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SIMPLIFIED PROOF OF TANAHASHI’S RESULT ON THE BEST

POSSIBILITY OF GENERALIZED FURUTA INEQUALITY

TAKEAKI YAMAZAKI

(communicated by T. Furuta)

Abstract. We give a simplified proof of Tanahashi’s result on the best possibility of generalized
Furuta inequality by using Tanahashi’s result on the best possibility of Furuta inequality.

1. Introduction

In what follows, a capital letter means a bounded linear operator on a complex
Hilbert space H . An operator T is said to be positive (denoted by T � 0 ) if (Tx, x) � 0
for all x ∈ H . Also, an operator T is strictly positive (denoted by T > 0 ) if T is
positive and invertible. The celebrated Löwner-Heinz theorem asserts “A � B � 0
ensures Aα � Bα for any α ∈ [0, 1]. ” It is well known that A � B � 0 does not
always assure Aα � Bα for any α > 1 in general. For the sake of convenience on
application, the following Theorem F was established in 1987.

THEOREM F. (Furuta inequality) [8]
If A � B � 0 , then for each r � 0 ,

(i) (B
r
2 ApB

r
2 )

1
q � (B

r
2 BpB

r
2 )

1
q

and

(ii) (A
r
2 ApA

r
2 )

1
q � (A

r
2 BpA

r
2 )

1
q

hold for p � 0 and q � 1 with
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We remark that Theorem F yields the Löwner-Heinz theorem when we put r = 0 .
Alternative proofs of Theorem F are given in [3] and [18] and also an elementary one
page proof in [9]. Tanahashi [19] shows that the domain drawn for p , q and r in the
Figure is the best possible one for Theorem F as follows.
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THEOREM A. ([19]) Let p > 0 and r � 0 . If 1 > q > 0 or (1 + r)q < p + r ,
then there exist positive operators A and B on R

2 such that A � B > 0 and
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q .

Especially in case p � 1 , Theorem F can be rewritten as follows.

THEOREM F’. If A � B � 0 , then

A1+r � (A
r
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r
2 )

1+r
p+r holds for p � 1 and r � 0 .

And Theorem A in case p � 1 can be rewritten as follows.

THEOREM A’. Let p � 1 and r � 0 . If α > 1 , then there exist positive operators
A and B on R

2 such that A � B > 0 and
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Ando [1] shows that logA � logB is equivalent to that Ar � (A
r
2 BrA

r
2 )

1
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for any r � 0 and for positive invertible operators A and B . The following Theorem
B is an extension of this characterization.

THEOREM B. ([4, 5, 10]) Let A and B be positive invertible operators. Then the
following assertions are mutually equivalent:

(i) logA � logB .
(ii) Ar � (A

r
2 BpA

r
2 )

r
p+r for any p � 0 and r � 0 .

Very recently, the following Theorem C which asserts the best possibility of (ii)
of Theorem B was obtained as a parallel result to Theorem A’ which asserts the best
possibility of Theorem F’.

THEOREM C. ([21]) Let p > 0 and r > 0 . If α > 1 , then there exist positive
invertible operators A and B on R

2 such that logA � logB and
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2 )
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On the other hand, the following Theorem G is an extension of Theorem F.

THEOREM G. (Generalized Furuta inequality [11]) If A � B � 0 with A > 0 , then
for each t ∈ [0, 1],

A1−t+r � {Ar
2 (A
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(p−t)s+r (1.1)

holds for p � 1 , s � 1 and r � t .

Alternative proof of TheoremG is shown in [6] and also very recently an elementary
one page proof of Theorem G was shown in [12]. Related results on Theorem G
are discussed in [13], [14], [15], [16] and [17]. Ando-Hiai [2] established excellent
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log majorization results and proved the useful inequality equivalent to the main log
majorization theorem as follows: If A � B � 0 with A > 0 , then
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holds for any p � 1 and r � 1 . Theorem G interpolates the inequality stated above
by Ando-Hiai and Theorem F itself. Tanahashi [20] shows that the outside exponents
of both sides of (1.1) in Theorem G are the best possible as follows.

THEOREM D. ([20]) Let p � 1 , t ∈ [0, 1] , r � t and s � 1 . If α > 1 , then there
exist positive operators A and B on R

2 such that A � B > 0 and

A(1−t+r)α �� {Ar
2 (A

−t
2 BpA

−t
2 )sA

r
2 } 1−t+r

(p−t)s+r α .

We remark that Tanahashi [19, 20] proved Theorem A and Theorem D indepen-
dently by using ingenious technique. Especially the proof of Theorem D required a lot
of elaborate calculations. In this paper, we obtain a simplified proof of Theorem D by
using Theorem F’, Theorem A, Theorem B and Theorem C.

2. Simplified proof of Theorem D

Proof of Theorem D. (a) In case t ∈ [0, 1) . Assume that

S � T > 0 ensures S(1−t+r)α � {S r
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for p � 1 , t ∈ [0, 1) , r � t , s � 1 and α > 1 .

On the other hand, A � B > 0 assures the following (2.2) by Theorem F’:
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Put p1 = p−t
1−t � 1 and r1 = t

1−t � 0 . Then (2.2) is equivalent to (2.3).
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Put r2 = r
1−t � 0 and p2 = p−t

1−t s � 1 in (2.5). Then (2.5) is equivalent to
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α for p2 � 1 , r2 � 0 and α > 1 .
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This contradiction proves the result in case t ∈ [0, 1) by Theorem A’.

(b) In case t = 1 . Assume that

S � T > 0 ensures Srα � {S r
2 (S
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for p � 1 , r � 1 , s � 1 and α > 1 .

For positive invertible operators A and B , logA � logB assures the following
(2.7) by Theorem B:
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Put p1 = (p − 1)s � 0 in (2.9). Then we have
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r
p3+r α for p3 � 0 , r � 1 and α > 1 .

This contradiction proves the result in case t = 1 by Theorem C.
Hence the proof of Theorem D is complete.

Addendum. Recently M. Fujii, A. Matsumoto and R. Nakamoto [7] show a short
proof of Theorem D without use of Theorem C by scrutinizing our paper. The proof
in case p = t = 1 can be reduced to Löwner-Heinz theorem, so we omit to describe it
(see [7]).
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