GLZ spaces.

3.7. LEMMA. Let 0 < p, q � ∞ , A = (α0,α∞) , and B = (β0, β∞) .
(i) Assume that the space X = Lp,q;A,B is not trivial (cf. Lemma 3.5). Then, for

0 < t � 1 ,

ϕX(t) ≈

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

t
1
p �α0(t)��β0(t) if 0 < p < ∞;

�α0+ 1
q (t)��β0(t) if p = ∞, α0 + 1

q < 0;

��β0+ 1
q (t) if p = ∞, α0 + 1

q = 0, β0 + 1
q < 0;

1 if p = ∞, q = ∞, α0 = 0, β0 = 0;

whereas, for 1 < t < ∞ ,

ϕX(t) ≈

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

t
1
p �α∞(t)��β∞(t) if 0 < p < ∞;

1 if p = ∞, either α∞ + 1
q < 0,

or α∞ + 1
q = 0, β∞ + 1

q < 0,

or q = ∞, α∞ = 0, β∞ = 0;

�α∞+ 1
q (t)��β∞(t) if p = ∞, α∞ + 1

q > 0;

��β∞+ 1
q (t) if p = ∞, α∞ + 1

q = 0, β∞ + 1
q > 0;

���
1
q (t) if p = ∞, α∞ + 1

q = 0, β∞ + 1
q = 0.

(ii) Assume that the space Y = L(p,q;A,B) is not trivial. Then, for 0 < t � 1 ,

ϕY(t) ≈

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

t
1
p �α0(t)��β0(t) if 1 < p < ∞;

�α0+ 1
q (t)��β0(t) if p = ∞, α0 + 1

q < 0;

��β0+ 1
q (t) if p = ∞, α0 + 1

q = 0, β0 + 1
q < 0;

1 if p = ∞, q = ∞, α0 = 0, β0 = 0;

t�α0+ 1
q (t)��β0(t) if p = 1, α0 + 1

q > 0;

t��β0+ 1
q (t) if p = 1, α0 + 1

q = 0, β0 + 1
q > 0;

t���
1
q (t) if p = 1, α0 + 1

q = 0, β0 + 1
q = 0;

t if p = 1, either α0 + 1
q < 0,

or α0 + 1
q = 0, β0 + 1

q < 0;
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whereas, for 1 < t < ∞ ,

ϕY(t) ≈

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

t
1
p �α∞(t)��β∞(t) if 1 < p < ∞;

1 if p = ∞, either α∞ + 1
q < 0,

or α∞ + 1
q = 0, β∞ + 1

q < 0,

or q = ∞, α∞ = 0, β∞ = 0;

�α∞+ 1
q (t)��β∞(t) if p = ∞, α∞ + 1

q > 0;

��β∞+ 1
q (t) if p = ∞, α∞ + 1

q = 0, β∞ + 1
q > 0;

���
1
q (t) if p = ∞, α∞ + 1

q = 0, β∞ + 1
q = 0;

t�α∞+ 1
q (t)��β∞(t) if p = 1, α∞ + 1

q < 0;

t��β∞+ 1
q (t) if p = 1, either α∞ + 1

q = 0, β∞ + 1
q < 0,

or q = ∞, α∞ = 0, β∞ = 0.

Proof. This is just an elementary calculation, using (2.11) in the case (ii). �
Our next aim is to study relations between the spaces Lp,q,A,B and L(p,q,A,B) .

3.8. THEOREM. Let 1 � p � ∞ , 0 < q � ∞ , A = (α0,α∞) , B = (β0, β∞) ∈
R2 , and assume that one of the conditions in (3.3) is satisfied.

(i) If 1 < p � ∞ , then

(3.4) L(p,q;A,B) = Lp,q;A,B.

(ii) The space L(1,1;A,B) coincides with the space

L1,1;(0,α∞+1),(0,β∞) if α∞ + 1 < 0, either α0 + 1 < 0,

or α0 + 1 = 0, β0 + 1 < 0;

L1,1;A+1,B if α∞ + 1 < 0, α0 + 1 > 0;

L1,1;(0,α∞+1),(β0+1,β∞) if α∞ + 1 < 0, α0 + 1 = 0, β0 + 1 > 0;

L1,1;(0,α∞+1),(0,β∞),(1,0) if α∞ + 1 < 0, α0 + 1 = 0, β0 + 1 = 0;

L1,1;(0,0),(0,β∞+1) if α∞ + 1 = 0, β∞ + 1 < 0,

and either α0 + 1 < 0, or α0 + 1 = 0, β0 + 1 < 0;

L1,1;(α0+1,0),(β0,β∞+1) if α∞ + 1 = 0, β∞ + 1 < 0, α0 + 1 > 0;

L1,1;(0,0),B+1 if α∞ + 1 = 0, β∞ + 1 < 0, α0 + 1 = 0, β0 + 1 > 0;

L1,1;(0,0),(0,β∞+1),(1,0) if α∞ + 1 = 0, β∞ + 1 < 0, α0 + 1 = 0, β0 + 1 = 0.

(iii) Let 1 < q � ∞ . Then

(3.5) L1,q;A+1,B � L(1,q;A,B) if α0 +
1
q

> 0, α∞ +
1
q

< 0,
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and

(3.6) L1,q;( 1
q′ , 1

q′ ),B+1 � L(1,q;(− 1
q ,− 1

q ),B) if β0 +
1
q

> 0, β∞ +
1
q

< 0.

(iv) Let 0 < q < 1 . Then

L1,q;A+ 1
q ,B � L(1,q;A,B) if α0 +

1
q

> 0, α∞ +
1
q

< 0

and

L1,q;(0,0),B+ 1
q
⊂ L(1,q;(− 1

q ,− 1
q ),B) if β0 +

1
q

> 0, β∞ +
1
q

< 0.

Proof. (i) Assume first that 1 � q � ∞ . Since p > 1 , the Hardy inequality

(3.7)
∥∥∥t

1
p− 1

q �A(t)��B(t) t−1

t∫
0

g(s) d s
∥∥∥

q
�

∥∥∥t
1
p− 1

q �A(t)��B(t)g(t)
∥∥∥

q

holds for every g ∈ M +(0,∞) (cf. [OK, Theorem 5.9]). Applied to g = f ∗ , (3.7)
implies Lp,q;A,B ↪→ L(p,q;A,B) . Combined with (3.1), this yields (3.4). If 0 < q < 1 ,
we use an analogous argument, applying [La, Theorem 2.2].

(ii) By the Fubini theorem,

‖f ‖(1,1;A,B) =

∞∫
0

f ∗(s)
( ∞∫

s

t−1�A(t)��B(t) d t
)

d s.

Calculating the inner integral, we obtain the assertion.
(iii) Both embeddings in (3.5) and (3.6) follow from the corresponding Hardy

inequality (cf. [EOP2, Lemmas 4.2 and 4.3]). The distinction of the spaces follows by
comparing their fundamental functions (cf. Lemma 3.7).

(iv) This follows from [La, Theorem 2.2]. �

Now we shall prove some auxiliary results which will be needed later.

3.9. LEMMA. Let 0 < q � ∞ , and A, B ∈ R2 . Assume that for each i ∈ {0,∞}
one of the following conditions holds:

αi +
1
q

< 0;

αi +
1
q

= 0, βi +
1
q

< 0;

q = ∞, αi = 0, βi = 0.

Then for all f ∈ L∞,q;A,B ,

‖t− 1
q �α∞(t)��β∞(t)f ∗(t)‖q,(1,∞) � ‖t− 1

q �α0(t)��β0(t)f ∗(t)‖q,(0,1).
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Proof. Our assumptions imply that

(3.8) ‖t− 1
q �α∞(t)��β∞(t)‖q,(1,∞) ≈ 1 ≈ ‖t− 1

q �α0(t)��β0(t)‖q,(0,1).

Consequently, for all f ∈ L∞,q;A,B ,

‖t− 1
q �α∞(t)��β∞(t)f ∗(t)‖q,(1,∞) � f ∗(1) ‖t− 1

q �α∞(t)��β∞(t)‖q,(1,∞)

≈ f ∗(1) ‖t− 1
q �α0(t)��β0(t)‖q,(0,1) � ‖t− 1

q �α0(t)��β0(t)f ∗(t)‖q,(0,1). �

3.10. COROLLARY. Let all the assumptions of Lemma 3.9 be satisfied. Then

L∞,q;A,B = L∞,q;α0,β0(0, 1).

If moreover q = ∞ , then

(3.9) L∞,∞;A,B = L∞,∞;α0 ,β0(0, 1) = L∞,∞;(α0,0),(β0,0).

The following result is a dual version of Lemma 3.9.

3.11. LEMMA. Let 0 < q � ∞ , and A, B ∈ R2 . Assume that for each i ∈ {0,∞}
one of the following conditions holds:

αi +
1
q

< 0;

ai +
1
q

= 0, βi +
1
q

< 0;

q = ∞, αi = 0, βi = 0.

Then for all f ∈ L(1,q;A,B) ,

‖t1− 1
q �α0(t)��β0(t)f ∗∗(t)‖q,(0,1) � ‖t1− 1

q �α∞(t)��β∞(t)f ∗∗(t)‖q,(1,∞).

Proof. Using (3.8), we have for all f ∈ L(1,q;A,B) ,

‖t1− 1
q �α0(t)��β0(t)f ∗∗(t)‖q,(0,1) = ‖t− 1

q �α0(t)��β0(t)

t∫
0

f ∗(s) d s‖q,(0,1)

� ‖t− 1
q �α0(t)��β0(t)‖q,(0,1)

1∫
0

f ∗(s) d s ≈ ‖t− 1
q �α∞(t)��β∞(t)‖q,(1,∞)

1∫
0

f ∗(s) d s

� ‖t− 1
q �α∞(t)��β∞(t)

t∫
0

f ∗(s) d s‖q,(1,∞) = ‖t1− 1
q �α∞(t)��β∞(t)f ∗∗(t)‖q,(1,∞). �
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3.12. COROLLARY. Let the assumptions of Lemma 3.11 with q = ∞ be satisfied.
Then

L(1,∞;A,B) = L(1,∞;(0,α∞),(0,β∞)).

We conclude this section with analogues of Lemmas 3.5, 3.7, and Theorem 3.8 for
the case when μ(R) < ∞ . Proofs are analogous to the corresponding ones above and
therefore omitted.

3.13. LEMMA. Let μ(R) < ∞ , 0 < p, q � ∞ , and α, β ∈ R . Let X be one of
the spaces Lp,q;α,β , L(p,q;α,β) . Then X is not trivial if and only if one of the following
conditions holds:

(3.10)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
p < ∞;

p = ∞, α + 1
q < 0;

p = ∞, α + 1
q = 0, β + 1

q < 0;

p = ∞, q = ∞, α = 0, β = 0.

3.14. LEMMA. Let R = μ(R) < ∞ , 0 < p, q � ∞ , and α, β ∈ R . Assume that
one of the conditions in (3.10) is satisfied.

(i) Let X = Lp,q;α,β . Then, for all t ∈ (0, R] ,

ϕX(t) ≈

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

t
1
p �α(t)��β (t) if 0 < p < ∞;

�α+ 1
q (t)��β (t) if p = ∞, α + 1

q < 0;

��β+ 1
q (t) if p = ∞, α + 1

q = 0, β + 1
q < 0;

1 if p = ∞, q = ∞, α = 0, β = 0.

(ii) Let Y = L(p,q;α,β) . Then, for all t ∈ (0, R] ,

ϕY(t) ≈

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

t
1
p �α(t)��β(t) if 1 < p < ∞;

�α+ 1
q (t)��β (t) if p = ∞, α + 1

q < 0;

��β+ 1
q (t) if p = ∞, α + 1

q = 0, β + 1
q < 0;

1 if p = ∞, q = ∞, α = 0, β = 0;

t�α+ 1
q (t)��β(t) if p = 1, α + 1

q > 0;

t��β+ 1
q (t) if p = 1, α + 1

q = 0, β + 1
q > 0;

t���
1
q (t) if p = 1, α + 1

q = 0, β + 1
q = 0;

t if either 0 < p < 1,

or p = 1, α + 1
q < 0,

or p = 1, α + 1
q = 0, β + 1

q < 0.

If μ(R) < ∞ , we see from Lemma 3.14 that, in certain cases, L(p,q;α,β) has the
fundamental function as L1 . The next assertion states that in fact in such cases these
spaces coincide.
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3.15. LEMMA. Let R = μ(R) < ∞ , 0 < q � ∞ , and α, β ∈ R , and let one of
the following conditions be satisfied:

(3.11)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 < p < 1;

p = 1, α + 1
q < 0;

p = 1, α + 1
q = 0, β + 1

q < 0;

p = 1, q = ∞, α = 0, β = 0.

Then
L(p,q;α,β) = L1.

Proof. Let R = μ(R) . Our assumptions imply that

‖t 1
p−1− 1

q �α(t)��β(t)‖q,(0,R) ≈ 1 ≈ ‖t 1
p− 1

q �α(t)��β(t)‖q,(0,R).

Consequently, for all f ∈ M (R,μ) ,

‖f ‖(p,q;α,β) �
( R∫

0

f ∗(s) d s
)
‖t 1

p−1− 1
q �α(t)��β (t)‖q,(0,R)

≈
R∫

0

f ∗(s) d s ≈ f ∗∗(R) ‖t 1
p− 1

q �α(t)��β (t)‖q,(0,R) � ‖f ‖(p,q;α,β),

and the result follows. �

3.16. THEOREM. Let μ(R) < ∞ , 1 � p � ∞ , 0 < q � ∞ , and α, β ∈ R .
(i) Let 1 < p � ∞ and let one of the conditions in (3.10) be satisfied. Then

L(p,q;α,β) = Lp,q;α,β .

(ii) The space L(1,1;α,β) coincides with the space

L1 if either α + 1 < 0,

or α + 1 = 0, β + 1 < 0;

L1,1;α+1,β if α + 1 > 0;

L1,1;0,β+1 if α + 1 = 0, β + 1 > 0;

L1,1;0,0,1 if α + 1 = 0, β + 1 = 0.

(iii) Let 1 < q � ∞ . Then

L1,q;α+1,β � L(1,q;α,β) if α +
1
q

> 0,

and

L1,q; 1
q′ ,β+1 � L(1,q;− 1

q ,β) if β +
1
q

> 0.
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(iv) Let 0 < q < 1 . Then

L1,q;α+ 1
q ,β ⊂ L(1,q;α,β) if α +

1
q

> 0,

and

L1,q;0,β+ 1
q
⊂ L(1,q;− 1

q ,β) if β +
1
q

> 0.

4. Embeddings among Lp,q;A,B -spaces

Our objective here is to characterize the embedding

(4.1) LP1,Q;L,E ↪→ LP2,R;S,W

with 0 < P1, P2, Q, R � ∞ and L = (λ0, λ∞) , E = (ε0, ε∞) , S = (σ0,σ∞) ,
W = (ω0,ω∞) ∈ R2 .

First we shall investigate the embedding (4.1) with P1 = P2 = P . In the
case when μ(R) < ∞ such an embedding is completely characterized in terms of
inequalities involving the first components of vector exponents of logarithmic functions
(cf. [EOP1]). If μ(R) = ∞ , the second components of these exponents will take place
in the corresponding conditions as well.

For the case of brevity, we present only statements of the main results. If 0 <
P1, P2 < ∞ , these follow from the more general theorems in [St]. If P1 = P2 = ∞ ,
one can use the recent results of [So, Proposition 2.7] and [CPSS, Section 3] to prove
them under certain additional assumptions on weights involved. Proofs in the remaining
cases are left to the reader. Our original proofs were different and analogous to those of
[EOP1] (cf. also the proofs of the results of Section 5 in the Appendix).

Our first theorem characterizes the embedding LP,Q;L,E ↪→ LP,R;S,W provided that
0 < Q � R � ∞ and 0 < P < ∞ .

4.1. THEOREM. Let 0 < Q � R � ∞ , 0 < P < ∞ , μ(R) = ∞ , and
LP,Q;L,E �= {0} . Then

LP,Q;L,E ↪→ LP,R;S,W

if and only if
L � S

and
if λi = σi for some i ∈ {0,∞}, then εi � ωi.

Next, we characterize the embedding

(4.2) LP,Q;L,E ↪→ LP,R;S,W.

provided that 0 < Q � R � ∞ and P = ∞ .
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4.2. THEOREM. Let 0 < Q � R � ∞ , P = ∞ , μ(R) = ∞ , and LP,Q;L,E �= {0} .
Then

LP,Q;L,E ↪→ LP,R;S,W

if and only if

λ0 +
1
Q

> σ0 +
1
R

;

or

0 =λ0 +
1
Q

= σ0 +
1
R

, ε0 +
1
Q

� ω0 +
1
R

;

or

0 >λ0 +
1
Q

= σ0 +
1
R

, ε0 � ω0

and simultaneously one of the following conditions is satisfied:

λ∞ +
1
Q

< 0, σ∞ +
1
R

< 0;

λ∞ +
1
Q

< 0, σ∞ +
1
R

= 0, ω∞ +
1
R

< 0;

λ∞ +
1
Q

< 0, R = ∞, σ∞ = 0, ω∞ = 0;

0 �λ∞ +
1
Q

, λ∞ +
1
Q

> σ∞ +
1
R

;

0 <λ∞ +
1
Q

= σ∞ +
1
R

, ε∞ � ω∞;

0 =λ∞ +
1
Q

= σ∞ +
1
R

, ε∞ +
1
Q

� 0, ε∞ +
1
Q

� ω∞ +
1
R

;

0 =λ∞ +
1
Q

= σ∞ +
1
R

, ε∞ +
1
Q

< 0, ω∞ +
1
R

< 0.

Now, we shall characterize the embedding (4.2) provided that 0 < R < Q � ∞
and 0 < P � ∞ . We shall start with the case 0 < P < ∞ .

4.3. THEOREM. Let 0 < R < Q � ∞ , 0 < P < ∞ , μ(R) = ∞ , and
LP,Q;L,E �= {0} . Then

LP,Q;L,E ↪→ LP,R;S,W

if and only if

L +
1
Q

� S +
1
R

and

if λi +
1
Q

= σi +
1
R

for some i ∈ {0,∞}, then εi +
1
Q

> ωi +
1
R

.
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In the next theorem we consider the embedding (4.2) in the case 0 < R < Q � ∞
and P = ∞ .

4.4. THEOREM. Let 0 < R < Q � ∞ , P = ∞ , μ(R) = ∞ , and LP,Q;L,E �= {0} .
Then

LP,Q;L,E ↪→ LP,R;S,W

if and only if either

λ0 +
1
Q

> σ0 +
1
R

;

or

λ0 +
1
Q

= σ0 +
1
R

, ε0 +
1
Q

> ω0 +
1
R

and simultaneously one of the following conditions is satisfied:

λ∞ +
1
Q

< 0, σ∞ +
1
R

< 0;

λ∞ +
1
Q

< 0, σ∞ +
1
R

= 0, ω∞ +
1
R

< 0;

0 �λ∞ +
1
Q

, λ∞ +
1
Q

> σ∞ +
1
R

;

0 <λ∞ +
1
Q

= σ∞ +
1
R

, ε∞ +
1
Q

> ω∞ +
1
R

;

0 =λ∞ +
1
Q

= σ∞ +
1
R

, ε∞ +
1
Q

� 0, ε∞ +
1
Q

> ω∞ +
1
R

;

0 =λ∞ +
1
Q

= σ∞ +
1
R

, ε∞ +
1
Q

< 0, ω∞ +
1
R

< 0.

In all the preceding theorems we have assumed that μ(R) = ∞ . When μ(R) <
∞ , then the results remain valid if we omit all the assumptions on the second components
of vectors L, E, S , and W (cf. [EOP1, Theorem 6.3] and remarks on GLZ-spaces with
μ(R) < ∞ in Section 3). We thus have the following result.

4.5. THEOREM. Assume that μ(R) < ∞ and LP,Q;L,E �= {0} . Then

LP,Q;L,E ↪→ LP,R;S,W

if and only if one of the following conditions is satisfied:
(i) 0 < Q � R � ∞ , 0 < P < ∞ , λ0 > σ0 ;
(ii) 0 < Q � R � ∞ , 0 < P < ∞ , λ0 = σ0 , ε0 � ω0 ;
(iii) 0 < Q � R � ∞ , P = ∞ , λ0 + 1

Q > σ0 + 1
R ;

(iv) 0 < Q � R � ∞ , P = ∞ , λ0 + 1
Q = σ0 + 1

R = 0 , ε0 + 1
Q � ω0 + 1

R ;

(v) 0 < Q � R � ∞ , P = ∞ , λ0 + 1
Q = σ0 + 1

R < 0 , ε0 � ω0 ;

(vi) 0 < R < Q � ∞ , 0 < P � ∞ , λ0 + 1
Q > σ0 + 1

R ;

(vii) 0 < R < Q � ∞ , 0 < P � ∞ , λ0 + 1
Q = σ0 + 1

R , ε0 + 1
Q > ω0 + 1

R .
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So far we have investigated embeddings among Lp,q;A,B spaces provided that the
first index p was fixed. Embeddings with p varying are similar to those for Lebesgue
spaces Lp .

4.6. THEOREM. Let 0 < P1, P2, Q, R � ∞ , P1 �= P2 , and LP1,Q;L,E �= {0} . Then

LP1,Q;L,E ↪→ LP2,R;S,W

if and only if μ(R) < ∞ and P1 > P2 .

5. Embeddings among L(p,q;A,B) -spaces

The aim of this section is to characterize the embedding

(5.1) L(P1,Q;L,E) ↪→ L(P2,R;S,W)

with 0 < P1, P2, Q, R � ∞ , and L = (λ0, λ∞) , E = (ε0, ε∞) , S = (σ0,σ∞) ,
W = (ω0,ω∞) ∈ R2 .

To this end one can use the approach of [GHS, Theorem 5.2] where embeddings
among Lorentz spaces Γp(v) are characterized. However, the characterization is de-
scribed in terms of discretizing sequences and thus it is not explicit. We shall point out
a simple characterization of (5.1). As in the Section 4, we present only the statements
of results. Detailed proofs can be found in the Appendix.

First, we consider the embedding (5.1) with P1 = P2 = P , that is

(5.2) L(P,Q;L,E) ↪→ L(P,R;S,W).

We already know (see Section 4) necessary and sufficient conditions for the embedding

LP,Q;L,E ↪→ LP,R;S,W.

Because (cf. Section 3), for 0 < q � ∞ and A, B ∈ R2 ,

(5.3)

L(p,q;A,B) = Lp,q;A,B if 1 < p � ∞,

L(p,q;A,B) = {0} if 0 < p < 1 and μ(R) = ∞,

L(p,q;A,B) = L1 if 0 < p < 1 and μ(R) < ∞,

it remains to characterize the embedding (5.2) for P = 1 . Such a characterization is
given in Theorems 5.1–5.4 while Theorem 5.5 characterizes the embedding (5.1) for
P1 �= P2 .

First, we consider the case when 0 < Q � R � ∞ .

5.1. THEOREM. Let 0 < Q � R � ∞ , μ(R) = ∞ , and L(1,Q;L,E) �= {0} . Then

L(1,Q;L,E) ↪→ L(1,R;S,W)

if and only if either

λ∞ +
1
Q

> σ∞ +
1
R

;

or
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0 >λ∞ +
1
Q

= σ∞ +
1
R

, ε∞ � ω∞;

or

0 =λ∞ +
1
Q

= σ∞ +
1
R

, ε∞ +
1
Q

� ω∞ +
1
R

and simultaneously one of the following conditions is satisfied:

λ0 +
1
Q

< 0, σ0 +
1
R

< 0;

λ0 +
1
Q

< 0, σ0 +
1
R

= 0, ω0 +
1
R

< 0;

λ0 +
1
Q

< 0, R = ∞, σ0 = ω0 = 0;

0 �λ0 +
1
Q

, λ0 +
1
Q

> σ0 +
1
R

;

0 <λ0 +
1
Q

= σ0 +
1
R

, ε0 � ω0;

0 =λ0 +
1
Q

= σ0 +
1
R

, ε0 +
1
Q

� 0, ε0 +
1
Q

� ω0 +
1
R

;

0 =λ0 +
1
Q

= σ0 +
1
R

, ε0 +
1
Q

< 0, ω0 +
1
R

< 0.

The following theorem characterizes the embedding

L(1,Q;L,E) ↪→ L(1,R;S,W)

in the case when 0 < R < Q � ∞ .

5.2. THEOREM. Let 0 < R < Q � ∞ , μ(R) = ∞ , and L(1,Q;L,E) �= {0} . Then

L(1,Q;L,E) ↪→ L(1,R;S,W)

if and only if either

λ∞ +
1
Q

> σ∞ +
1
R

;

or

λ∞ +
1
Q

= σ∞ +
1
R

, ε∞ +
1
Q

> ω∞ +
1
R

and simultaneously one of the following conditions is satisfied:
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λ0 +
1
Q

< 0, σ0 +
1
R

< 0;

λ0 +
1
Q

< 0, σ0 +
1
R

= 0, ω0 +
1
R

< 0;

0 �λ0 +
1
Q

, λ0 +
1
Q

> σ0 +
1
R

;

0 <λ0 +
1
Q

= σ0 +
1
R

, ε0 +
1
Q

> ω0 +
1
R

;

0 =λ0 +
1
Q

= σ0 +
1
R

, ε0 +
1
Q

� 0, ε0 +
1
Q

> ω0 +
1
R

;

0 =λ0 +
1
Q

= σ0 +
1
R

, ε0 +
1
Q

< 0, ω0 +
1
R

< 0.

In Theorems 5.1 and 5.2 we have assumed that μ(R) = ∞ . Now, we shall
characterize the embedding (5.2) provided that P = 1 and μ(R) < ∞ . In this
case Theorems 5.1 and 5.2 remain true if we omit all the assumptions on the second
components of vectors L, E, S and W (cf. [EOP1, Theorem 6.3] and remarks on the
GLZ spaces with μ(R) < ∞ in Section 3). Since the condition μ(R) < ∞ implies
that the spaces L(1,q;A,B) (with 0 < q � ∞ , A = (α0,α∞) , B = (β0, β∞) ∈ R2 ) and
L(1,q;α0,β0) coincide, we can consider, instead of (5.2), the embedding

L(1,Q;λ ,ε) ↪→ L(1,R;σ,ω),

where 0 < Q, R � ∞ and λ , ε,σ,ω ∈ R . Using the same method as in the case
P = 1 and μ(R) = ∞ , one can prove the following two theorems.

5.3. THEOREM. Let 0 < μ(R) < ∞ , 0 < Q � R � ∞ , and λ , ε,σ,ω ∈ R .
Then

L(1,Q;λ ,ε) ↪→ L(1,R;σ,ω)

if and only if one of the following conditions is satisfied:

λ +
1
Q

< 0, σ +
1
R

< 0;

λ +
1
Q

< 0, σ +
1
R

= 0, ω +
1
R

< 0;

λ +
1
Q

< 0, R = ∞, σ = ω = 0;

0 �λ +
1
Q

, λ +
1
Q

> σ +
1
R

;

0 <λ +
1
Q

= σ +
1
R

, ε � ω ;

0 =λ +
1
Q

= σ +
1
R

, ε +
1
Q

� 0, ε +
1
Q

� ω +
1
R

;

0 =λ +
1
Q

= σ +
1
R

, ε +
1
Q

< 0, ω +
1
R

< 0.
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5.4. THEOREM. Let 0 < μ(R) < ∞, 0 < R < Q � ∞ , and λ , ε,σ,ω ∈ R .
Then

L(1,Q;λ ,ε) ↪→ L(1,R;σ,ω)

if and only if one of the following conditions is satisfied:

λ +
1
Q

< 0, σ +
1
R

< 0;

λ +
1
Q

< 0, σ +
1
R

= 0, ω +
1
R

< 0;

0 �λ +
1
Q

, λ +
1
Q

> σ +
1
R

;

0 <λ +
1
Q

= σ +
1
R

, ε +
1
Q

> ω +
1
R

;

0 =λ +
1
Q

= σ +
1
R

, ε +
1
Q

� 0, ε +
1
Q

> ω +
1
R

;

0 =λ +
1
Q

= σ +
1
R

, ε +
1
Q

< 0, ω +
1
R

< 0.

The next theorem describes embedding among L(p,q;A,B) -spaces with p varying.

5.5. THEOREM. Let 0 < P1, P2, Q, R � ∞ , P1 �= P2 , L, E, S, W ∈ R2 and

(5.4) L(P1,Q;L,E) �= {0}.
Then

(5.5) L(P1,Q;L,E) ↪→ L(P2,R;S,W)

if and only if μ(R) < ∞ and one of the following conditions is satisfied:

1 � P2 < P1 � ∞;(5.6)
0 < P2 < 1 � P1 � ∞;(5.7)
0 < P1, P2 < 1;(5.8)

0 < P1 < 1, P2 = 1, σ0 +
1
R

< 0;(5.9)

0 < P1 < 1, P2 = 1, σ0 +
1
R

= 0, ω0 +
1
R

< 0;

(5.10)

0 < P1 < 1, P2 = 1, R = ∞, σ0 = ω0 = 0.
(5.11)

6. Associate spaces of GLZ spaces

In this section we give a complete description of the associate space of a non-trivial
GLZ space. To begin, we single out the GLZ spaces whose associate space is trivial.
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6.1. THEOREM. Let 0 < p, q � ∞ and A = (α0,α∞) , B = (β0, β∞) ∈ R2 . Put
X = Lp,q;A,B .

(i) Assume that one of the following conditions holds:

0 < p < 1;

p = 1, 0 < q � 1, α0 < 0;

p = 1, 0 < q � 1, α0 = 0, β0 < 0.

Then
X′ = {0}.

(ii) Assume that one of the following conditions holds:

p = 1, 1 < q � ∞, α0 <
1
q′

;

p = 1, 1 < q � ∞, α0 =
1
q′

, β0 � 1
q′

;

Then
X′ = {0}.

Proof. (i) By [BS, Chapter 2, Corollary 7.8], for every t ∈ (0, 1) there exists a
function gt ∈ M (R,μ) such that g∗t = χ(0,t) . By Lemma 3.7 (i),

‖gt‖X ≈ t1/p�α0(t)��β0(t), 0 < t < 1.

Assume that f ∈ M (R,μ) and f �≡ 0 . Then there exist two positive constants, ε, δ ,
such that f ∗(s) � δ for s ∈ (0, ε) . We claim that f /∈ X′ , that is, ‖f ‖X′ = ∞ .
Indeed,

‖f ‖X′ = sup
‖g‖X�1

∞∫
0

f ∗(s)g∗(s) d s � sup
0<t<ε

∞∫
0

f ∗(s)
g∗t (s)
‖gt‖X

d s

� δ sup
0<t<ε

t−1/p�−α0(t)��−β0(t)

t∫
0

d s = ∞.

(ii) The function h(t) = t−1�−1(t)��−1(t)χ(0,ε)(t) is, for some ε small enough,
non-increasing on (0,∞) . Moreover,

(6.1) ‖t 1
p− 1

q �A(t)��B(t)h(t)‖q,(0,∞) < ∞,

but

(6.2)
∫ δ

0
h(t) d t = ∞ for every δ > 0.

By [BS, Chapter 2, Corollary 7.8], there is a g ∈ M (R,μ) such that g∗ = h , and, by
(6.1), g ∈ X . Now, let f ∈ X′ . Then

∫ ∞
0 f ∗(t)g∗(t) d t < ∞ . However, by (6.2), that

is possible only if f ≡ 0 . The proof is complete. �
In the next theorem we describe associated spaces of X = Lp,q;A,B provided that

1 � p � ∞ and 1 < q � ∞ . In accordance with our definition of the associate space
(cf. Section 2 above), we restrict ourselves to the cases when X �= {0} .
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6.2. THEOREM. Let 1 � p � ∞ , 1 < q � ∞ , A = (α0,α∞) , B = (β0, β∞) ∈
R2 , and assume that the space Lp,q;A,B is not trivial ( cf. (3.2)) . Then (Lp,q;A,B)′ = L ,
the space described below:

(i) Let 1 � p < ∞ , 1 < q � ∞ . Then

(6.3) L = L(p′,q′;−A,−B) = Lp′,q′;−A,−B.

(ii) Let p = ∞ , 1 < q < ∞ , α0 + 1
q < 0 , and either α∞ + 1

q > 0 or

α∞ + 1
q = 0 , β∞ + 1

q � 0 . Then

L =

⎧⎪⎪⎨⎪⎪⎩
L(1,q′;−A−1,−B) if α∞ + 1

q > 0;

L(1,q′;(−α0−1,− 1
q′ ),(−β0,−β∞−1)) if α∞ + 1

q = 0, β∞ + 1
q > 0;

L(1,q′;(−α0−1,− 1
q′ ),(−β0,− 1

q′ ),(0,−1)) if α∞ + 1
q = 0, β∞ + 1

q = 0.

(iii) Let p = ∞ , 1 < q < ∞ , α0 + 1
q = 0 , β0 + 1

q < 0 , and either α∞ + 1
q > 0

or α∞ + 1
q = 0 , β∞ + 1

q � 0 . Then

L =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
L(1,q′;(− 1

q′ ,−α∞−1),(−β0−1,−β∞)) if α∞ + 1
q > 0;

L(1,q′;(− 1
q′ ,− 1

q′ ),−B−1) if α∞ + 1
q = 0, β∞ + 1

q > 0;

L(1,q′;(− 1
q′ ,− 1

q′ ),(−β0−1,− 1
q′ ),(0,−1)) if α∞ + 1

q = 0, β∞ + 1
q = 0.

(iv) Let p = ∞ , q = ∞ , and either α∞ > 0 or α∞ = 0 , β∞ � 0 . Then

L = L1,1;−A,−B.

(v) Let p = ∞ , 1 < q � ∞ , and either α∞ + 1
q < 0 or α∞ + 1

q = 0 and

β∞ + 1
q < 0 . Then

L =
{
f ∈ M (R,μ); ‖f ‖L := ‖f ‖X(0,1) +

∞∫
0

f ∗(t) d t < ∞}
,

where

X(0, 1) =

⎧⎪⎪⎨⎪⎪⎩
L(1,q′;−α0−1,−β0)(0, 1) if 1 < q < ∞, α0 + 1

q < 0;

L(1,q′;− 1
q′ ,−β0−1)(0, 1) if 1 < q < ∞, α0 + 1

q = 0, β0 + 1
q < 0;

L1,1;−α0,−β0(0, 1) if q = ∞.

6.3. REMARK. Since L(1,r;σ,ω)(0, 1) ↪→ L1(0, 1) for every 1 � r � ∞ , σ,ω ∈ R ,
and L1,1;−α0,−β0(0, 1) ↪→ L1(0, 1) if either α0 < 0 , or α0 = 0 and β0 � 0 , we can
write in Theorem 6.2 (v),

L =
{
f ∈ M (R,μ); ‖f ‖L := ‖f ‖X(0,1) +

∞∫
1

f ∗(t) d t < ∞}
.
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Proof of Theorem 6.2. We first prove the assertion in the cases (i)–(iii) for 1 <
q < ∞ , since the technique of the proof is common. We shall start with proving the
inclusion

(6.4) (Lp,q;A,B)′ ↪→ L .

For this purpose it is enough to verify the inequality

(6.5) ‖f ‖L � ‖f ‖(Lp,q;A,B)′

for all step functions f . For convenience, let us denote by b(t) the function defined by

(6.6) ‖f ‖L = ‖t
1
p′ −

1
q′ b(t)f ∗∗(t)‖q′ .

We further put

(6.7) �(t) =
(
f ∗∗(t)

)q′−1
t

q′
p′ −1

bq′(t),

and

(6.8) g(t) =

∞∫
t

�(s)
s

d s .

Then g∗ = g and there exists g̃ ∈ M (R,μ) such that g̃∗ = g . By the Fubini theorem
and Hölder’s inequality,

‖f ‖q′
L =

∞∫
0

�(t)f ∗∗(t) d t =

∞∫
0

g(t)f ∗(t) d t � ‖g̃‖p,q;A,B ‖f ‖(Lp,q;A,B)′ .

Now, in order to obtain (6.5), it is enough to show that

(6.9) ‖g̃‖p,q;A,B � ‖f ‖q′−1
L .

Rewriting (6.9) with the help of Definition 3.1 and (6.6) we get, using also (6.8) and
(6.7),

∥∥∥t
1
p− 1

q �A(t)��B(t)

∞∫
t

(
f ∗∗(s)

)q′−1
s

q′
p′ −2

bq′(s) d s
∥∥∥

q
�

∥∥t
q′−1

p′ − 1
q bq′−1(t)

(
f ∗∗(t))q′−1

∥∥
q
.

Using an appropriate substitution, this amounts to the Hardy inequality

(6.10)
∥∥∥t

1
p− 1

q �A(t)��B(t)

∞∫
t

h(s) d s
∥∥∥

q
�

∥∥t
1
p + 1

q′
(
b(t)

)−1
h(t)

∥∥
q
.

A sufficient condition for (6.10) is given by (cf. [OK])

(6.11) sup
0<x<∞

‖t 1
p− 1

q �A(t)��B(t)‖q,(0,x) ‖t−
1
p− 1

q′ b(t)‖q′,(x,∞) < ∞.
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Now it is a matter of a tedious but elementary calculation to verify (6.11) for appropriate
b(t) , given by (6.6), in all the cases of L . This yields the inclusion (6.4) for the cases
(i)–(iii) restricted to 1 < q < ∞ .

Now let us prove the converse inclusion L ↪→ Lp,q;A,B
′ , that is,

(6.12) ‖f ‖(Lp,q;A,B)′ � ‖f ‖L for all f ∈ L

in the cases (i)–(iii) with 1 < q < ∞ . Since for every f ∈ M (R,μ) ,

(6.13) ‖f ‖(Lp,q;A,B)′ = sup
‖g‖p,q;A,B�1

∫
R

f (x)g(x) d μ

and (cf. [BS, Chapter 2, Theorem 2.2])

(6.14)
∫
R

f (x)g(x) dμ �
∞∫

0

f ∗(t)g∗(t) d t,

we see that in order to prove (6.12) it is enough to show that

(6.15)

∞∫
0

f ∗(t)g∗(t) d t � ‖f ‖L ‖g‖p,q;A,B

for all f ∈ L and g ∈ Lp,q;A,B . We use (6.6) and rewrite (6.15) as

(6.16)

∞∫
0

f ∗(t)g∗(t) d t � ‖t
1
p′ −

1
q′ b(t)f ∗∗(t)‖q′ ‖t

1
p− 1

q �A(t)��B(t)g∗(t)‖q.

To get (6.16) we shall use the result of Sawyer ([Sa, (1.7)]):

(6.17)

∞∫
0

f ∗(t)g∗(t) d t � ‖g∗‖q(v)

(
‖f ∗∗‖q′(ṽ) +

1
v(0,∞)1/q

∞∫
0

f ∗(t) d t
)
,

where 1 < q < ∞ , v is a positive weight, v(a, b) =
∫ b

a v(t) d t if 0 � a < b � ∞ ,
ṽ is given by

(6.18) ṽ(t) =
tq

′
v(t)

(v(0, t))q′ , t ∈ (0,∞),

and ‖h‖q(v) =
( ∫ ∞

0 hqv
)1/q

. The suitable choice of v in our situation reads as

(6.19) v(t) = t
q
p−1�Aq(t)��Bq(t), t ∈ (0,∞).

Now, in the cases (i)–(iii) with 1 < q < ∞ , we have v(0,∞) = ∞ . Together with
the convention ∞/∞ = 0 (used also in [Sa]) this implies that the second summand at
the right hand side of (6.17) disappears, and (6.15) will follows once we show that

(6.20) t
q′
p′ −1

bq′(t) = ṽ(t),
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where b is the function from (6.6) that corresponds to the space L from (i)–(iii), and
v , ṽ are from (6.19), (6.18). Since (6.20) follows by a calculation, we have proved
(i)–(iii) for 1 < q < ∞ .

Our next step will be to prove (v) for 1 < q < ∞ . Assume that α0 + 1
q < 0 .

(The proof in the case α0 + 1
q = 0 and β0 + 1

q < 0 is entirely analogous and therefore
omitted.) By our definition of L ,

‖f ‖L = ‖t 1
q �−α0−1(t)��−β0(t)f ∗∗(t)‖q′,(0,1) +

∞∫
0

f ∗(t) d t.

Exactly in the same way as above we can show that

‖t 1
q �−α0−1(t)��−β0(t)f ∗∗(t)‖q′,(0,1) � ‖f ‖(L∞,q;A,B)′ .

Further, by the Hölder inequality,

∞∫
0

f ∗(t) d t � ‖f ‖(L∞,q;A,B)′ ‖1‖∞,q;A,B,

and, since 1 ∈ L∞,q;A,B , this yields (L∞,q;A,B)′ ↪→ L .
To prove the converse embedding, we shall use the Sawyer’s inequality (6.17)

again, but this time the last summand does not disappear, as v(0,∞) < ∞ , where v is
from (6.19), that is (recall p = ∞ ),

v(t) = t−1�Aq(t)��Bq(t), t ∈ (0,∞).

We get
v(0, t) ≈ �α0q+1(t)��β0q(t)χ(0,1)(t) + χ(1,∞)(t),

and, by (6.18),

ṽ(t) ≈ tq
′−1�(−α0−1)q′(t)��−β0q

′
(t)χ(0,1)(t) + tq

′−1�α∞q(t)��β∞q(t)χ(1,∞)(t).

Therefore, by (6.17),
∞∫
0

f ∗(t)g∗(t) d t � ‖g‖∞,q;A,B

(( ∞∫
0

(
f ∗∗(t)

)q′
ṽ(t) d t

)1/q′
+

∞∫
0

f ∗(t) d t
)
.

Moreover,

( ∞∫
0

(
f ∗∗(t)

)q′
ṽ(t) d t

)1/q′
= ‖t 1

q �−α0−1(t)��−β0(t)f ∗∗(t)‖q′,(0,1)

+‖t 1
q �α∞(q−1)(t)��β∞(q−1)(t)f ∗∗(t)‖q′,(1,∞) = I1 + I2,

say. It is clear that
I1 = ‖f ∗‖X(0,1).
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To estimate I2 , we insert for f ∗∗ and obtain thereby

I2 ≈
1∫

0

f ∗(t) d t ‖t−
1
q′ �α∞(q−1)(t)��β∞(q−1)(t)‖q′,(1,∞)

+
∥∥∥t

− 1
q′ �α∞(q−1)(t)��β∞(q−1)(t)

t∫
1

f ∗
∥∥∥

q′,(1,∞)
= I3 + I4,

say. Observe that

‖t−
1
q′ �α∞(q−1)(t)��β∞(q−1)(t)‖q′,(1,∞) < ∞,

and this yields

I3 �
1∫

0

f ∗(t) d t.

Further, by the Bradley condition for the Hardy inequality (cf. [OK]),

I4 �
∞∫
1

f ∗(t) d t.

Consequently,
∞∫

0

f ∗(t) g∗(t) d t � ‖g‖∞,q;A,B

(
‖f ‖X(0,1) +

∞∫
0

f ∗(t) d t
)
.

Together with (6.13) and (6.14) this yields the embedding L ↪→ (L∞,q;A,B)′ , which
completes the proof of (v) for 1 < q < ∞ .

Finally, let q = ∞ . Then we have

‖f ‖p,∞;A,B = sup
0<t<∞

t
1
p �A(t)��B(t)f ∗(t).

Assume that 1 < p � ∞ . Then, by Theorem 3.8 (i), also

‖f ‖p,∞;A,B ≈ sup
0<t<∞

t
1
p �A(t)��B(t)f ∗∗(t).

Moreover, our assumptions on p, A, B imply

‖f ‖p,∞;A,B ≈ sup
0<t<∞

ϕ(t)f ∗∗(t),

where

ϕ(t) ≈

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

t
1
p �A(t)��B(t), if 1 < p < ∞,

or p = ∞, α∞ > 0,

or p = ∞, α∞ = 0, β∞ � 0;

t
1
p �α0(t)��β0(t)χ(0,1](t) + χ(1,∞)(t) if p = ∞, α∞ < 0,

or p = ∞, α∞ = 0, β∞ � 0.
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By (3.2), ϕ ∈ F in all cases. Hence (cf. (2.4)), Lp,∞;A,B = Mϕ . Applying (2.6),
calculating d ϕ̃

d t , where ϕ̃(t) = t
ϕ(t) , and using (2.3), we get (i) for q = ∞ and p > 1 ,

(iv), and (v) for q = ∞ .

To finish the proof, we have only to verify (i) for p = 1 and q = ∞ . The
inequality

∞∫
0

f ∗(t)g∗(t) d t � ‖g‖1,∞;A,B ‖f ‖∞,1;−A,−B

yields L∞,1;−A,−B ↪→ (L(1,∞;A,B))′ . For the converse, set

�(t) = t−1�−A(t)��−B(t).

Then ‖�‖1,∞;A,B ≈ 1 , whence, by the Hölder inequality,

‖f ‖∞,1;−A,−B =

∞∫
0

�(t)f ∗(t) d t � ‖�‖1,∞;A,B ‖f ‖(L1,∞;A,B)′ .

The proof is complete. (Note that the second equality in (6.3) follows from
Theorem 3.8 (i).) �

It remains to describe associate spaces of X = Lp,q;A,B provided that X �= {0} ,
0 < q � 1 and either 1 < p � ∞ , or p = 1 , α0 > 0 , or p = 1 , α0 = 0 , and β0 � 0 .
We shall use the following lemma, of independent interest.

6.4. LEMMA. Let X be a rearrangement-invariant quasi-Banach space. Let
ϕX ∈ F . Assume that X ↪→ ΛϕX . Then X′ = Mϕ̃X

, where ϕ̃X(t) = t/ϕX(t) .

Proof. The inclusion Mϕ̃X
↪→ X′ is evident (cf. (2.6)). For the converse, by (2.4)

and (2.1),

‖f ‖M
ϕ̃X

= sup
0<t<μ(R)

ϕ̃X(t)
t

∫ t

0
f ∗(s) d s � sup

0<t<μ(R)

ϕ̃X(t)
t

ϕX(t) ‖f ‖X′ = ‖f ‖X′. �

To check the condition ϕX ∈ F of Lemma 6.4, the next lemma will be useful.

6.5. LEMMA. Let 0 < p � ∞ and L = (λ0, λ∞) , E = (ε0, ε∞) ∈ R2 . Then
the function ϕ , given by ϕ(0) = 0 and ϕ(t) = t1/p�L(t)��E(t) for t ∈ (0,∞) , is
equivalent on (0,∞) to a non-decreasing concave function if and only if one of the
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following conditions holds:

(6.21)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 < p < ∞;

p = 1, λ0 > 0, λ∞ < 0;

p = 1, λ0 > 0, λ∞ = 0, ε∞ � 0;

p = 1, λ0 = 0, ε0 � 0, λ∞ < 0;

p = 1, λ0 = 0, ε0 � 0, λ∞ = 0, ε∞ � 0;

p = ∞, λ0 < 0, λ∞ > 0;

p = ∞, λ0 < 0, λ∞ = 0, ε∞ � 0;

p = ∞, λ0 = 0, ε0 � 0, λ∞ > 0;

p = ∞, λ0 = 0, ε0 � 0, λ∞ = 0, ε∞ � 0.

Proof follows by a simple calculation. �

6.6. THEOREM. Let 0 < q � 1 , A = (α0,α∞) , B = (β0, β∞) ∈ R2 , and
assume that the space X = Lp,q;A,B is not trivial ( cf. (3.2)) . Let one of the following
conditions hold:

1 < p � ∞;

p = 1, α0 > 0;(6.22)
p = 1, α0 = 0, β0 > 0;(6.23)
p = 1, q = 1, α0 = 0, β0 = 0.(6.24)

Then X′ = L , a space described below:
(i) Let 1 � p < ∞ . Then

L = L(p′,∞;−A,−B) = Lp′,∞;−A,−B.

(ii) Let p = ∞ , α0 + 1
q < 0 , and either α∞ + 1

q > 0 or α∞ + 1
q = 0 ,

β∞ + 1
q � 0 . Then

L =

⎧⎪⎪⎨⎪⎪⎩
L(1,∞;−A− 1

q ,−B) if α∞ + 1
q > 0;

L(1,∞;(−α0− 1
q ,0),(−β0,−β∞− 1

q )) if α∞ + 1
q = 0, β∞ + 1

q > 0;

L(1,∞;(−α0− 1
q ,0),(−β0,0),(0,− 1

q )) if α∞ + 1
q = 0, β∞ + 1

q = 0.

(iii) Let p = ∞ , α0+ 1
q = 0 , β0+ 1

q < 0 , and either α∞+ 1
q > 0 or α∞+ 1

q = 0 ,

β∞ + 1
q � 0 . Then

L =

⎧⎪⎪⎨⎪⎪⎩
L(1,∞;(0,−α∞− 1

q ),(−β0− 1
q ,−β∞)) if α∞ + 1

q > 0;

L(1,∞;(0,0),−B− 1
q ) if α∞ + 1

q = 0, β∞ + 1
q > 0;

L(1,∞;(0,0),(−β0− 1
q ,0),(0,− 1

q )) if α∞ + 1
q = 0, β∞ + 1

q = 0.
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(iv) Let p = ∞ , and either α∞ + 1
q < 0 or α∞ + 1

q = 0 and β∞ + 1
q < 0 . Then

L =
{
f ∈ M (R,μ); ‖f ‖L := ‖f ‖Y(0,1) +

∞∫
0

f ∗(t) d t < ∞}
,

where

Y(0, 1) =

{
L(1,∞;−α0− 1

q ,−β0)(0, 1) if α0 + 1
q < 0

L(1,∞;0,−β0− 1
q )(0, 1) if α0 + 1

q = 0, β0 + 1
q < 0.

Proof. I. Assume first that 1 < p < ∞ . By Lemma 3.7 (i),

(6.25) ϕX(t) ≈ t
1
p �A(t)��B(t), t ∈ (0,∞).

Together with Lemma 6.5 this implies that ϕX ∈ F . Moreover, by (6.25), ΛϕX =
Lp,1;A,B , and

ϕ̃X(t) ≈ t
1
p′ �−A(t)��−B(t), t ∈ (0,∞).

Consequently,
Mϕ̃X

= L(p′,∞;−A,−B) = Lp′,∞;−A,−B.

Thus, by Lemma 6.4,
X′ = Mϕ̃X

= Lp′,∞;−A,−B,

provided that
X = Lp,q;A,B ↪→ Lp,1;A,B = ΛϕX .

This however follows from Theorem 4.1.
II. In the case when p = ∞ the proof is quite analogous to the one above (instead

of Theorem 4.1 we use Theorem 4.2]).
III. Assume that either (6.22) or (6.23) or (6.24) holds. Then (cf. (6.21)), ϕX ∈ F

if and only if

(6.26) either α∞ < 0 or α∞ = 0 and β∞ � 0.

In each of these cases we can again apply the argument from part I to get the result.
Assume now that (6.26) is not satisfied, that is, either α∞ > 0 or α∞ = 0 and

β∞ > 0 . We put Z = L1,q;(α0,0),(β0,0) . Then clearly X ↪→ Z , whence

(6.27) Z′ ↪→ X′.

Now the parameters of the space Z′ fit in the situation described by (6.26), and we thus
obtain Z′ = L∞,∞;(−α0,0),(−β0,0) . Moreover, by Corollary 3.10, Z′ = L∞,∞;−A,−B .
Consequently, Z′ = L . Together with (6.27), this yields L ↪→ X′ .

Using (2.1) and Lemma 3.7 (i), we get

‖f ‖L = ‖�−A(t)��−B(t)t−1

t∫
0

f ∗(s) d s‖∞,(0,∞)

� ‖f ‖X′‖t−1�−A(t)��−B(t)ϕX(t)‖∞,(0,∞) = ‖f ‖X′,
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which proves the converse embedding X′ ↪→ L . The proof is complete. �
Next, we are going to describe associated spaces of L(p,q;A,B) with 0 < p, q � ∞

and A, B ∈ R2 . However, according to (5.3) and our previous results on associated
spaces to Lp,q;A,B , it is enough to consider the case when 0 < p � 1 , 0 < q � ∞
and A, B ∈ R2 . If p = 1 , 1 � q � ∞ and A, B ∈ R2 , the desired description of
(L(p,q;A,B))′ is given in the following theorem.

6.7. THEOREM. Let 1 < q � ∞ , A = (α0,α∞), B = (β0, β∞) ∈ R2 , and
assume that the space X = L(1,q;A,B) is not trivial (cf. (3.3)). Then X′ = L , a space
described below:

(i) Let 1 < q � ∞ , let either α0 + 1
q > 0 or α0 + 1

q = 0 and β0 + 1
q � 0 , and

let either α∞ + 1
q < 0 or α∞ + 1

q = 0 and β∞ + 1
q < 0 . Then L reads as

L∞,q′;−A−1,−B if α0 +
1
q

> 0, α∞ +
1
q

< 0;

L∞,q′;(−α0−1,− 1
q′ ),(−β0,−β∞−1) if α0 +

1
q

> 0, α∞ +
1
q

= 0, β∞ +
1
q

< 0;

L∞,q′;(− 1
q′ ,−α∞−1),(−β0−1,−β∞) if α0 +

1
q

= 0, β0 +
1
q

> 0, α∞ +
1
q

< 0;

L∞,q′;(− 1
q′ ,− 1

q′ ),−B−1 if α0 +
1
q

= 0, β0 +
1
q

> 0,

α∞ +
1
q

= 0, β∞ +
1
q

< 0;

L∞,q′;(− 1
q′ ,−α∞−1),(− 1

q′ ,−β∞),(−1,0) if α0 +
1
q

= 0, β0 +
1
q

= 0, α∞ +
1
q

< 0;

L∞,q′;(− 1
q′ ,− 1

q′ ),(− 1
q′ ,−β∞−1),(−1,0) if α0 +

1
q

= 0, β0 +
1
q

= 0,

α∞ +
1
q

= 0, β∞ +
1
q

< 0.

(ii) Let 1 < q � ∞ , let either α0 + 1
q < 0 or α0 + 1

q = 0 and β0 + 1
q < 0 , and

let either α∞ + 1
q < 0 or α∞ + 1

q = 0 and β∞ + 1
q < 0 . Then

(6.28) L = {f ∈ M (R,μ); ‖f ‖L = ‖f ‖∞ + N(f ) < ∞},
where

(6.29) N(f )=

⎧⎨⎩ ‖t−
1
q′ �−α∞−1(t)��−β∞(t)f ∗(t)‖q′,(1,∞) if α∞ + 1

q < 0

‖t−
1
q′ �

− 1
q′ (t)��−β∞−1(t)f ∗(t)‖q′,(1,∞) if α∞+ 1

q=0, β∞+ 1
q<0.

(iii) Let q = ∞ , α∞ = 0 , and β∞ = 0 . Then

L = {f ∈ M (R,μ); ‖f ‖L < ∞},
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where

(6.30) ‖f ‖L =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∫ 1
0 t−1�−α0−1(t)��−β0(t)f ∗(t)dt if α0 > 0∫ 1
0 t−1�−1(t)��−β0−1(t)f ∗(t)dt if α0 = 0, β0 > 0

‖f ‖∞ if either α0 < 0,

or α0 = 0, β0 � 0.

6.8. REMARK. We see from (6.30) that the space L of Theorem 6.7 (iii) is given
by

L =
{

L∞,1;α0−1,−β0(0, 1) if α0 > 0

L∞,1;−1,−β0−1(0, 1) if α0 = 0, β0 > 0.

Proof of Theorem 6.7. (i) By Theorem 3.8 (i), any space in part (i) coincides with
its analogue in the norm of which f ∗ is replaced by f ∗∗ . Thus, by Remark 3.6, any
such space is a BFS, i.e., the space L is a BFS. Consequently, L = L ′′ . Further,
by Theorem 6.2 (ii), (iii), and (v), and by Theorem 6.6 (ii)–(iv) (supplemented by
their analogues for spaces with three tiers of logarithms), L ′ = L(1,q;A,B) . Hence,
L = L ′′ = (L(1,q;A,B))′ = X′ .

(ii) In this case we have

‖t− 1
q �α0(t)��β0(t)‖q,( 1

2 ,1) ≈ 1 ≈ ‖t− 1
q �α0(t)��β0(t)‖q,(0,1).

Consequently, we get for every g ∈ X ,∫ 1

0
g∗(t) d t �

∫ 1
2

0
g∗(t) d t ≈ ‖t− 1

q �α0(t)��β0(t)‖q,( 1
2 ,1)

∫ 1
2

0
g∗(t) d t

� ‖t− 1
q �α0(t)��β0(t)

∫ t

0
g∗(s) d s‖q,( 1

2 ,1) � ‖t
1
q′ �α0(t)��β0(t)g∗∗(t)‖q,(0,1)

� ‖t− 1
q �α0(t)��β0(t)‖q,(0,1)

∫ 1

0
g∗(s) d s ≈

∫ 1

0
g∗(t) d t,

which implies

(6.31) ‖g‖X ≈
∫ 1

0
g∗(t) d t + ‖t

1
q′ �α∞(t)��β∞(t)g∗∗(t)‖q,(1,∞).

Now we shall prove the embedding

(6.32) X′ ↪→ L .

For this purpose it is enough to verify for all step functions f ∈ M (R,μ) the inequality

(6.33) ‖f ‖L � ‖f ‖X′.

For a step function f ∈ M (R,μ) , we define a function � by

(6.34) �(t) = [f ∗(1)]q
′−1, 0 < t � 1,
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and, for 1 < t � ∞ , by

(6.35) �(t) =

⎧⎪⎪⎨⎪⎪⎩
[f ∗(t)]q

′−1t−1�(−α∞−1)q′(t)��−β∞q′(t) if α∞ + 1
q < 0

[f ∗(t)]q
′−1t−1�−1(t)��(−β∞−1)q′(t) if α∞ + 1

q = 0,

β∞ + 1
q < 0.

Then � is equivalent to a non-increasing function on (0,∞) and, by [BS, Chapter 2,
Corollary 7.8], there is a � ∈ M (R,μ) such that � ∗ ≈ � . Moreover, we have from
(6.28) and (6.29) that

(6.36) ‖f ‖q′
L ≈ ‖f ‖q′

∞ +
∫ ∞

1
�(t)f ∗(t) d t.

Our assumptions on A and B and Lemma 3.7 (ii) imply

ϕX(t) ≈ t for all t ∈ (0, 1).

Together with (2.1), this yields

(6.37) ‖f ‖∞ = lim
t→0+

1
t

∫ t

0
f ∗(s) d s � ‖f ‖X′ lim

t→0+

1
t
ϕX(t) ≈ ‖f ‖X′.

Moreover, by Hölder’s inequality,

(6.38)
∫ ∞

1
�(t)f ∗(t) d t � ‖�‖X‖f ‖X′.

If we prove that

(6.39) ‖�‖X � ‖f ‖q′−1
L ,

we would obtain from (6.36), (6.28), (6.38), (6.39), and (6.37) that

‖f ‖q′
L � ‖f ‖q′−1

L ‖f ‖∞ + ‖�‖X‖f ‖X′ � ‖f ‖q′−1
L ‖f ‖X′,

and (6.33) would follow.
Since (cf. (6.34))∫ 1

0
�(s) d s = [f ∗(1)]q

′−1 � ‖f ‖q′−1
∞ � ‖f ‖q′−1

L ,

and

‖t− 1
q �α∞(t)��β∞(t)

∫ 1

0
�(s) d s‖q,(1,∞) ≈

∫ 1

0
�(s) d s � ‖f ‖q′−1

L ,

we have from(6.31) that

‖�‖X ≈
∫ 1

0
�(s) d s + ‖t

1
q′ �α∞(t)��β∞(t)�∗∗(t)‖q,(1,∞)(6.40)

� ‖f ‖q′−1
L + ‖t− 1

q �α∞(t)��β∞(t)
∫ t

1
�(s) d s‖q,(1,∞).
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Thus, (6.39) will follow from (6.40) and (6.28) once we show that

‖t− 1
q �α∞(t)��β∞(t)

∫ t

1
�(s) d s‖q,(1,∞) �N(f )q′−1.

Using (6.29) and (6.35), this inequality can be rewritten as

(6.41) ‖t− 1
q �α∞(t)��β∞(t)

∫ t

1
�(s) d s‖q,(1,∞) � ‖t

1
q′ �α∞+1(t)��β∞(t)�(t)‖q,(1,∞)

if α∞ + 1
q < 0 , and

(6.42) ‖t− 1
q �α∞(t)��β∞(t)

∫ t

1
�(s) d s‖q,(1,∞) � ‖t

1
q′ �

1
q′ (t)��β∞+1(t)�(t)‖q,(1,∞)

if α∞ + 1
q = 0 and β∞ + 1

q < 0 . To verify (6.41) and (6.42) is a standard matter
using the well-known criterion for the Hardy inequality (cf. [OK]). This proves (6.39),
and in turn (6.33).

We shall now prove the converse inclusion to (6.32), i.e. L ↪→ X′ . Thus, we need
to verify that

(6.43) ‖f ‖X′ � ‖f ‖L for all f ∈ L .

Since for every f ∈ M (R,μ) ,

‖f ‖X′ = sup
‖g‖X�1

∫
R

f (x)g(x) d μ

and (cf. [BS, Chapter 2, Theorem 2.2])∫
R

f (x)g(x) d μ �
∫ ∞

0
f ∗(t)g∗(t) d t,

we see that in order to prove (6.43) it suffices to show that

(6.44)
∫ ∞

0
f ∗(t)g∗(t) d t � ‖f ‖L ‖g‖X

for every f ∈ L and g ∈ X . First, we have (cf. (6.28) and (6.31))∫ 1

0
f ∗(t)g∗(t) d t � ‖f ‖∞

∫ 1

0
g∗(t) d t � ‖f ‖L ‖g‖X.

Therefore, it remains to prove that

(6.45)
∫ ∞

1
f ∗(t)g∗(t) d t � ‖f ‖L ‖g‖X.

Assume that (6.45) is not satisfied. Then there are two sequences of functions
{f n}, {gn} such that ‖f n‖L � 1 , ‖gn‖X � 1 , n ∈ N , and

(6.46)
∫ ∞

1
f ∗
n (t)g∗n (t) d t → ∞ as n → ∞.
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Putting

(6.47) hn(x) = min{|gn(x)|, g∗n(1)} sgn gn(x), x ∈ R, n ∈ N,

we have |hn| � |gn| and since X is a BFS (cf. Remark 3.6),

‖hn‖X � ‖gn‖X � 1, n ∈ N.

Moreover, by (6.31),

(6.48) g∗n(1) �
∫ 1

0
g∗n(t) d t � ‖gn‖X � 1, n ∈ N.

We now claim that {hn} is uniformly bounded in the space Y , where

(6.49) Y = L(1,q;(1,α∞),B).

To prove (6.49), note that (6.47) implies

h∗n(s) = min[g∗n(s), g
∗
n (1)], s � 0.

Hence
h∗n(s) = g∗n(1), s ∈ (0, 1] and h∗n(s) = g∗n(s), s ∈ (1,∞).

This yields h∗∗n (s) = g∗n(1) for s ∈ (0, 1] and h∗∗n � g∗∗n . Thus, using (6.48),

(6.50) ‖hn‖Y � ‖t1− 1
q �(t)��β0(t)g∗n (1)‖q,(0,1) + ‖t1− 1

q �α∞(t)��β∞(t)g∗∗n ‖q,(1,∞)

� g∗n(1)‖t1− 1
q �(t)��β0(t)‖q,(0,1) + ‖gn‖X � 1,

which proves the uniform boundedness of {hn} in Y .
Now, by part (i), we can determine the space Y ′ , namely

Y ′ =

{
L∞,q′;(−2,−α∞−1),−B if α∞ + 1

q < 0

L∞,q′;(−2,− 1
q′ ),(−β0,−β∞−1) if α∞ + 1

q = 0, β∞ + 1
q < 0.

Hence, applying (6.28), (6.29), and the estimate

f ∗
n (t) � ‖f n‖∞ � ‖f n‖L � 1, n ∈ N,

we obtain

(6.51) ‖f n‖Y′ � ‖t−
1
q′ �−2(t)��−β0(t)f ∗

n (t)‖q′,(0,1) + N(f n)� ‖f n‖L � 1,

which means that f n are uniformly bounded in Y ′ . Now, (6.50) and (6.51) contradict
(6.46) since h∗n(s) = g∗n(s) for s ∈ (1,∞) .

(iii) In the case when q = ∞ , α∞ = 0 , and β∞ = 0 , we have for all g ∈ X ,

N1 : = ‖t�α0(t)��β0(t)g∗∗(t)‖q,(0,1) = ‖�α0(t)��β0(t)
∫ t

0
g∗(s) d s‖∞,(0,1),

N2 : = ‖t�α∞(t)��β∞(t)g∗∗(t)‖q,(1,∞) = ‖
∫ t

0
g∗(s) d s‖∞,(1,∞) =

∫ ∞

0
g∗(s) d s,
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and therefore

‖g‖(1,q;A,B) = max{N1, N2}(6.52)

= max
{
‖�α0(t)��β0(t)

∫ t

0
g∗(s) d s‖∞,(0,1),

∫ ∞

0
g∗(s) d s

}
.

If either α0 < 0 or α0 = 0 and β0 � 0 , then N1 ≈ ∫ 1
0 g∗(s) d s . This implies

that X = L1 and thus X′ = L∞ = L .
Now let either α0 > 0 or α0 = 0 and β0 > 0 . We shall first show that (6.33)

holds. Put (cf. (6.34) and (6.35)) for t ∈ (0,∞) ,

�(t) =
{

t−1�−α0−1(t)��−β0(t)χ(0,1)(t) if α0 > 0

t−1�−1(t)��−β0−1(t)χ(0,1)(t) if α0 = 0, β0 > 0.

The function � is equivalent to a non-increasing function on (0,∞) and, by [BS,
Chapter 2, Corollary 7.8], there is a � ∈ M (R,μ) such that � ∗ ≈ � . This and our
assumptions on q, A , and B yield ‖�‖X ≈ 1 . Moreover, (6.30) andHölder’s inequality
imply that for all step functions f ∈ M (R,μ) ,

‖f ‖L =
∫ ∞

0
�(t)f ∗(t) d t � ‖�‖X ‖f ‖X′

and (6.33) follows.
We have to prove the converse, that is, (6.43). To this end it suffices to verify

(6.44). Since f ∗(1)� ‖f ‖L , we have from (6.52) that for all f ∈ L and g ∈ X ,∫ ∞

1
f ∗(t)g∗(t) d t � f ∗(1)

∫ ∞

1
g∗(t) d t � ‖f ‖L ‖g‖X.

Hence, it remains to prove that for all f ∈ L and g ∈ X ,

(6.53)
∫ 1

0
f ∗(t)g∗(t) d t � ‖f ‖L ‖g‖X.

Assume that (6.53) is not true. Then there are two sequences of functions {f n} ,
{gn} such that ‖f n‖L � 1 , ‖gn‖X � 1 , n ∈ N , and

(6.54)
∫ 1

0
f ∗
n (t)g∗n (t) d t → ∞ as n → ∞.

Define the functions hn , n ∈ N , by

hn(x) = [|gn(x)| − g∗n(1)]+ sgn gn(x), x ∈ R,

and the space Y by
Y = L(1,∞;(α0,−1),B).

Then, by part (i),

(6.55) Y ′ =
{

L∞,1;(−α0−1,−2),−B if α0 > 0

L∞,1;(−1,−2),(−β0−1,−β∞) if α0 = 0, β0 > 0.
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Since h∗n(s) = [g∗n(s) − g∗n(1)]+ , s � 0 , we have supp h∗n ⊂ [0, 1] and h∗n(s) =
g∗n(s) − g∗n(1) for s ∈ (0, 1) . Hence,

h∗∗n (t) = g∗∗n (t)− g∗n (1), t ∈ (0, 1), and h∗∗n (t) = t−1[g∗∗n (1)− g∗n(1)], t ∈ (1,∞).

This yields

‖hn‖Y � ‖t�α0(t)��β0(t)g∗∗n (t)‖∞,(0,1) + ‖t�−1(t)��β∞(t)t−1g∗∗n (1)‖∞,(1,∞)

� ‖gn‖X +
∫ 1

0
g∗n(s) d s ‖�−1(t)��β∞(t)‖∞,(1,∞)

= ‖gn‖X +
∫ 1

0
g∗n(s) d s,

and, on using (6.52) with gn instead of g ,

(6.56) ‖hn‖Y � ‖gn‖X � 1 for all n ∈ N.

Defining the functions ψn , n ∈ N , by

ψn(x) = [|f n(x)| − f ∗(1)]+ sgn f n(x), x ∈ R,

we have ψ∗
n (s) = [f ∗

n (s) − f ∗
n (1)]+ , s � 0 . Consequently, suppψ∗

n ⊂ [0, 1] and
ψ∗

n (s) = f ∗
n (s) − f ∗

n (1) for s ∈ (0, 1) . Together with (6.55) and (6.30), this yields

(6.57) ‖ψn‖Y′ � ‖f n‖L � 1 for all n ∈ N.

By (6.52), ∫ 1

0
g∗n(s) d s � ‖gn‖X � 1,

which shows that, for all n ∈ N ,

(6.58) g∗n(1)� 1 and
∫ 1

0
h∗n(s) d s � 1.

Since, for every t ∈ (0, 1) ,

1 � min
{

t−1�−α0−1(t)��−β0(t), t−1�−1(t)��−β0−1(t)
}

,

we have from (6.30) for all n ∈ N ,∫ 1

0
f ∗
n (s) d s � ‖f n‖L � 1,

which in turn implies that

(6.59) f ∗(1)� 1 and
∫ 1

0
ψ∗

n (t) d t � 1.
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Finally, (6.56), (6.57), (6.58) and (6.59) contradict (6.54) as

1∫
0

f ∗
n (t)g∗n(t) d t =

1∫
0

(ψ∗
n (t) + f ∗

n (1))(h∗n(t) + g∗n(1)) d t

=

1∫
0

ψ∗
n (t)h∗n (t) d t + f ∗

n (1)
( 1∫

0

h∗n(t) d t + g∗n(1)
)

+ g∗n(1)

1∫
0

ψ∗
n (t) d t.

The proof is complete. �

The following theorem is a complement of Theorem 6.7.

6.9. THEOREM. Let 0 < q � 1 , A = (α0,α∞), B = (β0, β∞) ∈ R2 , and assume
that the space L(1,q;A,B) is not trivial (cf. (3.3)). Then (L(1,q;A,B))′ = L , a space
described below:

(i) Let either α0 + 1
q > 0 or α0 + 1

q = 0 and β0 + 1
q � 0 . Then L reads as

L∞,∞;−A− 1
q ,−B

if α0 +
1
q

> 0, α∞ +
1
q

< 0;

L∞,∞;(−α0− 1
q ,0),(−β0,−β∞− 1

q ) if α0 +
1
q

> 0, α∞ +
1
q

= 0, β∞ +
1
q

< 0;

L∞,∞;(0,−α∞− 1
q ),(−β0− 1

q ,−β∞) if α0 +
1
q

= 0, β0 +
1
q

> 0, α∞ +
1
q

< 0;

L∞,∞;(0,0),−B− 1
q

if α0 +
1
q

= 0, β0 +
1
q

> 0,

α∞ +
1
q

= 0, β∞ +
1
q

< 0;

L∞,∞;(0,−α∞− 1
q ),(0,−β∞),(− 1

q ,0) if α0 +
1
q

= 0, β0 +
1
q

= 0, α∞ +
1
q

< 0;

L∞,∞;(0,0),(0,−β∞− 1
q ),(− 1

q ,0) if α0 +
1
q

= 0, β0 +
1
q

= 0,

α∞ +
1
q

= 0, β∞ +
1
q

< 0.

(ii) Let either α0 + 1
q < 0 or α0 + 1

q = 0 and β0 + 1
q < 0 . Then

L =

{
L∞,∞;(0,−α∞− 1

q ),(0,−β∞) if α∞ + 1
q < 0;

L∞,∞;(0,0),(0,−β∞− 1
q ) if α∞ + 1

q = 0; β∞ + 1
q < 0.

Proof. The assertion can be proved analogously to Theorem 6.6. The details are
omitted. �
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6.10. REMARK. If q = 1 , then there is a simple proof of Theorem 6.9:
By Theorem 3.8 (i), any space in Theorem 6.9 coincides with its analogue in

the norm of which f ∗ is replaced by f ∗∗ . Thus, by Remark 3.6, any such space is
a BFS, which implies that the space L is a BFS. Consequently, L ′′ = L . By
Theorem 6.2 (iv) (and its analogue for spaces with three tiers of logarithms) and
Theorem 3.8 (ii), L ′ = L(1,1;A,B) . Hence,

L = L ′′ = (L(1,1;A,B))′.

To conclude this section, we list associate spaces of GLZ spaces of functions
defined on a space of finite measure. With no loss of generality, we assume that
μ(R) = 1 . We omit the proofs.

6.11. THEOREM. Let μ(R) = 1 . Let 0 < p, q � ∞ , α, β ∈ R , and assume that
the space Lp,q;α,β is not trivial ( cf. (3.10)) . Then (Lp,q;α,β )′ coincides with

{0} if either 0 < p < 1

or p = 1, 0 < q � 1, α < 0

or p = 1, 0 < q � 1, α = 0, β < 0

or p = 1, 1 < q � ∞, α − 1
q′

< 0

or p = 1, 1 < q � ∞, α − 1
q′

= 0, β − 1
q′

� 0;

L(p′,q′;−α,−β) if 1 < q � ∞ and either p = 1, α >
1
q′

or p = 1, α =
1
q′

, β � 1
q′

or 1 < p < ∞;

L(1,q′;−α−1,−β) if p = ∞, 1 < q < ∞, α +
1
q

< 0;

L(1,q′;− 1
q′ ,−β−1) if p = ∞, 1 < q < ∞, α +

1
q

= 0, β +
1
q

< 0;

L1,1;−α,−β if p = ∞, q = ∞, and either α < 0

or α = 0, β � 0;

L(p′,∞;−α,−β) if 0 < q � 1, and either 1 < p < ∞
or p = 1, α > 0

or p = 1, α = 0, β � 0;

L(1,∞;−α− 1
q ,−β) if p = ∞, 0 < q � 1, α +

1
q

< 0;

L(1,∞;0,−β− 1
q ) if p = ∞, 0 < q � 1, α +

1
q

= 0, β +
1
q

< 0.
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Let 0 < p, q � ∞ , and α, β ∈ R . Since L(p,q;α,β) = Lp,q;α,β if 1 < p � ∞ ,
L(p,q;α,β) = L1 if 0 < p < 1 , and the associated spaces of Lp,q;α,β have already been
described in the previous theorem, it remains to characterize the associated spaces of
L(1,q;α,β) . This is done in the following theorem.

6.12. THEOREM. Let μ(R) = 1 . Let 0 < q � ∞ , α, β ∈ R , and assume
that the space L(1,q;α,β) is not trivial (cf. (3.10)). Then its associate space (L(1,q;α,β))′

coincides with

L∞,q′;−α−1,−β if 1 < q � ∞, α +
1
q

> 0;

L∞,q′;− 1
q′ ,−β−1 if 1 < q � ∞, α +

1
q

= 0, β +
1
q

> 0;

L∞,q′;− 1
q′ ,− 1

q′ ,−1 if 1 < q < ∞, α +
1
q

= 0, β +
1
q

= 0;

L∞ if 0 < q � ∞, and either α +
1
q

< 0

or α +
1
q

= 0, β +
1
q

< 0

or q = ∞, α = 0, β = 0;

L∞,∞;−α− 1
q ,−β if 0 < q � 1, α +

1
q

> 0;

L∞,∞;0,−β− 1
q

if 0 < q � 1, α +
1
q

= 0, β +
1
q

> 0;

L∞,∞;0,0,− 1
q

if 0 < q � 1, α +
1
q

= 0, β +
1
q

= 0.

7. GLZ spaces as Banach function spaces

In this section we characterize GLZ spaces that are BFS. We begin with the spaces
Lp,q;A,B .

7.1. THEOREM. Let 0 < p, q � ∞ and A, B ∈ R2 . Then the space X = Lp,q;A,B

is a BFS if and only if one of the following conditions holds:

(7.1)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 < p < ∞, 1 � q � ∞;

p = 1, q = 1, α0 > 0, α∞ < 0;

p = 1, q = 1, α0 > 0, α∞ = 0, β∞ � 0;

p = 1, q = 1, α0 = 0, β0 � 0, α∞ < 0;

p = 1, q = 1, α0 = 0, β0 � 0, α∞ = 0, β∞ � 0;

p = ∞, 1 � q � ∞, α0 + 1
q < 0;

p = ∞, 1 � q � ∞, α0 + 1
q = 0, β0 + 1

q < 0;

p = ∞, q = ∞, α0 = 0, β0 = 0.
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7.2. REMARKS. Some particular cases of Theorem 7.1 are worth noticing:
(i) A space L1,q;A,B , where q �= 1 , is not a BFS, for any A and B .
(ii) A space X = L1,1;A,B is a BFS if and only if ϕX ∈ F .
(iii) A space L∞,q;A,B is a BFS if and only if 1 � q � ∞ and X is not trivial.

Proof of Theorem 7.1. (i) Let 1 < p � ∞ , 1 � q � ∞ , and A, B ∈ R2 . Then,
by Theorem 3.8 (i), Lp,q;A,B = L(p,q;A,B) and by Remark 3.6 and Lemma 3.5 (ii), the
latter space is a BFS if and only if either 1 < p < ∞ , or p = ∞ and either α0 + 1

q < 0 ,

or α0 + 1
q = 0 , β0 + 1

q < 0 or q = ∞ , α0 = 0 , β0 = 0 .
(ii) Let p = 1 and 1 < q � ∞ .
Assume first that

either α0 +
1
q

< 1 or α0 +
1
q

= 1 and β0 +
1
q

� 1.

Then, by Theorem 4.5 (vi), (vii), L1,q;A,B is not locally embedded into L1 . Therefore,
(P7) is not satisfied, and hence L1,q;A,B is not a BFS.

Assume now that

(7.2) either α0 +
1
q

> 1 or α0 +
1
q

= 1 and β0 +
1
q

> 1.

Then, by Theorem 6.2 (i),

(7.3) (L1,q;A,B)′ = L∞,q′;−A,−B

and the conditions in (7.2) guarantee that the latter space is not trivial (cf. (3.2)).
Recalling that X = L1,q;A,B , we get from Lemma 3.7 (i)

ϕX(t) ≈ t�α0(t)��β0(t), t ∈ (0, 1).

By (7.3) and Lemma 3.7 (i), we have for t ∈ (0, 1) ,

ϕX′(t) ≈
{

�−α0+1/q′(t)��−β0(t) if α0 + 1
q > 1

��−β0+1/q′(t) if α0 + 1
q = 1, β0 + 1

q > 1.

Since q > 1 , and thus q′ �= +∞ , the relation (2.2) is not satisfied, which implies that
X is not a BFS.

(iii) Let p = 1 , q = 1 and let one of the conditions in (7.1) hold. We have

‖f ‖1,1;A,B =

∞∫
0

f ∗(t)�A(t)��B(t) d t.

Each of the conditions in (7.1) with p = 1 guarantees that ϕ ∈ F , where

ϕ(t) =

t∫
0

�A(s)��B(s) d s, t ∈ [0,∞)

(since �A(s)��B(s) , s ∈ (0,∞) , is equivalent to a non-increasing function on (0,∞) ).
Hence L1,1;A,B = Λϕ and therefore L1,1;A,B is a BFS.
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(iv) Let p = 1 , q = 1 , and assume that none of the conditions in (7.1) is satisfied.
Then, by Lemma 6.5, ϕX /∈ F , and consequently X is not a BFS.

(v) Let 0 < p < 1 . Then, by Lemma 3.7 (i), the fundamental function of Lp,q;A,B

is not in F . Consequently, Lp,q;A,B is not a BFS.
(vi) Finally, let 1 � p � ∞ and 0 < q < 1 . There are three possibilities: either

X = {0} , or X �= {0} and ϕX /∈ F , or X �= {0} and ϕX ∈ F . It is clear (cf. (P1)
and (P6)) that X is not a BFS when X = {0} , and also, as mentioned in Section 2
above, that X is not a BFS when ϕX �∈ F . Using Lemma 3.7 and embedding results of
Section 4, we obtain that ΛϕX is not embedded into X when X �= {0} and ϕX ∈ F .
Thus, again, X is not a BFS.

The proof is complete. �
We now turn our attention to the spaces L(p,q;A,B) .

7.3. THEOREM. Let 0 < p, q � ∞ and A, B ∈ R2 . Then the space X = L(p,q;A,B)
is a BFS if and only if 1 � q � ∞ and X �= {0} .

Proof. If 1 � q � ∞ , then, by Remark 3.6, X is a BFS if and only if X �= {0} .
Conversely, let either X = {0} or 0 < q < 1 . If X = {0} , then it is evident

from (P1) and (P6) that X is not a BFS. If 0 < q < 1 , then ΛϕX is not embedded into
X . To see this, we use Theorem 3.8 (ii) to rewrite ΛϕX as L(1,1;L,E) with appropriate
L, E ∈ R2 , and then apply embedding results of Section 5. Thus, X is not a BFS. �

Finally, we present analogues of Theorems 7.1 and 7.3 for the case when μ(R) <
∞ .

7.4. THEOREM. Assume that μ(R) < ∞ . Let 0 < p, q � ∞ and α, β ∈ R2 .
Then the space Lp,q;α,β is a BFS if and only if one of the following conditions holds:

1 < p < ∞, 1 � q � ∞;

p = 1, q = 1, α > 0;

p = 1, q = 1, α = 0, β � 0;

p = ∞, 1 � q � ∞, α +
1
q

< 0;

p = ∞, 1 � q � ∞, α +
1
q

= 0, β +
1
q

< 0;

p = ∞, q = ∞, α = 0, β = 0.

7.5. THEOREM. Assume that μ(R) < ∞ . Let 0 < p, q � ∞ and α, β ∈ R2 .
Then the space L(p,q;α,β) is a BFS if and only if 1 � q � ∞ and one of the following
conditions holds:

0 < p < ∞;

p = ∞, α +
1
q

< 0;

p = ∞, α +
1
q

= 0, β +
1
q

< 0;

p = ∞, q = ∞, α = 0, β = 0.
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8. GLZ spaces and Orlicz spaces

In this section we shall give a complete characterization of those GLZ spaces
Lp,q;A,B and L(p,q;A,B) which coincide with Orlicz spaces. All such spaces are described
by Theorems 8.8 and 8.11 below. To avoid trivial cases, we throughout this section use
the following

CONVENTION. Since Orlicz spaces are BFS, we restrict ourselves to the values of
p, q; A, B that satisfy (7.1) in the case of spaces Lp,q;A,B , or (3.3) and 1 � q � ∞ in
the case of spaces L(p,q;A,B) (cf. Theorems 7.1 and 7.3).

Let us first consider the case when p = q . We shall first recall a result which
follows from [EOP1, Lemmas 2.1 and 2.2], concerning spaces of functions defined on
a finite-measure space.

8.1. LEMMA. Let μ(R) < ∞ . Let one of the following conditions hold:

1 < p < ∞;(8.1)
p = 1, α > 0;(8.2)
p = 1, α = 0, β > 0;(8.3)
p = ∞, α < 0;(8.4)
p = ∞, α = 0, β < 0.(8.5)

Then
Lp,p;α,β = LΦ,

where the Young function Φ satisfies for large t ,

(8.6) Φ(t) ≈

⎧⎪⎨⎪⎩
tp�αp(t)��βp(t) if one of (8.1)–(8.3) holds,

exp
(
t−1/α�−β/α(t)

)
if (8.4) holds,

exp exp(t−1/β ) if (8.5) holds.

8.2. COROLLARY. Let one of the conditions (8.1)– (8.5) hold, and let the Young
function Φ be given for large t by (8.6) . Let T ∈ (0,∞) and f ∈ M (R,μ) . Then

T∫
0

[f ∗(t)�α(t)��β (t)]p d t < ∞

if and only if there exists a λ > 0 such that

T∫
0

Φ(λ f ∗(t)) d t < ∞.

When μ(R) = ∞ , the values of Φ(t) for t small become important. To handle
them properly, we shall need some auxiliary results. First, we formulate a modified
version of the Young inequality.
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8.3. LEMMA. (i) Let λ > 0 and ε ∈ R . Then for every a, b > 1 ,

(8.7) ab� exp
(
a1/λ�−ε/λ (a)

)
+ b �λ (b)��ε(b).

(ii) Let ε > 0 . Then for every a, b > 1 ,

ab� exp exp(a1/ε) + b ��ε(b).

Proof. This follows from the usual Young inequality by a straightforward calcula-
tion of complementary functions (cf. also the proof of [EOP1, Lemma 2.2 (vi)]). �

8.4. LEMMA. Let μ(R) = ∞ , 1 � p < ∞ , and let either λ > 0 or λ = 0 and
ε > 0 . Suppose that f ∈ M (R,μ) is such that f ∗(1) < ∞ , and put R = μ(supp f ) .
Then

(8.8)

R∫
1

[f ∗(t)]p�λ (t)��ε(t) d t < ∞

if and only if

(8.9)

R∫
1

[f ∗(t)]p�λ
(
f ∗(t)

)
��ε

(
f ∗(t)

)
d t < ∞.

Proof. The assertion is trivial when R < ∞ . Assume that R = ∞ .
First, let us note that both (8.8) and (8.9) imply that

(8.10) f ∗(t) → 0 as t → ∞.

For T ∈ [1,∞) , we denote

I1(T) =

∞∫
T

[f ∗(t)]p�λ (t)��ε(t) d t, I2(T) =

∞∫
T

[f ∗(t)]p�λ
(
f ∗(t)

)
��ε

(
f ∗(t)

)
d t.

We see that for any T ∈ [1,∞) , Ii(T) < ∞ if and only if Ii(1) < ∞ , i = 1, 2 . Hence,
using also (8.10), we may assume with no loss of generality that f ∗(t) � 1 for every
t ∈ [1,∞) .

Suppose that (8.9) holds. Then we have

(8.11) K1 := sup
1<t<∞

t1/pf ∗(t) < ∞.

Indeed, assuming that

(8.12) t1/p
k f ∗(tk) → ∞ for some tk → ∞,
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and using also the fact that the function �λ (x)��ε(x) is decreasing for x ∈ (0, x0) with
x0 small enough, we get

∞∫
1

[f ∗(t)]p�λ
(
f ∗(t)

)
��ε

(
f ∗(t)

)
d t �

tk∫
tk/2

[f ∗(t)]p�λ
(
f ∗(t)

)
��ε

(
f ∗(t)

)
d t

� tk
2

[f ∗(tk)]p�λ
(
f ∗

( tk0

2

))
��ε

(
f ∗

( tk0

2

))
for all k � k0 , where k0 ∈ N is chosen so that f ∗(tk0/2) < x0 . Combined with (8.12),
this estimate contradicts (8.9), and thus (8.11) holds.

By (8.11), 1 � t1/p/K1 � 1/f ∗(t) if t > max{1, Kp
1} . The function �λ (x)��ε(x)

is increasing on (x1,∞) for some x1 large enough. Thus, taking t > T := max{1, Kp
1 ,

(x1K1)p} , we get

�λ (t1/p/K1)��ε(t1/p/K1) � �λ (1/f ∗(t))��ε(1/f ∗(t)).

This yields immediately

�λ (t)��ε(t) � �λ (f ∗(t))��ε(f ∗(t)), t ∈ (T,∞),

and (8.8) follows from (8.9).
Conversely, suppose that (8.8) holds. Let n0 ∈ N ∪ {0} be such that

e−(n0+1)/p < f ∗(1) � e−n0/p.

We define
tn = inf{t � 1; f ∗(t) � e−n/p}, n � n0.

Then {tn} is a non-decreasing sequence such that tn → ∞ as n → ∞ . Since f ∗ is
right-continuous (cf. [BS, Chapter 2, Proposition 1.7]), we have

e−(n+1)/p < f ∗(t) � e−n/p, t ∈ [tn, tn+1).

This yields for all t ∈ [tn, tn+1) ,

(8.13) [f ∗(t)]p ≈ e−n, �λ
(
f ∗(t)

) ≈ nλ , ��ε
(
f ∗(t)

) ≈ logε(n + 2),

and hence

I2(1) =
∑
n�n0

tn+1∫
tn

[f ∗(t)]p�λ
(
f ∗(t)

)
��ε

(
f ∗(t)

)
d t(8.14)

≈
∑
n�n0

e−nnλ (logε(n + 2)) (tn+1 − tn) =
∑
n�n0

e−nanbn,

where
an = (n/2)λ logε(n + 2), bn = 2λ (tn+1 − tn).

We shall use (8.7) to estimate the right hand side of (8.14). Since

a1/λ
n �−ε/λ (an) ≈ n/2
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and
bn�

λ (bn)��ε(bn) ≈ (tn+1 − tn)�λ (tn+1 − tn)��ε(tn+1 − tn),

we get from (8.14) and (8.7),

I2(1)�
∑
n�n0

e−nen/2 +
∑
n�n0

e−n(tn+1 − tn)�λ (tn+1 − tn)��ε(tn+1 − tn) = S1 + S2,

say. Obviously, S1 < ∞ . Now, we claim that, for large n , say n � n1 , we have

(tn+1 − tn)�λ (tn+1 − tn)��ε(tn+1 − tn)(8.15)

� tn+1�
λ (tn+1)��ε(tn+1) − tn�

λ (tn)��ε(tn).

Once this is shown, the assertion will follow easily as, by (8.15),

S2 �
n1−1∑
n=n0

e−n(tn+1 − tn)�λ (tn+1 − tn)��ε(tn+1 − tn) + S3,

where
S3 =

∑
n�n1

e−n[tn+1�
λ (tn+1)��ε(tn+1) − tn�

λ (tn)��ε(tn)].

But, by (8.13) and (8.8),

S3 �
∑
n�n1

e−n

tn+1∫
tn

�λ (t)��ε(t) d t � I1(1) < ∞.

It remains to prove (8.15). Assume first that tn+1 � 2tn , i.e., tn+1 �
2(tn+1 − tn) . Then

(8.16) tn+1�
λ (tn+1)��ε(tn+1) � 2(tn+1 − tn)�λ (tn+1)��ε(tn+1).

Since the function �λ (t)��ε(t) is increasing near ∞ , we obtain from (8.16) that, for
large n ,

tn+1�
λ (tn+1)��ε(tn+1) � 2[tn+1�

λ (tn+1)��ε(tn+1) − tn�
λ (tn)��ε(tn)],

and (8.15) follows.
Now assume that tn+1 � 2tn , i.e., tn+1 − tn � tn . Since the function F(t) =

t�λ (t)��ε(t) is convex near ∞ , it is equivalent to an increasing convex function on
entire [1,∞) . With no loss of generality, we shall assume that F itself is increasing
and convex on [1,∞) . Thus, for every n ,

(8.17) F′(tn)(tn+1 − tn)� F(tn+1) − F(tn),

and

(8.18) �λ (tn)��ε(tn) ≈ F′(tn).
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Similarly, the function �λ (t)��ε(t) is equivalent to an increasing function on [1,∞) .
Therefore, using also tn+1 − tn � tn , (8.18) and (8.17), we obtain for every n ,

(tn+1 − tn)�λ (tn+1 − tn)��ε(tn+1 − tn)

�(tn+1 − tn)�λ (tn)��ε(tn) ≈ (tn+1 − tn)F′(tn)

� tn+1�
λ (tn+1)��ε(tn+1) − tn�

λ (tn)��ε(tn)

and (8.15) follows. The proof is complete. �
The following simple lemma is of independent interest as it indicates a relation

between Orlicz spaces and Marcinkiewicz spaces (compare [Lo2, Theorem 2]).

8.5. LEMMA. Let f ∈ M (R,μ) and let Φ be a Young function on (0,∞) such
that

(8.19)

∞∫
0

Φ
(
γΦ−1

(1
t

))
d t < ∞ for some γ > 0.

Then f ∈ LΦ if and only if there exists a constant K = K(f ) such that

(8.20) sup
0<t<∞

f ∗(t)
Φ−1(1/t)

= K < ∞.

8.6. REMARK. Since (cf. (2.9)) ϕLΦ(t) = 1
Φ−1(1/t) , t ∈ (0,∞) , the condition

(8.20) can be rewritten as

sup
0<t<∞

f ∗(t)ϕLΦ(t) = K < ∞.

Proof of Lemma 8.5. If (8.20) holds, then we have for λ < γK−1

∞∫
0

Φ
(
λ f ∗(t)

)
d t �

∞∫
0

Φ
(
γΦ−1

(1
t

))
d t < ∞,

in other words, f ∈ LΦ .
Conversely, assume that f ∈ LΦ . Then there is a λ0 > 0 such that

(8.21)

∞∫
0

Φ
(
λ0f

∗(t)
)

d t � 1
2
.

Let a > 0 . Then, by (8.21),

1
2

�
a∫

a/2

Φ
(
λ0f

∗(t)
)

d t � Φ
(
λ0f

∗(a)
)a
2
,
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which is equivalent to

f ∗(a) � λ−1
0 Φ−1

(1
a

)
, a > 0,

and (8.20) follows with K = λ−1
0 . (Let us note that f ∈ LΦ implies (8.20) for any

Young function Φ , regardless of the validity of (8.19).) �
The following example follows by an easy calculation.

8.7. EXAMPLE. Let Φ be a Young function such that, for 0 < t � 1 , either

Φ(t) ≈ exp
( − tα logβ(1/t)

)
, α < 0, β ∈ R,

or
Φ(t) ≈ exp(− exp tβ ), β < 0,

and, for 1 < t < ∞ , either

Φ(t) ≈ exp(tγ logδ t), γ > 0, δ ∈ R,

or
Φ(t) ≈ exp exp tδ , δ > 0.

Then Φ satisfies (8.19).

Now we are in a position to prove the main result of this section.

8.8. THEOREM. Assume that μ(R) = ∞ and A = (α0,α∞) , B = (β0, β∞) ∈
R2 .

(i) Let 1 < p < ∞ . Then Lp,p;A,B = LΦ , where

(8.22) Φ(t) ≈ tp�Ãp(t)��B̃p(t), t ∈ (0,∞)

( recall that Ã = (α∞,α0) and B̃ = (β∞, β0)) .
(ii) Let α∞ > 0 and either α0 < 0 or α0 = 0 and β0 < 0 . Then L∞,∞;A,B =

LΦ , where

(8.23) Φ(t) ≈ exp
( − t−1/α∞�−β∞/α∞(t)

)
for t ∈ (0, 1),

and, for t ∈ (1,∞) ,

(8.24) Φ(t) ≈
{

exp
(
t−1/α0�−β0/α0(t)

)
if α0 < 0,

exp exp(t−1/β0) if α0 = 0, β0 < 0.

(iii) Let α∞ = 0 , β∞ > 0 , and either α0 < 0 or α0 = 0 and β0 < 0 . Then
L∞,∞;A,B = LΦ , where

Φ(t) ≈ exp(− exp t−1/β∞) for t ∈ (0, 1),

and Φ satisfies (8.24) for t ∈ (1,∞) .
(iv) Let either α0 > 0 or α0 = 0 and β0 > 0 , and let either α∞ < 0 or α∞ = 0

and β∞ < 0 . Then L1,1;A,B = LΦ , where

(8.25) Φ(t) ≈ t�Ã(t)��B̃(t), t ∈ (0,∞).
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Proof. (i) Let Φ satisfy (8.22). Then Φ ∈ Δ2 . Hence, f ∈ LΦ if and only if

(8.26)

∞∫
0

Φ
(
f ∗(t)

)
d t < ∞.

Put R = μ(supp f ) . Define T = inf{t > 0; f ∗(t) � 1} . Using the fact that
1 < f ∗(t) < ∞ for t ∈ (0, T) and f ∗(t) � 1 for t ∈ [T,∞) , and (8.22), we get from
the estimate (8.26),

T∫
0

(
f ∗(t)

)p
�α0p

(
f ∗(t)

)
��β0p

(
f ∗(t)

)
d t(8.27)

+

R∫
T

(
f ∗(t)

)p
�α∞p

(
f ∗(t)

)
��β∞p

(
f ∗(t)

)
d t < ∞.

By Corollary 8.2 and Lemma 8.4, (8.27) holds if and only if

R∫
0

(
f ∗(t)

)p
�Ap(t)��Bp(t) d t < ∞

in the case α∞ > 0 or α∞ = 0 , β∞ > 0 . This proves (i) in such case. If α∞ < 0 or
α∞ = 0 , β∞ < 0 , the assertion follows via duality (Theorem 6.2). In the remaining
case α∞ = 0 , β∞ = 0 , the assertion is obvious.

(ii) Let Φ satisfy (8.23) and (8.24).Then, by Example 8.7, Φ satisfies (8.19). By
Lemma 8.5, f ∈ LΦ if and only if (8.20) holds. However, it is easy to see that (8.20)
with our Φ is equivalent to f ∈ L∞,∞;A,B .

(iii) The proof is analogous to that of (ii).
(iv) By Theorem 6.6 (i) we have

(8.28)
(
L1,1;A,B

)′
= L∞,∞;−A,−B.

If α∞ < 0 , then, by (ii) with A, B replaced by −A,−B , we get

(8.29) L∞,∞;−A,−B = LΨ,

where

Ψ(t) ≈

⎧⎪⎨⎪⎩
exp

( − t1/α∞�−β∞/α∞(t)
)
, t ∈ (0, 1),

exp
(
t1/α0�−β0/α0(t)

)
, t ∈ (1,∞), α0 > 0,

exp exp(t1/β0), t ∈ (1,∞), α0 = 0, β0 > 0.

A direct calculation shows that the complementary function of Ψ is given by (8.25).
Together with (8.28) and (8.29) this yields

L1,1;A,B =
(
L1,1;A,B

)′′
=

(
L∞,∞;−A,−B

)′
=

(
LΨ

)′ = LΦ,
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which is the desired result.
If α∞ = 0 and β∞ < 0 , we adopt an analogous argument using (iii) rather than

(ii). �
Lemma 8.10 below completes the results of Theorem 8.8. To prove it, we shall

need the following assertion, which follows easily from (2.8) and (2.9).

8.9. LEMMA. Let X be an r.i. space. If its fundamental function ϕX is equivalent
near 0 or near ∞ either to t or to 1 , then X is not an Orlicz space.

8.10. LEMMA. Suppose that μ(R) = ∞ .
(i) Let either α0 < 0 or α0 = 0 and β0 � 0 , and let either α∞ < 0 or α∞ = 0

and β∞ � 0 . Then L∞,∞;A,B is not an Orlicz space.
(ii) Let one of the following conditions be satisfied:

α0 = 0, β0 = 0, α∞ < 0;

α0 = 0, β0 = 0, α∞ = 0, β∞ � 0;

α0 > 0, α∞ = 0, β∞ = 0;

α0 = 0, β0 � 0, α∞ = 0, β∞ = 0.

Then L1,1;A,B is not an Orlicz space.

Proof. (i) Put X = L∞,∞;A,B . By Corollary 3.10, X = L∞,∞;(α0,0),(β0,0) . Thus, by
Lemma 3.7 (i), ϕX(t) ≈ 1 for all t ∈ (1,∞) , and the result follows from Lemma 8.9.

(ii) The proof is analogous. �
Now we turn our attention to spaces L(p,q;A,B) . In view of Lemma 3.5 (ii),

Theorem 3.8 (i) and Theorem 8.8 (i)–(ii), it suffices to consider the case p = 1 .

8.11. THEOREM. Assume that μ(R) = ∞ and A = (α0,α∞) , B = (β0, β∞) ∈
R2 . Let

either α0 + 1 > 0 or α0 + 1 = 0, β0 + 1 � 0,

and
either α∞ + 1 < 0 or α∞ + 1 = 0, β∞ + 1 < 0.

Then L(1,1;A,B) = LΦ , where, for t ∈ (0, 1) ,

Φ(t) ≈
{

t�α∞+1(t)��β∞(t) if α∞ + 1 < 0,

t��β∞+1(t) if α∞ + 1 = 0, β∞ + 1 < 0,

and, for t ∈ [1,∞) ,

Φ(t) ≈

⎧⎪⎨⎪⎩
t�α0+1(t)��β0(t) if α0 + 1 > 0,

t��β0+1(t) if α0 + 1 = 0, β0 + 1 > 0,

t���(t) if α0 + 1 = 0, β0 + 1 = 0.

Proof. For example, assume that either α0 + 1 > 0 and α∞ + 1 < 0 . Then,
by Theorem 3.8 (ii) and Theorem 8.8 (iv), L(1,1;A,B) = L1,1;A+1,B = LΦ , where
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Φ(t) ≈ t�Ã+1(t)��B̃(t) , t ∈ (0,∞) , and the result follows. The proof in other cases is
similar. �

To complete our analysis, we shall show that if p �= q , then neither the space
Lp,q;A,B nor the space L(p,q;A,B) coincides with an Orlicz space. (Consequently, Theo-
rems 8.8, and 8.11 cover all possible cases when a GLZ space is an Orlicz space.) It is
thus enough to consider those spaces which are BFS. Further reduction is enabled by
Lemma 8.9.

Let us first deal with the spaces Lp,q;A,B . It follows from Theorem 7.1, Lemma 8.9
and Lemma 3.7 (i) that we have only to consider one of the cases

(8.30)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 < p < ∞, 1 � q � ∞, p �= q;

p = ∞, 1 � q < ∞, α0 + 1
q < 0, α∞ + 1

q > 0;

p = ∞, 1 � q < ∞, α0 + 1
q < 0, α∞ + 1

q = 0, β∞ + 1
q � 0;

p = ∞, 1 � q < ∞, α0 + 1
q = 0, β0 + 1

q < 0, α∞ + 1
q > 0;

p = ∞, 1 � q < ∞, α0 + 1
q = 0, β0 + 1

q < 0,

α∞ + 1
q = 0, β∞ + 1

q � 0.

We shall use the following auxiliary result.

8.12. LEMMA. Let X and Y be two r.i. spaces such that X �= Y and ϕX ≈ ϕY .
Suppose that there is a Young function Φ such that Y = LΦ . Then X �= LΨ for any
Young function Ψ .

Proof. Assume the contrary, that is, X = LΨ for some Young function Ψ . Then,
by (2.9),

1
Φ−1(1/t)

≈ ϕX(t) ≈ ϕY(t) ≈ 1
Ψ−1(1/t)

, t ∈ (0,∞).

Thus Φ ≈ Ψ on (0,∞) , and therefore X = LΦ = LΨ = Y , a contradiction. �
8.13. COROLLARY. Let 0 < p < ∞ , 0 < q � ∞ , p �= q , and A = (α0,α∞) ,

B = (β0, β∞) ∈ R2 . Put X = Lp,p;A,B and Y = Lp,q;A,B . Suppose that there is a Young
function Φ such that X = LΦ . Then Y is not an Orlicz space.

Proof. Embedding results of Section 4 show that X �= Y . Moreover, by Lemma
3.7 (i), ϕX ≈ ϕY on (0,∞) . The result now follows from Lemma 8.12. �

Now we are in a position to finish the analysis concerning the spaces Lp,q;A,B . The
following theorem completes the picture.

8.14. THEOREM. Let 0 < p, q � ∞ and A = (α0,α∞) , B = (β0, β∞) ∈ R2 .
Put X = Lp,q;A,B . Let one of the conditions in (8.30) be satisfied. Then X is not an
Orlicz space.

Proof. If the first condition in (8.30) holds, then the result follows immediately
from Corollary 8.13. In all other cases we use a method which will be illustrated on the
case

(8.31) p = ∞, 1 � q < ∞, α0 +
1
q

< 0, α∞ +
1
q

> 0.
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Other cases are left to the reader.
Assume (8.31). Then, by Lemma 3.7 (i), ϕX(t) ≈ �A+1/q(t)��B(t) for t ∈ (0,∞) .

Consequently, ϕX is on (0,∞) equivalent to an increasing concave function ϕ such that
ϕ(0+) = 0 and ϕ(∞−) = ∞ . Therefore, putting Φ(t) = 1/ϕ−1(1/t) , t ∈ (0,∞) ,
we obtain (cf. (2.9)) that Φ is equivalent on (0,∞) to a Young function. Observe that

Φ(t) ≈
{

exp
( − t−1/(α∞+1/q)�−β∞/(α∞+1/q)(t)

)
if t ∈ (0, 1)

exp
(
t−1/(α0+1/q)�−β0/(α0+1/q)(t)

)
if t ∈ [1,∞).

By Example 8.7, Φ satisfies (8.19). Hence, f ∈ LΦ if and only if (8.20) holds.
We have to show that X �= LΦ (then the result will follow from Lemma 8.12).

Note that the function f (t) = 1/ϕ(t) = Φ−1(1/t) , t ∈ (0,∞) , satisfies (8.20), but

‖f ‖q
X �

1∫
0

t−1�−1(t) d t = ∞.

The proof (in the case (8.31)) is thus complete. �

Now let us deal with the spaces L(p,q;A,B) . Since L(p,q;A,B) = {0} for 0 < p < 1 ,
and L(p,q;A,B) = Lp,q;A,B when 1 < p < ∞ , it is enough to consider the case p = 1 .
Moreover, using Theorem 7.3, Lemma 8.9 and Lemma 3.7 (ii), we see that we may
restrict ourselves to the situation when 1 < q � ∞ and one of the following conditions
is satisfied:

(8.32)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α0 + 1
q > 0, α∞ + 1

q < 0;

α0 + 1
q > 0, α∞ + 1

q = 0, β∞ + 1
q < 0;

α0 + 1
q = 0, β0 + 1

q > 0, β∞ + 1
q < 0,

α0 + 1
q = 0, β0 + 1

q > 0, α∞ + 1
q = 0, β∞ + 1

q < 0;

1 < q < ∞, α0 + 1
q = 0, β0 + 1

q = 0, α∞ + 1
q < 0;

1 < q < ∞, α0 + 1
q = 0, β0 + 1

q = 0, α∞ + 1
q = 0, β∞ + 1

q < 0.

8.15. THEOREM. Let 1 < q � ∞ and A = (α0,α∞) , B = (β0, β∞) ∈ R2 . Put
X = L(1,q;A,B) . Let one of the conditions in (8.32) be satisfied. Then X is not an Orlicz
space.

Proof. It follows from Theorem 6.7 (i), complementedwith its analogue involving
three tiers of logarithms, and Theorem 8.14, that X′ is not an Orlicz space. Therefore,
neither is X . �

9. Absolute continuity of the norm

The aim of this section is to characterize those GLZ spaces Lp,q;A,B and L(p,q;A,B)
that have absolutely continuous (quasi-)norm.



446 B. OPIC AND L. PICK

If μ(R) < ∞ , then it is easy to see that the space Lp,q;A,B (or L(p,q;A,B) ) with
0 < q < ∞ has absolutely continuous (quasi-)norm. Indeed, taking f ∈ X = Lp,q;A,B

and {En}∞n=1 ⊂ R satisfying En ↘ ∅ μ -a.e., we have μ(En) � μ(R) < ∞ for all
n ∈ N , which implies

lim
n→∞μ(En) = μ

( ∞⋂
n=1

En

)
= μ(∅) = 0.

Thus, as n → ∞ ,
(f χEn)

∗ � f ∗χ(0,μ(En)) → 0,

and, by Lebesgue’s Dominated Convergence Theorem,

‖f χEn‖X �
( ∞∫

0

[
t

1
p− 1

q �A(t)��B(t)f ∗(t)χ(0,μ(En))(t)
]q

d t
)1/q

→ 0, n → ∞,

and the result follows.
However, when μ(R) = ∞ , it may happen that En ↘ ∅ as n → ∞ but

μ(En) = ∞ for every n ∈ N . Then χ(0,μ(En)) = χ(0,∞) , and we do not obtain
f ∗χ(0,μ(En)) → 0 from the trivial estimate (f χEn)∗ � f ∗χ(0,μ(En)) as above.

In the case of infinite measure a deeper analysis is needed and we find the following
lemmas useful in this.

9.1. LEMMA. Let f n, f ∈ M +(R,μ) , n ∈ N , be such that lim sup
n→∞

f n � f μ -a.e.

Assume that there are g ∈ M +(R,μ) and n0 ∈ N satisfying

g � f n μ-a.e. for all n � n0;(9.1)
μg(λ ) < ∞ for all λ ∈ [0,∞).(9.2)

Then for all λ ∈ [0,∞) ,

(9.3) lim sup
n→∞

μf n(λ ) � μf (λ ).

Proof. For λ ∈ [0,∞) and F ∈ M (R,μ) put

Eλ (F) =
{
x ∈ R; |F(x)| > λ

}
.

Since (μ -a.e.)
f (x) � lim sup

n→∞
f n(x) = lim

n→∞ hn(x),

where hn(x) = sup
m�n

fm(x) , the function h(x) := lim
n→∞ hn(x) satisfies hn ↘ h and

h � f . Consequently,

(9.4) μh(λ ) � μf (λ ), λ ∈ [0,∞).

Moreover, for all λ ∈ [0,∞) ,

(9.5) Eλ (h) =
∞⋂

n=1

Eλ (hn) =
∞⋂

n=1

⋃
m�n

Eλ (f m).
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The assumptions (9.1) and (9.2) imply

μ
( ⋃

m�n0

Eλ (f m)
)

� μ(Eλ (g)) = μg(λ ) < ∞.

Together with (9.5), this yields

μh(λ ) = lim
n→∞μ

( ⋃
m�n

Eλ (f m)
)
.

Further, observe that

μ
( ⋃

m�n

Eλ (f m)
)

� sup
k�n

μ
(
Eλ (f k)

)
= sup

k�n
μf k(λ ).

Thus,
μh(λ ) � lim

n→∞ sup
k�n

μf k(λ ) = lim sup
n→∞

μf n(λ ),

which, together with (9.4), implies (9.3). �

Combining Lemma 9.1 with a symmetric assertion, cf. [BS, Chapter 2, (1.5)], one
can prove the following result.

9.2. LEMMA. Let f n, f ∈ M +(R,μ) , n ∈ N , be such that lim
n→∞ f n = f μ -a.e.

Assume that there are g ∈ M +(R,μ) and n0 ∈ N such that (9.1) and (9.2) hold.
Then for all λ ∈ [0,∞) ,

μf (λ ) = lim
n→∞μf n(λ ).

9.3. LEMMA. Let f n, f ∈ M +(R,μ) , n ∈ N , be such that lim sup
n→∞

f n � f μ -a.e.

Assume that there are g ∈ M +(R,μ) and n0 ∈ N satisfying

g � f n μ-a.e. for all n � n0;(9.6)
g∗(t) < ∞ for all t ∈ (0,∞);(9.7)
lim

t→∞ g∗(t) = 0.(9.8)

Then

(9.9) lim sup
n→∞

f ∗
n � f ∗.

Proof. Assuming that μg(λ0) = ∞ for some λ0 ∈ [0,∞) , we get for any t > 0 ,

g∗(t) = inf{λ ;μg(λ ) � t} � λ0,

which contradicts (9.8). Consequently, μg(λ ) < ∞ for all λ ∈ [0,∞) . Thus, by
Lemma 9.1,

lim sup
n→∞

μf n � μf .
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Let m denote the Lebesgue measure on (0,∞) . Applying Lemma 9.1 again, this
time to {μf n} , μg , μf , and m instead of {f n} , g , f , and μ , we get

lim sup
n→∞

mμf n
� mμf ,

which is (9.9), since for any h ∈ M (R,μ) we have mμh = h∗ (cf. [BS, Chap-
ter 2, (1.10)]). �

Combining Lemma 9.3 with a symmetric assertion (cf. [BS, Chapter 2, (1.17)]),
one can prove the following result.

9.4. LEMMA. Let f n, f ∈ M +(R,μ) , n ∈ N , be such that lim
n→∞ f n = f μ -a.e.

Assume that there are g ∈ M +(R,μ) and n0 ∈ N such that (9.6)– (9.8) hold. Then
lim

n→∞ f ∗
n = f ∗ .

Now we are in a position to prove the main result of this section.

9.5. THEOREM. Let 0 < p, q � ∞ , A, B ∈ R2 and let X be one of the spaces
Lp,q;A,B or L(p,q;A,B) . Assume that X �= {0} . Then X has absolutely continuous
(quasi-)norm if and only if 0 < q < ∞ .

Proof. (i) Assume first that X = Lp,q;A,B . Let 0 < q < ∞ . It is a consequence of
(P3) (cf. Section 2) that X has absolutely continuous (quasi-)norm if (ACN) holds for
every f ∈ X ∩ M +(R,μ) . For such f we clearly have f ∗(t) < ∞ , t ∈ (0,∞) , and
lim

t→∞ f ∗(t) = 0 . Let {En} ⊂ R satisfy En ↘ ∅ μ -a.e. Putting f n = f χEn , we have

0 � f n � f , n ∈ N , and, by Lemma 9.4, f ∗
n (t) → 0 as n → ∞ for all t ∈ (0,∞) .

Since f ∗
n � f ∗ , n ∈ N , the Lebesgue Dominated Convergence Theorem shows that

‖f χEn‖p,q;A,B =
( ∞∫

0

[t
1
p− 1

q �A(t)��B(t)f ∗
n (t)]q d t

)1/q
→ 0.

Hence X has absolutely continuous (quasi-)norm.
Let q = ∞ . Since X �= {0} , either p < ∞ , or p = ∞ , α0 < 0 , or p =

∞ , α0 = 0 , β0 � 0 . Thus, there exists n0 ∈ N such that the function h(t) =
t−1/p�−α0(t)��−β0(t)χ(0,1/n0)(t) , t ∈ (0,∞) , is non-increasing on (0,∞) . By [BS,
Chapter 2, Corollary 7.8], there is a g ∈ M (R,μ) satisfying g∗ = h . Furthermore,
by [BS, Chapter 2, Corollary 7.6], there is a measure-preserving transformation σ from
the set G = supp g onto [0, 1/n0] = supp h such that g = h ◦ σ μ –a.e. on G . Put
hn = hχ(0,1/n) and gn = hn ◦ σ for n ∈ N , n � n0 . Then (cf. [BS, Chapter 2,
Proposition 7.2]) g∗n = hn . It is clear from the definition of gn that the sequence
{En} of μ –measurable subsets of R given by En := supp gn , n � n0 , satisfies
En+1 ⊂ En ⊂ G and gn = gχEn μ –a.e. on G . Since μ(En) = |(0, 1/n)| = 1/n
(where |E| denotes the usual Lebesgue measure of a set E ), we see that En ↘ ∅ as
n → ∞ . Moreover,

‖gχEn‖X = ‖gn‖p,∞;A,B = sup
0<t<1/n

t1/p�A(t)��B(t)h(t) = sup
0<t<1/n

1 = 1
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for every n � n0 . Since g ∈ X , the space X does not have absolutely continuous
(quasi-)norm.

(ii) Now let X = L(p,q;A,B) . Since X �= {0} , one of the conditions in (3.3) is
satisfied. In particular, 1 � p � ∞ . By Theorem 3.8 (i), X = Lp,q;A,B if 1 < p � ∞ .
This case is covered by part (i). It remains to consider the case when p = 1 .

Let 0 < q < ∞ and f ∈ X = L(1,q;A,B) ∩ M +(R,μ) . For such f we clearly
have f ∗∗(t) < ∞ , t ∈ (0,∞) , and lim

t→∞ f ∗∗(t) = 0 , which in turn implies f ∗(t) < ∞
for t ∈ (0,∞) , and lim

t→∞ f ∗(t) = 0 . Let {En} ⊂ R satisfy En ↘ ∅ μ –a.e. Define f n

as in part (i). Since f ∗
n � f ∗ , n ∈ N , and f ∗

n (t) → 0 as n → ∞ for all t ∈ (0,∞) ,
the Lebesgue Dominated Convergence Theorem implies that for every s ∈ (0,∞) ,

f ∗∗
n (s) = s−1

s∫
0

f ∗
n (t) d t → 0.

Since moreover f ∗∗
n � f ∗∗ , n ∈ N , one more application of the Lebesgue Dominated

Convergence Theorem shows that

‖f χEn‖(1,q;A,B) =
( ∞∫

0

[s1− 1
q �A(s)��B(s)f ∗∗

n (s)]q d s
)1/q

→ 0 as n → ∞.

Finally, let p = 1 and q = ∞ . Assume first that

either α0 > 0(9.10)
or α0 = 0 and β0 > 0.(9.11)

If (9.10) holds, then there is a n0 ∈ N such that the function

(9.12) h(t) = t−1�−α0−1(t)��−β0(t)χ(0,1/n0)(t), t ∈ (0,∞),

is non-increasing on (0,∞) . The same argument as the one used in part (i) above
implies that there is a g ∈ M (R,μ) and a sequence {En} ⊂ R with En ↘ ∅ as
n → ∞ such that the functions gn := gχEn satisfy g∗n = hn := hχ(0,1/n) , n � n0 .
Hence, for all n � n0 and every t ∈ (0, 1/n) ,

g∗∗n (t) =
1
t

t∫
0

h(s) d s ≈ 1
t
�−α0(t)��−β0(t).

Consequently,

‖gχEn‖X = ‖gn‖(1,∞;A,B) � sup
0<t<1/n

t�A(t)��B(t)g∗∗n (t) ≈ 1

for every n � n0 . Since g ∈ X , the space X does not have absolutely continuous
(quasi-)norm.

When (9.11) is satisfied, we use the same argument as above with (9.12) replaced
by

h(t) = t−1�−1(t)��−β0−1(t)χ(0,1/n0)(t), t ∈ (0,∞),
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and the result follows again.
Assume now that either α0 < 0 or α0 = 0 and β0 � 0 . Then, by Corollary 3.12,

X = L(1,∞;A,B) = L(1,∞;(0,α∞),(0,β∞)) . The same argument as abovewith (9.12) replaced
by h = χ(0,1) shows that L(1,∞;(0,α∞),(0,β∞))(= X) does not have absolutely continuous
(quasi-)norm. �

10. Appendix

In this section we prove Theorems 5.1, 5.2 and 5.5. To derive conditions for the
embedding

(10.1) L(P1,Q;L,E) ↪→ L(P2,R;S,W),

we need the following lemma.

10.1. LEMMA. Let 0 < q � ∞ , μ(R) = ∞ , A = (α0,α∞) , B = (β0, β∞) ∈
R2 , and L(1,q;A,B) �= {0} . Then, for any � ∈ (0,∞) , there exists a function g� ∈
M (R,μ) (independent of q, A , and B ) such that for all � ∈ (0, 1) ,

‖g�‖(1,q;A,B) ≈

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

��α0+ 1
q (�)��β0(�) if α0 + 1

q > 0

���β0+ 1
q (�) if α0 + 1

q = 0, β0 + 1
q > 0

����
1
q (�) if α0 + 1

q = 0, β0 + 1
q = 0

� if α0 + 1
q = 0, β0 + 1

q < 0

or α0 + 1
q < 0

and for all � ∈ (1,∞) ,

‖g�‖(1,q;A,B) ≈

⎧⎪⎪⎨⎪⎪⎩
��α∞+ 1

q (�)��β∞(�) if α∞ + 1
q < 0

���β∞+ 1
q (�) if α∞ + 1

q = 0, β∞ + 1
q < 0

� if q = ∞, α∞ = β∞ = 0.

Proof. Put Y = L(1,q;A,B) . Since the underlying measure space (R,μ) is non-
atomic, for any � ∈ (0,μ(R)) there exists a function g� ∈ M (R,μ) such that
g∗� = χ(0,�) , and hence ‖g�‖Y = ϕY(�) , where ϕy stands for the fundamental function
of Y . Thus, Lemma 10.1 is a consequence of Theorem 3.7 (ii). �

The next assertion provides us with conditions on the second components of vector
exponents of logarithmic functions which are necessary for the embedding (10.1).

10.2. LEMMA. Let 0 < Q, R � ∞ , μ(R) = ∞ , L(1,Q;L,E) �= {0} , and

(10.2) L(1,Q;L,E) ↪→ L(1,R;S,W).
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Then one of the following conditions is satisfied:

λ∞ +
1
Q

> σ∞ +
1
R

;

λ∞ +
1
Q

= σ∞ +
1
R

< 0, ε∞ � ω∞;

λ∞ +
1
Q

= σ∞ +
1
R

= 0, ε∞ +
1
Q

� ω∞ +
1
R

.

Proof. By our assumption L(1,Q;L,E) �= {0} , and hence by (10.2), L(1,R;S,W) �=
{0} . Thus, Lemma 3.5 (ii) implies that one of the following conditions is satisfied:

(10.3)

⎧⎪⎨⎪⎩
λ∞ + 1

Q < 0;

λ∞ + 1
Q = 0, ε∞ + 1

Q < 0;

Q = ∞, λ∞ = 0, ε∞ = 0

and also that one of the following conditions is satisfied:

(10.4)

⎧⎪⎨⎪⎩
σ∞ + 1

R < 0;

σ∞ + 1
R = 0, ω∞ + 1

R < 0;

R = ∞, σ∞ = 0, ω∞ = 0.

By Lemma 10.1, there is a function g� ∈ M (R,μ) such that for all � ∈ (1,∞) ,

(10.5) ‖g�‖(1,Q;L,E) ≈

⎧⎪⎪⎨⎪⎪⎩
��

λ∞+ 1
Q (�)��ε∞(�) if λ∞ + 1

Q < 0

���
ε∞+ 1

Q (�) if λ∞ + 1
Q = 0, ε∞ + 1

Q < 0

� if Q = ∞, λ∞ = ε∞ = 0,

and similarly,

(10.6) ‖g�‖(1,R;S,W) ≈

⎧⎪⎨⎪⎩
��σ∞+ 1

R (�)��ω∞(�) if σ∞ + 1
R < 0

���ω∞+ 1
R (�) if σ∞ + 1

R = 0, ω∞ + 1
R < 0

� if R = ∞, σ∞ = ω∞ = 0.

Assume that

(10.7) λ∞ +
1
Q

< σ∞ +
1
R

.

Then

(10.8) λ∞ +
1
Q

< 0

and we get from (10.2), (10.5), and (10.6) that for all � ∈ (1,∞) ,

��
λ∞+ 1

Q (�)��ε∞(�)�

⎧⎪⎨⎪⎩
��σ∞+ 1

R (�)��ω∞(�) if σ∞ + 1
R < 0

���ω∞+ 1
R (�) if σ∞ + 1

R = 0, ω∞ + 1
R < 0

� if R = ∞, σ∞ = ω∞ = 0,
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which contradicts (10.7) and (10.8). Consequently λ∞ + 1
Q � σ∞ + 1

R .

Let λ∞ + 1
Q = σ∞ + 1

R < 0 . Then (10.2), (10.5), and (10.6) imply that for all
� ∈ (1,∞) ,

��
λ∞+ 1

Q (�)��ε∞(�)� ��σ∞+ 1
R (�)��ω∞(�),

which yields ε∞ � ω∞ .
Finally, let λ∞ + 1

Q = σ∞ + 1
R = 0 . Assume that

(10.9) ε∞ +
1
Q

< ω∞ +
1
R

.

Then

(10.10) ε∞ +
1
Q

< 0

and we get from (10.2), (10.5), and (10.6) that for all � ∈ (1,∞) ,

���
ε∞+ 1

Q (�)�
{

���ω∞+ 1
R (�) if ω∞ + 1

R < 0

� if R = ∞, ω∞ = 0,

which contradicts (10.9) and (10.10). Consequently, ε∞+ 1
Q � ω∞+ 1

R , and the proof
is complete. �

Now, we are going to derive conditions on the first components of vector exponents
of logarithmic functions which are necessary for the embedding (10.2).

10.3. LEMMA. Let 0 < Q, R � ∞ , μ(R) = ∞ , L(1,Q;L,E) �= {0} , and

(10.11) L(1,Q;L,E) ↪→ L(1,R;S,W).

Then the following implications hold:

0 < max{λ0 +
1
Q

, σ0 +
1
R
} =⇒ λ0 +

1
Q

� σ0 +
1
R

;(10.12)

0 =λ0 +
1
Q

=⇒ λ0 +
1
Q

� σ0 +
1
R

;(10.13)

0 <λ0 +
1
Q

= σ0 +
1
R

=⇒ ε0 � ω0;(10.14)

0 = λ0 +
1
Q

= σ0 +
1
R

0 � max{ε0 +
1
Q

, ω0 +
1
Q
}

⎫⎪⎪⎬⎪⎪⎭ =⇒ ε0 +
1
Q

� ω0 +
1
R

.(10.15)

Proof. Let g� ∈ M (R,μ) be the function from Lemma 10.1.
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a) Let 0 < λ0 + 1
Q . Suppose that

(10.16) λ0 +
1
Q

< σ0 +
1
R

.

Then for all � ∈ (0, 1) ,

‖g�‖(1,Q;L,E) ≈ ��
λ0+ 1

Q (�)��ε0(�),(10.17)

‖g�‖(1,R;S,W) ≈ ��σ0+ 1
R (�)��ω0(�),(10.18)

and thus the embedding (10.11) shows that the inequality (10.16) cannot hold.
b) Let σ0 + 1

R > 0 . Suppose that

(10.19) λ0 +
1
Q

� 0.

Then for all � ∈ (0, 1) ,

(10.20) ‖g�‖(1,Q;L,E) ≈

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

���
ε0+ 1

Q (�) if λ0 + 1
Q = 0, ε0 + 1

Q > 0

����
1
Q (�) if λ0 + 1

Q = 0, ε0 + 1
Q = 0

� if λ0 + 1
Q = 0, ε0 + 1

Q < 0

or λ0 + 1
Q < 0

and
‖g�‖(1,R;S,W) ≈ ��σ0+ 1

R (�)��ω0(�).

These two estimates and the embedding (10.11) show that (10.19) cannot hold. Thus
λ0 + 1

Q > 0 and, by part a), λ0 + 1
Q � σ0 + 1

R .
Now, (10.12) follows from a) and b).
c) Let 0 = λ0 + 1

Q . Assume that (10.16) holds. Then σ0 + 1
R > 0 , and hence the

estimates (10.18), (10.20), and the embedding (10.11) show that (10.16) cannot hold.
This proves (10.13).

d) Let 0 < λ0 + 1
Q = σ0 + 1

R . Then the estimates (10.17), (10.18) and the
embedding (10.11) imply that ε0 � ω0 . Consequently, the implication (10.14) holds.

e) Let 0 = λ0 + 1
Q = σ0 + 1

R and ε0 + 1
Q � 0 . Assume that

(10.21) ε0 +
1
Q

< ω0 +
1
R

.

Then ω0 + 1
R > 0 . We have for all � ∈ (0, 1) ,

‖g�‖(1,Q;L,E) ≈
⎧⎨⎩ ���

ε0+ 1
Q (�) if ε0 + 1

Q > 0

����
1
Q (�) if ε0 + 1

Q = 0

and
‖g�‖(1,R;S,W) ≈ ���ω0+ 1

R (�).
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The last two estimates and the embedding (10.11) show that (10.21) cannot hold.
f) Let 0 = λ0 + 1

Q = σ0 + 1
R and ω0 + 1

R � 0 . Assume that

(10.22) ε0 +
1
Q

< 0.

Then, for all � ∈ (0, 1) ,

‖g�‖(1,Q;L,E) ≈ �,

‖g�‖(1,R;S,W) ≈
{

���ω0+ 1
R (�) if ω0 + 1

R > 0

����
1
R (�) if ω0 + 1

R = 0

and the embedding (10.11) shows that (10.22) cannot hold. Thus ε0 + 1
Q � 0 and, by

part e), ε0 + 1
Q � ω0 + 1

R .
We have from e) and f) that the implication (10.15) is satisfied. �
In the next lemma we consider the case when 0 < R < Q < ∞ .

10.4. LEMMA. Let 0 < R < Q � ∞ , μ(R) = ∞ ,

(10.23) L(1,Q;L,E) �= {0},
and

(10.24) L(1,Q;L,E) ↪→ L(1,R;S,W).

Then either

(10.25) λ∞ +
1
Q

> σ∞ +
1
R

or

(10.26) λ∞ +
1
Q

= σ∞ +
1
R

and ε∞ +
1
Q

> ω∞ +
1
R

.

Moreover, the following conditions hold:

0 < max{λ0 +
1
Q

,σ0 +
1
R
} =⇒ λ0 +

1
Q

� σ0 +
1
R

;(10.27)

0 =λ0 +
1
Q

=⇒ λ0 +
1
Q

� σ0 +
1
R

;(10.28)

0 <λ0 +
1
Q

= σ0 +
1
R

=⇒ ε0 +
1
Q

> ω0 +
1
R

;(10.29)

0 = λ0 +
1
Q

= σ0 +
1
R

0 < max{ε0 +
1
Q

, ω0 +
1
Q
}

⎫⎪⎪⎬⎪⎪⎭ =⇒ ε0 +
1
Q

> ω0 +
1
R

.(10.30)
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Proof. The implications (10.27) and (10.28) follow from Lemma 10.3.
For � ∈ (0, 1) and ννν, θ,η ∈ R put

(10.31) f �(t) = t−1�ννν(t)��θ (t)���η(t)χ(0,�)(t), t ∈ (0,∞).

Then f � is equivalent to a non-increasing function on (0,∞) and, as the measure space
(R,μ) is non-atomic, there is a function g� ∈ M (R,μ) such that g∗� ≈ f � (cf. [BS,
Chapter 2, Corollary 7.8]). Consequently,

(10.32) g∗∗� (t) ≈ 1
t

∫ t

0
f �(s)ds, t ∈ (0,∞).

If ννν + 1 < 0 and � ∈ (0, 1) are fixed, then

g∗∗� (t) ≈
{

t−1�ννν+1(t)��θ(t)���η(t), t ∈ (0, �]
t−1�ννν+1(�)��θ(�)���η(�), t ∈ (�,∞).

This implies that for all t ∈ (0,∞) ,

(10.33) g∗∗� (t) ≈ t−1�ννν+1(t)��θ(t)���η(t)χ(0,�](t) + t−1χ(�,∞)(t).

a) Let 0 < λ0 + 1
Q = σ + 1

R . Suppose that

(10.34) ε0 +
1
Q

� ω0 +
1
R

.

Taking

ννν+1 = −
(
λ0+

1
Q

)
= −

(
σ0+

1
R

)
, θ ∈

[
−

(
ω0+

1
R

)
,−

(
ε0+

1
Q

)]
, η = −1

2

( 1
Q

+
1
R

)
,

we have ννν + 1 < 0 and, on using (10.33), we get

‖g�‖(1,Q;L,E) �N1(�) + N2(�),

where

N1(�) = ‖t− 1
Q �λ0+ννν+1(t)��ε0+θ(t)���η(t)‖Q,(0,�),

N2(�) = ‖t− 1
Q �L(t)��E(t)‖Q,(�,∞).

Since

λ0 +
1
Q

+ ννν + 1 = 0, ε0 +
1
Q

+ θ � 0, η +
1
Q

=
1
2

( 1
Q

− 1
R

)
< 0,

we have N1(�) < ∞ . Moreover, the assumption (10.23) implies that one of conditions
(10.3) is satisfied, which in turn yields that N2(�) < ∞ . Consequently,

(10.35) ‖g�‖(1,Q;L,E) < ∞.

On the other hand, we have from (10.33) that

(10.36) ‖g�‖(1,R;S,W) � ‖t− 1
R �σ0+ννν+1(t)��ω0+θ(t)���η(t)‖R,(0,�) = ∞
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since

σ0 +
1
R

+ ννν + 1 = 0, ω0 +
1
R

+ θ � 0, η +
1
R

=
1
2

( 1
R
− 1

Q

)
> 0.

The estimates (10.35) and (10.36) contradict (10.24). Thus, (10.34) cannot hold and
the implication (10.29) is verified.

b) Let 0 = λ0 + 1
Q = σ0 + 1

R and ε0 + 1
Q � 0 . Suppose that (10.34) holds. In

(10.31) we take

ννν + 1 = 0, θ + 1 ∈
[
−

(
ω0 +

1
R

)
,−

(
ε0 +

1
Q

)]
,

η =

⎧⎨⎩ − 1
2

(
1
Q + 1

R

)
if θ + 1 < 0

− 1
2

(
1
Q + 1

R

)
− 1 if θ + 1 = 0.

Then θ + 1 � 0 and it may be θ + 1 = 0 only if ε0 + 1
Q = 0 . Using (10.32), we get

g∗∗� (t) ≈ t−1��θ+1(t)���η(t)χ(0,�](t) + t−1��θ+1(�)���η(�)χ(�,∞)(t) if θ + 1 < 0,

g∗∗� (t) ≈ t−1���η+1(t)χ(0,�](t) + t−1���η+1(�)χ(�,∞)(t) if θ + 1 = 0.

One can prove analogously as in part a) that

(10.37) ‖g�‖(1,Q;L,E) < ∞ and ‖g�‖(1,R;S,W) = ∞
since λ0 + 1

Q = 0, σ0 + 1
R = 0 , and

θ + 1 < 0 =⇒
⎧⎨⎩ ε0 + 1

Q + θ + 1 � 0, η + 1
Q = 1

2

(
1
Q − 1

R

)
< 0,

ω0 + 1
R + θ + 1 � 0, η + 1

R = 1
2

(
1
R − 1

Q

)
> 0,

θ + 1 = 0 =⇒
⎧⎨⎩ ε0 + 1

Q = 0, η + 1 + 1
Q = 1

2

(
1
Q − 1

R

)
< 0,

ω0 + 1
R � 0, η + 1 + 1

R = 1
2

(
1
R − 1

Q

)
> 0.

However, (10.37) contradicts (10.24). Thus (10.34) cannot hold and consequently
ε0 + 1

Q > ω0 + 1
R .

c) Let 0 = λ0 + 1
Q = σ0 + 1

R and ω0 + 1
R � 0 . Then we have from (10.15) of

Lemma 10.3 that ε0 + 1
Q � 0 . Consequently, by part b), ε0 + 1

Q > ω0 + 1
R .

We have from b) and c) that the implication (10.30) is satisfied.
It remains to prove that either (10.25) or (10.26) holds. However, it follows from

Lemma 10.2 that we only need to show

(10.38) λ∞ +
1
Q

= σ∞ +
1
R

=⇒ ε∞ +
1
Q

> ω∞ +
1
R

.

For ννν0, ννν∞, θ0, θ∞,η ∈ R put

(10.39) f (t) =
{

t−1�ννν0(t)��θ0(t), t ∈ (0, 1]
t−1�ννν∞(t)��θ∞(t)���η(t), t ∈ (1,∞).
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Then there exists g ∈ M (R,μ) such that g∗ ≈ f . Consequently,

(10.40) g∗∗(t) ≈ 1
t

∫ t

0
f (s)ds.

Taking ννν0 < min{−1,−1− λ0 − 1
Q} , we have

(10.41) g∗∗(t) ≈ t−1�ννν0+1(t)��θ0(t), t ∈ (0, 1],

and hence

(10.42) ‖g‖(1,Q;L,E)(0,1) ≈ ‖t− 1
Q �λ0+ννν0+1(t)��ε0+θ0(t)‖Q,(0,1) < ∞.

The assumption (10.23) implies that one of conditions in (10.3) holds. Moreover,
assume that the premise in (10.38) is satisfied. We shall distinguish two cases:

1) Let λ∞ + 1
Q = σ∞ + 1

R < 0 . Suppose that

(10.43) ε∞ +
1
Q

� ω∞ +
1
R

.

Take 1 + ννν∞ = −(λ∞ + 1
Q ) = −(σ∞ + 1

R ) . Then 1 + ννν∞ > 0 and (10.39)–(10.41)
yield

g∗∗(t) ≈ t−1
[ ∫ 1

0
f (s)ds +

∫ t

1
f (s)ds

]
(10.44)

≈ t−1
[
1 + �ννν∞+1(t)��θ∞���η(t)

]
≈ t−1�ννν∞+1(t)��θ∞(t)���η(t), t ∈ (1,∞).

Furthermore, let

θ∞ ∈
[
−

(
ω∞ +

1
R

)
,−

(
ε∞ +

1
Q

)]
and η = −1

2

( 1
Q

+
1
R

)
.

We have from (10.44) that

(10.45) ‖g‖(1,Q;L,E)(1,∞) ≈ ‖t− 1
Q �λ∞+ννν∞+1(t)��ε∞+θ∞(t)���η(t)‖Q,(1,∞) ≈ 1

since

λ∞ +
1
Q

+ ννν∞ + 1 = 0, ε∞ +
1
Q

+ θ∞ � 0, η +
1
Q

=
1
2

( 1
Q

− 1
R

)
< 0.

We see from (10.42) and (10.45) that

(10.46) ‖g‖(1,Q;L,E) < ∞.

On the other hand, we have from (10.44) that

(10.47) ‖g‖(1,R;S,W) � ‖t− 1
R �σ∞+ννν∞+1(t)��ω∞+θ∞(t)���η(t)‖R,(1,∞) = ∞
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since

σ∞ +
1
R

+ ννν∞ + 1 = 0, ω∞ +
1
R

+ θ∞ � 0, η +
1
R

=
1
2

( 1
R
− 1

Q

)
> 0.

However, (10.46) and (10.47) contradict (10.24). Thus (10.43) cannot hold. Conse-
quently, ε∞ + 1

Q > ω∞ + 1
R .

2) Let λ∞ + 1
Q = σ∞ + 1

R = 0 . Suppose that (10.43) holds. Take

ννν∞ = −1, i.e., 1 + ννν∞ = −
(
λ∞ +

1
Q

)
= −

(
σ∞ +

1
R

)
,

1 + θ∞ ∈
[
−

(
ω∞ +

1
R

)
,−

(
ε∞ +

1
Q

)]
, η = −1

2

( 1
Q

+
1
R

)
.

Our assumptions (10.23) and (10.24) imply that one of conditions in (10.4) holds.
Together with the facts that σ∞ + 1

R = 0 and R < ∞ this yields ω∞ + 1
R < 0 , which

in turn shows that 1 + θ∞ > 0 . Consequently, we have from (10.39)–(10.41) that

g∗∗(t) ≈ t−1
[ ∫ 1

0
f (s)ds +

∫ t

1
f (s)ds

]
≈ t−1

[
1 + ��θ∞+1(t)���η(t)

]
≈ t−1��θ∞+1(t)���η(t), t ∈ (1,∞).

Similar argument to that of part 1) shows that (10.43) cannot hold. Thus
ε∞ + 1

Q > ω∞ + 1
R .

It follows from 1) and 2) that the implication (10.38) is true. The proof is
complete. �

Now we shall look for sufficient conditions for the embedding (10.1). We need
the following lemma.

10.5. LEMMA. Assume that 0 < Q < R < ∞ , μ(R) = ∞ and L = (λ0, λ∞) ,
E = (ε0, ε∞) , S = (σ0,σ∞) , W = (ω0,ω∞) ∈ R2 .

Put

α0 =
σ0R − λ0Q

R − Q
and β0 =

ω0R − ε0Q
R − Q

.

Then for all f ∈ L(1,Q;L,E) ,

‖f ‖(1,R;σ0,ω0)(0,1) � ‖f ‖
Q
R
(1,Q;λ0,ε0)(0,1) ‖f ‖

1−Q
R

(1,∞;α0,β0)(0,1).

Put

α∞ =
σ∞R − λ∞Q

R − Q
and β∞ =

ω∞R − ε∞Q
R − Q

.

Then for all f ∈ L(1,Q;L,E) ,

(10.48) ‖f ‖(1,R;σ∞,ω∞)(1,∞) � ‖f ‖
Q
R
(1,Q;λ∞,ε∞)(1,∞) ‖f ‖

1−Q
R

(1,∞;α∞,β∞)(1,∞).

In particular, if we define A = (α0,α∞) and B = (β0, β∞) by

(10.49) A =
SR − LQ
R − Q

and B =
WR − EQ

R − Q
,
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then for all f ∈ L(1,Q;L,E) ,

(10.50) ‖f ‖(1,R;S,W) � ‖f ‖
Q
R
(1,Q;L,E) ‖f ‖

1−Q
R

(1,∞;A,B).

Proof. Put I0 = (0, 1) and I∞ = (1,∞) . If f ∈ L(1,Q;L,E) and i ∈ {0,∞} , then

‖f ‖R
(1,R;σi,ωi) Ii = ‖t1− 1

R �σi(t)��ωi(t)f ∗∗(t)‖R
R,Ii

=
∫
Ii

[
t�λi(t)��εi(t)f ∗∗(t)

]Q[
t�αi(t)��βi(t)f ∗∗(t)

]R−Q d t
t

� ‖t�αi(t)��βi(t)f ∗∗(t)‖R−Q
∞,Ii ‖t

1− 1
Q �λi(t)��εi(t)f ∗∗(t)‖Q

Q,Ii

= ‖f ‖Q
(1,Q;λi,εi) Ii

‖f ‖R−Q
(1,∞;αi,βi) Ii

. �

10.6. LEMMA. Let 0 < Q � R � ∞ , μ(R) = ∞ , L(1,Q;L,E) �= {0} , and

(10.51) λ∞ +
1
Q

> σ∞ +
1
R

,

or

(10.52) 0 > λ∞ +
1
Q

= σ∞ +
1
R

and ε∞ � ω∞,

or

(10.53) 0 = λ∞ +
1
Q

= σ∞ +
1
R

and ε∞ +
1
Q

� ω∞ +
1
R

.

Moreover, let one of the following conditions hold:

0 � λ0 +
1
Q

and λ0 +
1
Q

> σ0 +
1
R

,(10.54)

0 < λ0 +
1
Q

= σ0 +
1
R

and ε0 � ω0,(10.55)

0 = λ0 +
1
Q

= σ0 +
1
R

, ε0 +
1
Q

� 0, ε0 +
1
Q

� ω0 +
1
R

.(10.56)

Then

(10.57) L(1,Q;L,E) ↪→ L(1,R;S,W).

Proof. (i) If 0 < Q = R � ∞ , then it is clear from (10.51)–(10.53) and (10.54)–
(10.56) that (10.57) holds for all f ∈ L(1,Q;L,E) .
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(ii) Let 0 < Q < R = ∞ . We have for all t ∈ (0, 1) ,

(10.58) ‖s− 1
Q �λ0(s)��ε0(s)‖Q,(t,1) ≈

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

�
λ0+ 1

Q (t)��ε0(t) if λ0 + 1
Q > 0

��
ε0+ 1

Q (t) if λ0 + 1
Q = 0, ε0 + 1

Q > 0

���
1
Q (t) if λ0 + 1

Q = 0, ε0 + 1
Q = 0

1 if λ0 + 1
Q < 0

or λ0 + 1
Q = 0, ε0 + 1

Q < 0.

If λ0 + 1
Q > 0 , then (10.54), (10.55), and (10.58) yield for all t ∈ (0, 1) ,

(10.59) �σ0(t)��ω0(t) � �
λ0+ 1

Q (t)��ε0(t) ≈ ‖s− 1
Q �λ0(s)��ε0(s)‖Q(t,1).

If λ0 + 1
Q = 0 , then (10.54), (10.56), and (10.58) yield for all t ∈ (0, 1) ,

(10.60) �σ0(t)��ω0(t) � �
λ0+ 1

Q (t)��ε0+ 1
Q (t) � ‖s− 1

Q �λ0(s)��ε0(s)‖Q,(t,1).

Using (10.59) and (10.60), we get

sup
0<t<1

t1−
1
R �σ0(t)��ω0(t)f ∗∗(t) = sup

0<t<1
�σ0(t)��ω0(t)

∫ t

0
f ∗(τ) d τ(10.61)

� sup
0<t<1

‖s− 1
Q �λ0(s)��ε0(s)‖Q,(t,1)

∫ t

0
f ∗(τ) d τ

� sup
0<t<1

‖s1− 1
Q �λ0(s)��ε0(s)f ∗∗(s)‖Q,(t,1) = ‖f ‖(1,Q;L,E)(0,1).

Since L(1,Q;L,E) �= {0} and Q < ∞ = R , either λ∞ + 1
Q < 0 or λ∞ + 1

Q = 0 and

ε∞ + 1
Q < 0 (cf. (10.3)). We have for all t ∈ [1,∞) ,

(10.62) ‖s− 1
Q �λ∞(s)��ε∞(s)‖Q,(t,∞)≈

⎧⎪⎪⎨⎪⎪⎩
�
λ∞+ 1

Q (t)��ε∞(t) if λ∞ + 1
Q < 0

��
ε∞+ 1

Q (t) if λ∞ + 1
Q = 0,

ε∞ + 1
Q < 0.

If λ∞ + 1
Q < 0 , then (10.51), (10.52), and (10.62) imply for all t ∈ [1,∞) ,

(10.63) �σ∞(t)��ω∞(t) � �
λ∞+ 1

Q (t)��ε∞(t) ≈ ‖s− 1
Q �λ∞(s)��ε∞(s)‖Q,(t,∞).

If λ0 + 1
Q = 0 and ε∞ + 1

Q < 0 , then (10.51), (10.53), and (10.62) yield for all
t ∈ [1,∞) ,

(10.64) �σ∞(t)��ω∞(t) � �
λ∞+ 1

Q (t)��ε∞+ 1
Q (t) ≈ ‖s− 1

Q �λ∞(s)��ε∞(t)‖Q,(t,∞).
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Using (10.63) and (10.64), we obtain

sup
1�t<∞

t1−
1
R �σ∞(t)��ω∞(t)f ∗∗(t) = sup

1�t<∞
�σ∞(t)��ω∞(t)

∫ t

0
f ∗(τ)dτ(10.65)

� sup
1�t<∞

‖s− 1
Q �λ∞(s)��ε∞(s)‖Q,(t,∞)

∫ t

0
f ∗(τ)dτ

� ‖s1− 1
Q �λ∞(s)��ε∞(s)f ∗∗(s)‖Q,(1,∞) = ‖f ‖(1,Q;L,E)(1,∞).

Moreover, by (10.61) and (10.65),

‖f ‖(1,∞;S,W) = sup
0<t<∞

t�S(t)��W(t)f ∗∗(t)

= max{ sup
0<t<1

t�σ0(t)��ω0(t)f ∗∗(t), sup
1�t<∞

t�σ∞(t)��ω∞(t)f ∗∗(t)}

� ‖f ‖(1,Q;L,E)

and (10.57) follows.
(iii) Let 0 < Q < R < ∞ . Then, by Lemma 10.5,

‖f ‖(1,R;S,W) � ‖f ‖
Q
R
(1,Q;L,E)‖f ‖

1−Q
R

(1,∞;A,B),

where A and B are given by (10.49). Thus, (10.57) will be proved if we show that for
all f ∈ L(1,Q;L,E) ,

(10.66) ‖f ‖(1,∞;A,B) � ‖f ‖(1,Q;L,E).

However, (10.66) will follow on using part (ii) above with S, W replaced by A, B ,
respectively, once we show that each of conditions (10.51)–(10.56) implies the same
one with R,σi,ωi replaced by ∞,αi, βi (i = 0,∞) , respectively. We are going to
verify it in the case when one of the conditions (10.51)–(10.53) holds; the proof is
similar when one of the conditions (10.54)–(10.56) is satisfied.

Suppose that (10.51) holds. Then, by (10.49),

σ∞ +
1
R

=
σ∞R − λ∞Q

R − Q
+

Q
R − Q

(
λ∞ +

1
Q

−
(
σ∞ +

1
R

))
(10.67)

> α∞ = α∞ +
1
∞ ,

which, together with (10.51), gives λ∞ + 1
Q > α∞ + 1

∞ .

If λ∞ + 1
Q = σ∞ + 1

R , then the first equality in (10.67) implies that λ∞ + 1
Q =

α∞ + 1
∞ .

If (10.52) is satisfied, then, using (10.49), we have

ε∞ =
ε∞R − ε∞Q

R − Q
� ω∞R − ε∞Q

R − Q
= β∞.

Finally, assume that (10.53) holds. Then, by (10.49),

ω∞ +
1
R

=
ω∞R − ω∞Q

R − Q
+

Q
R − Q

(
ε∞ +

1
Q

−
(
ω∞ +

1
R

))
� β∞ = β∞ +

1
∞ .
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Together with (10.53), this gives ε∞ + 1
Q � β∞ + 1

∞ . �
Using the method of the proof of Lemma 10.6 and employing estimate (10.48)

instead of (10.50), one can prove the following result.

10.7. LEMMA. Let 0 < Q � R � ∞ , μ(R) = ∞ , L(1,Q;L,E) �= {0} , and let one
of conditions (10.51)–(10.53) hold. Then for all f ∈ L(1,Q;L,E) ,

(10.68) ‖f ‖(1,R;S,W)(1,∞) � ‖f ‖(1,Q;L,E)(1,∞).

The next lemma provides the “complementary inequality” to (10.68) in the case
when the assumptions of Lemma 10.6 on λ0, ε0,σ0 , and ω0 may not be satisfied.

10.8. LEMMA. Let 0 < Q, R � ∞, μ(R) = ∞, L(1,Q;L,E) �= {0} , and let one of
the following conditions be satisfied:

σ0 +
1
R

< 0;(10.69)

σ0 +
1
R

= 0; ω0 +
1
R

< 0;(10.70)

R = ∞, σ0 = 0, ω0 = 0.(10.71)

Then for all f ∈ L(1,Q;L,E) ,

‖f ‖(1,R;S,W)(0,1) � ‖f ‖(1,Q;L,E)(1,∞).

Proof. Let f ∈ L(1,Q;L,E) . Then, using (10.69)–(10.71) and (10.3), we obtain

‖f ‖(1,R;S,W)(0,1) = ‖t− 1
R �σ0(t)��ω0(t)

∫ t

0
f ∗(τ)dτ‖R,(0,1)

� ‖t− 1
R �σ0(t)��ω0(t)‖R,(0,1)

∫ 1

0
f ∗(τ)dτ ≈

∫ 1

0
f ∗(τ)dτ

≈ ‖t− 1
Q �λ∞(t)��ε∞(t)‖Q,(1,∞)

∫ 1

0
f ∗(τ)dτ

� ‖t− 1
Q �λ∞(t)��ε∞(t)

∫ t

0
f ∗(τ)dτ‖Q,(1,∞) = ‖f ‖(1,Q;L,E)(1,∞). �

10.9. REMARK. Suppose that all the assumptions of Lemma 10.8 are satisfied.
Then for all f ∈ L(1,Q;L,E) ,

‖f ‖(1,R;S,W)(0,1) � ‖f ‖(1,Q;L,E)(0,1).

Indeed, if f ∈ L(1,Q;L,E) , then

‖f ‖(1,R;S,W)(0,1) �
∫ 1

0
f ∗(τ)dτ = f ∗∗(1) ≈ ‖t1− 1

Q �λ0(t)��ε0(t)‖Q,(0,1)f
∗∗(1)

� ‖t1− 1
Q �λ0(t)��ε0(t)f ∗∗(t)‖Q,(0,1) = ‖f ‖(1,Q;L,E)(0,1).

Now, we turn our attention to the case when 0 < R < Q � ∞ .



ON GENERALIZED LORENTZ–ZYGMUND SPACES 463

10.10. LEMMA. Suppose that 0 < R < Q � ∞ , μ(R) = ∞ , and L(1,Q;L,E) �=
{0} .

(i) Let either

(10.72) λ∞ +
1
Q

> σ∞ +
1
R

or

(10.73) λ∞ +
1
Q

= σ∞ +
1
R

and ε∞ +
1
Q

> ω∞ +
1
R

.

Then for all f ∈ L(1,Q;L,E) ,

‖f ‖(1,R;S,W)(1,∞) � ‖f ‖(1,Q;L,E)(1,∞).

(ii) Let either

(10.74) λ0 +
1
Q

> σ0 +
1
R

or

(10.75) λ0 +
1
Q

= σ0 +
1
R

and ε0 +
1
Q

> ω0 +
1
R

.

Then for all f ∈ L(1,Q;L,E) ,

‖f ‖(1,R;S,W)(0,1) � ‖f ‖(1,Q;L,E)(0,1).

Proof. Put I0 = (0, 1) and I∞ = (1,∞) . If f ∈ L(1,Q;L,E) , i ∈ {0,∞} , and let
one of conditions (10.72), (10.73), or (10.74), (10.75), respectively, hold, if i = ∞ or
i = 0 . Since R < ∞ , we get by the Hölder inequality with respect to the measure d t

t
and with exponents Q/R and Q/(Q − R) if Q < ∞ and immediately if Q = ∞ that

‖f ‖R
(1,R;σi,ωi) Ii =

∫
Ii

[
t�λi(t)��εi(t)f ∗∗(t)�σi−λi(t)��ωi−εi(t)

]R d t
t

� Ci ‖f ‖R
(1,Q;λi,εi) Ii ,

where

Ci =
( ∫

Ii

[
�σi−λi(t)��ωi−εi(t)

]1/( 1
R− 1

Q ) d t
t

)1− R
Q

.

Since our assumptions imply that Ci < ∞ , the result follows. �
Now, we are able to prove Theorems 5.1 and 5.2.

Proof of Theorem 5.1. Necessity follows from Lemmas 10.2 and 10.3. Sufficiency
is a consequence of Lemmas 10.6–10.8. �

Proof of Theorem 5.2. Necessity follows from Lemma 10.4. Sufficiency is a
consequence of Lemmas 10.8 and 10.10. �
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We conclude this section with the proof of Theorem 5.5.

Proof of Theorem 5.5. We shall use the following notation:

S ∗ = {(P1, P2, L, E, S, W); 0 < P1, P2 � ∞, P1 �= P2, L, E, S, W ∈ R2},
S1 = {(P1, P2, L, E, S, W) ∈ S ∗; 1 � P2 < P1 � ∞},
S̃1 = {(P1, P2, L, E, S, W) ∈ S ∗; 1 � P1 < P2 � ∞},
S2 = {(P1, P2, L, E, S, W) ∈ S ∗; 0 < P2 < 1},
S ∗

3 = {(P1, P2, L, E, S, W) ∈ S ∗; 0 < P1 < 1, P2 = 1},
S3,1 = {(P1, P2, L, E, S, W) ∈ S ∗

3 ; σ0 +
1
R

< 0},

S3,2 = {(P1, P2, L, E, S, W) ∈ S ∗
3 ; σ0 +

1
R

= 0, ω0 +
1
R

< 0},
S3,3 = {(P1, P2, L, E, S, W) ∈ S ∗

3 ; R = ∞, σ0 = 0, ω0 = 0},
S3 = S3,1 ∪ S3,2 ∪ S3,3, S̃3 = S ∗

3 \ S3,

S̃4 = {(P1, P2, L, E, S, W) ∈ S ∗; 0 < P1 < 1, 1 < P2 � ∞},
S = S1 ∪ S2 ∪ S3, S̃ =S̃1 ∪S̃3 ∪S̃4.

Obviously, S ∗ = S ∪S̃ .

Necessity. We have to prove that (5.5) does not hold if either μ(R) = ∞ or
μ(R) < ∞ and (P1, P2, L, E, S, W) ∈S̃ .

Assume first that μ(R) = ∞ . Then (5.4), (5.5), and Lemma 3.5 (ii) implies that
1 � P1, P2 � ∞ . Putting

X = L(P1,Q;L,E) and Y = L(P2,R;S,W),

we obtain from (5.5) that

(10.76) ϕY �ϕX,

where ϕX and ϕY are the fundamental functions of X and Y , respectively. Moreover,
one can see from (10.76) and Lemma 3.7 (ii) that (5.5) cannot hold.

Assume now that μ(R) < ∞ . Then (10.76) and Lemma 3.7 (ii) implies, again,
that (5.5) cannot hold if (P1, P2, L, E, S, W) ∈S̃ .

Sufficiency. let M := μ(R) < ∞ . We have to prove that (5.5) holds provided
that (P1, P2, L, E, S, W) ∈ S = S1 ∪ S2 ∪ S3 .

Assume that (P1, P2, L, E, S, W) ∈ S1 (i.e. (5.6) holds). We shall distinguish
two cases:
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a) Let 0 < R < Q � ∞ . Then for all f ∈ M (R,μ) ,

‖f ‖(P2,R;S,W) =
( M∫

0

[
t

1
P2 �S(t)��W(t)f ∗∗(t)

]R d t
t

) 1
R

(10.77)

� ‖f ‖(P1,Q;L,E)

( M∫
0

[
t

1
P2

− 1
P1 �S−L(t)��W−E(t)

]1/( 1
R− 1

Q ) dt
t

) 1
R− 1

Q

� ‖f ‖(P1,Q;L,E)

and (5.5) follows.
b) Let 0 < Q � R � ∞ . Put

(10.78) σ = σ0, ω = ω0, λ = λ0, ε = ε0.

If λ̃ , ε̃ ∈ R , we have for all f ∈ M (R,μ) that

(10.79) ‖f ‖(P2,R;σ,ω) = ‖t 1
P1 �λ̃ (t)��ε̃(t)f ∗∗(t)t

1
P2

− 1
P1

− 1
R �σ−λ̃ (t)��ω−ε̃(t)‖R,(0,M)

� C‖f ‖
(P1,∞;̃λ ,̃ε),

where C = ‖t 1
P2

− 1
P1

− 1
R �σ−λ̃ (t)��ω−ε̃(t)‖R,(0,M) < ∞ since P1 > P2 . Consequently,

for any λ̃ , ε̃ ∈ R ,

(10.80) L
(P1,∞;̃λ ,̃ε) ↪→ L(P2,R;σ,ω).

Since P1 > P2 � 1 ,

(10.81) L
(P1,∞;̃λ ,̃ε) = L

P1,∞;̃λ ,̃ε and L(P1,Q;λ ,ε) = LP1,Q;λ ,ε .

Taking λ̃ < λ , we obtain from Theorem 4.5 that

LP1,Q;λ ,ε ↪→ L
P1,∞;̃λ ,̃ε

and hence, on using (10.81),

L(P1,Q;λ ,ε) ↪→ L
(P1,∞;̃λ ,̃ε).

Together with (10.80) this yields

(10.82) L(P1,Q;λ ,ε) ↪→ L(P2,R;σ,ω)

and (5.5) follows.
Assume that (P1, P2, L, E, S, W) ∈ S2 . Putting

S2,0 = {(P1, P2, L, E, S, W) ∈ S2; 0 < P1 < 1},
S2,1 = {(P1, P2, L, E, S, W) ∈ S2; 1 � P1 � ∞},

we have S2 = S2,0 ∪ S2,1 .
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Let (P1, P2, L, E, S, W) ∈ S2,1 (i.e. (5.7) holds). If 0 < R < Q � ∞ , we obtain
(cf. (10.77)) that (5.5) is satisfied. If 0 < Q � R � ∞ , we have (cf. (10.79)) that
(10.80) holds. Moreover, if P1 > 1 , we have (10.81), and (5.5) follows using the same
argument as that of part b) above. If P1 = 1 , we choose λ̃ < 0 and ε̃ ∈ R . Then, by
Theorem 5.3,

L(1,Q;λ ,ε) ↪→ L
(1,∞;̃λ ,̃ε)

with λ and ε from (10.78). Togetherwith (10.80) this yields (10.82) and (5.5) follows.
Let (P1, P2, L, E, S, W) ∈ S2,0 (i.e. (5.8) holds). Then (5.5) is satisfied since,

by Lemma 3.15,

(10.83) L(P1,Q;L,E) = L1, L(P2,R;S,W) = L1.

Finally, let (P1, P2, L, E, S, W) ∈ S3 . Then, Lemma 3.15 again implies (10.83)
and (5.5) follows. �
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