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FUNCTIONAL STOLARSKY MEANS

C. E. M. PEARCE, J. PEČARIĆ AND V. ŠIMIĆ

Abstract. A functional generalization is given for Stolarsky mean and its basic properties inves-
tigated. Functional means in n variables are also considered.

1. Introduction

As a response to the needs of diverse applications, a considerable variety of partic-
ular means of sets of numbers have been proposed and studied in the literature. See, for
example, the compendious treatment of Bullen, Mitrinović and Vasić [1]. Valuable work
has been done in systematizing and unifying this area via the judicious introduction of
parameters.

A helpful paradigm is due to Stolarsky [18]. See also Tobey [19]. The Stolarsky
mean Er,s(x, y) of two positive numbers x and y is given by Er,s(x, x) = x when the
numbers coincide and otherwise by

Er,s(x, y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
r
s

ys − xs

yr − xr

]1/(s−r)

, r �= s, r, s �= 0

[
1
r

yr − xr

ln y − ln x

]1/r

, r �= 0, s = 0

e−1/r

(
xxr

yyr

)1/(xr−yr)

, s = r �= 0

√
xy , r = s = 0.

(1.1)

For various choices of the parameters r , s , this subsumes a number of commonly
employed means as special cases. Apart from direct application, it has theoretical
interest. Thus there is a comparison theorem prescribing for which pairs (r, s) , (u, v)
the inequality Er,s(x, y) < Eu,v(x, y) holds for all x �= y (see Leach and Sholander
[7] and Páles [10, 11]). A trivial special case is the familiar inequality between the
geometric and arithmetic means of a pair of distinct positive numbers.
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An interesting representation has been found [13] linking the Stolarsky mean with
power means and integral means. The power mean mr(x, y; t) of order r and weights
t and 1 − t (for t ∈ [0, 1] ) of positive numbers x, y is defined by

mr(x, y; t) =

{
(txr + (1 − t)yr)1/r

, if r �= 0,

xty1−t , if r = 0,
(1.2)

while the integral mean over [0, 1] of a positive function f is

Mr(f ) =

⎧⎪⎨
⎪⎩
[∫ 1

0 (f (t))rdt
]1/r

, if r �= 0,

exp
(∫ 1

0 ln f (t)dt
)

, if r = 0.

It can be verified readily that

Er,s(x, y) = Ms−r(mr),

where mr(t) := mr(x, y; t) .
This suggests that a natural way to generalize the Stolarsky mean is to replace

the role of a power mean in this relation by a quasiarithmetic mean. In this paper
we develop such a generalization, which is seen to subsume and unify some recently
proposed functional means.

In Section 2 we define a general class of weighted functional Stolarsky means and
establish a basic comparison theorem. In Section 3 we generalize some Hadamard–type
results from [13] for r –convex functions. We conclude in Section 4 by addressing
multidimensional generalizations.

2. Functional Stolarsky means

DEFINITION 2.1. Let g(·) be strictly monotone and continuous function on an
interval I , and let f be strictly monotone and continuous on the range of g−1 . Suppose
μ is a probability measure on [0, 1] . Then the weighted functional Stolarsky mean of
two real numbers x , y ∈ I is given by

φf ,g(x, y;μ) = f −1

{∫ 1

0
f
[
g−1(ug(y) + (1 − u)g(x))

]
dμ(u)

}
.

We have trivially that φf ,g(x, x;μ) = x . Our definition subsumes a number of
means extant in the literature. Thus for g(x) := x , f : (0,∞) → R , we have a
functional mean considered in [2]. If μ(u) := u , we suppress μ from the notation
for φ and write φf ,g(x, y) . For f (x) = xs−r and g(x) = xr , φf ,g(x, y) reduces to the
classical Stolarsky mean Er,s(x, y) given by (1.1).

For x �= y , set t = u[g(y)− g(x)] + g(x) . Under this change of variable we derive

φf ,g(x, y) = f −1

⎧⎪⎨
⎪⎩

1
g(y) − g(x)

g(y)∫
g(x)

f
(
g−1(t)

)
dt

⎫⎪⎬
⎪⎭ .
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For f (x) := x , this reduces to the mean considered in [17].
The general functional Stolarsky mean admits the following comparison theorem.

THEOREM 2.2. Suppose f , g satisfy the conditions of Definition 2.1 and similarly
for F, G. If

(i) F ◦ f −1 is convex and F is increasing, or F ◦ f −1 is concave and F is
decreasing, and

(ii) either G ◦ g−1 is convex and G is increasing, or G ◦ g−1 is concave and G
is decreasing,

then
φf ,g(x, y;μ) � φF,G(x, y;μ).

If
(iii) either F ◦ f −1 is convex and F is decreasing, or F ◦ f −1 is concave and F

is increasing, and
(iv) either G ◦ g−1 is convex and G is decreasing, or G ◦ g−1 is concave and G

is increasing,
then

φf ,g(x, y;μ) � φF,G(x, y;μ).

Proof. Suppose G ◦ g−1 is convex. Then the discrete Jensen inequality gives for
X , Y in the domain of G ◦ g−1 that

(G ◦ g−1)(tX + (1 − t)Y) � t((G ◦ g−1)(X) + (1 − t)(G ◦ g−1)(Y).

For X = g(x) and Y = g(y) , this is equivalent to

G{g−1[tg(x) + (1 − t)g(y)]} � tG(x) + (1 − t)G(y).

If G is increasing, we have consequently that

g−1[tg(x) + (1 − t)g(y)] � G−1[tG(x) + (1 − t)G(y)]. (2.1)

Similarly, we can prove that (2.1) holds if G◦g−1 is concave and G is decreasing,
and that the inequality is reversed if either G ◦ g−1 is convex and G is decreasing, or
G ◦ g−1 is concave and G is increasing.

Moreover, by the integral Jensen inequality for a convex function F ◦ f −1 , we
have for H integrable that

(F ◦ f −1)

[∫ 1

0
H(t)dμ(t)

]
�
∫ 1

0
(F ◦ f −1)(H(t))dμ(t),

which for H(t) = f (h(t)) becomes

F

{
f −1

[∫ 1

0
f (h(t))dμ(t)

]}
�
∫ 1

0
F(h(t))dμ(t).

If F is also increasing we get

f −1

[∫ 1

0
f (h(t))dμ(t)

]
� F−1

[∫ 1

0
F(h(t))dμ(t)

]
. (2.2)
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Similarly, we can prove that (2.2) applies if F◦f −1 is concave and F is decreasing,
and that (2.2) is reversed if either F ◦ f −1 is convex and F is decreasing, or F ◦ f −1

is concave and F is increasing. We have that f and f −1 are either both increasing or
both decreasing. Therefore if h1(t) � h2(t) , we have

f −1

[∫ 1

0
f (h1(t))dμ(t)

]
� f −1

[∫ 1

0
f (h2(t))dμ(t)

]
.

Now let x �= y and suppose the conditions for (2.1) and (2.2) are satisfied. Then

φf ,g(x, y;μ) = f −1

{∫ 1

0
f
[
g−1(ug(y) + (1 − u)g(x))

]
dμ(u)

}

� f −1

{∫ 1

0
f [G−1(uG(y) + (1 − u)G(x))]dμ(u)

}

� F−1

{∫ 1

0
F[G−1(uG(y) + (1 − u)G(x))]dμ(u)

}

= φF,G(x, y;μ).

(2.3)

If the conditions apply for the inequalities in (2.1) and (2.2) to be reversed, we have the
reverse inequalities in (2.3) too.

In the special case g(x) = G(x) = x with f and F strictly increasing on (0,∞) ,
this reduces to [2, Theorem 1.3].

3. Inequalities of Hadamard type for g -convex functions

In [13] the following definition was given.

DEFINITION 3.1. Let f be a real–valued function on an interval [a, b] and g a
strictly monotone continuous function on the range of f . We say that f is g –convex
if, for all x and y ∈ [a, b] and λ ∈ [0, 1] ,

f (λx + (1 − λ )y) � g−1[λ (g ◦ f )(x) + (1 − λ )(g ◦ f )(y)].

We say that f is g –concave if the reverse inequality holds.

THEOREM 3.2. Suppose f is defined on [a, b] and let F be a strictly monotone
continuous function defined on the range of f . If f is G–convex, then

F−1

[
1

b − a

∫ b

a
F(f (x))dx

]
� φF,G(f (a), f (b)).
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If f is G–concave then the reverse inequality applies.

Proof. We have for a G–convex function f that

F−1

[
1

b − a

∫ b

a
F(f (x))dx

]
= F−1

[∫ 1

0
F(f (ub + (1 − u)a))du

]

� F−1

[∫ 1

0
F ◦ G−1(uG(f (b)) + (1 − u)G(f (a)))du

]

= φF,G(f (a), f (b)).

The second part follows similarly.

For F(x) = xp and G(x) = xr , this reduces to [13, Theorem 3.1] and for F(x) = x
to a result from [17].

THEOREM 3.3. Suppose f : [a, b] → R is continuous. Let F be a strictlymonotone
continuous function defined on the range of f and w : [a, b] → R an integrable positive
function. If either

(i) f is g -convex, F ◦ g−1 is convex and F is decreasing, or
(ii) f is g -concave, F ◦ g−1 is concave and F is increasing,

then

F−1

{∫ b
a w(x)F(f (x))dx∫ b

a w(x)dx

}
� g−1{α∗(g ◦ f )(b) + (1 − α∗)(g ◦ f )(a)}, (3.1)

where

α(x) =
x − a
b − a

, α∗ =

∫ b
a α(x)w(x)dx∫ b

a w(x)dx
.

The inequality in (3.1) is reversed if either
(iii) f is g -concave, F ◦ g−1 is convex and F is increasing, or
(iv) f is g -concave, F ◦ g−1 is concave and F is decreasing.

Moreover, if either
(v) f is g -convex, F ◦ g−1 is convex and F is increasing, or
(vi) f is g -convex, F ◦ g−1 is concave and F is decreasing,

then

F−1

[∫ b
a w(x)F(f (x))dx∫ b

a w(x)dx

]
� F−1[α∗(F ◦ f )(b) + (1 − α∗)(F ◦ f )(a)]. (3.2)

The inequality in (3.2) is reversed if either
(vii) f is g -concave, F ◦ g−1 is convex and F is decreasing, or
(viii) f is g -concave, F ◦ g−1 is concave and F is increasing.
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Proof. Let f be g -convex (respectively g -concave). We have

F−1

[∫ b
a w(x)F(f (x))dx∫ b

a w(x)dx

]

= F−1

{∫ b
a w(x)F[f (α(x)b + (1 − α(x))a)]dx∫ b

a w(x)dx

}

�
(�)F

−1

{∫ b
a w(x)F[g−1{α(x)(g ◦ f )(b) + (1 − α(x))(g ◦ f )(a)}]dx∫ b

a w(x)dx

}
.

(3.3)
On the other hand, by Jensen’s integral inequality we have that if F ◦ g−1 is convex
(concave) then∫ b

a w(x)F{g−1[α(x)(g ◦ f )(b) + (1 − α(x))(g ◦ f )(a)]}dx∫ b
a w(x)dx

�
(�)F

{
g−1

[∫ b
a w(x)[α(x)(g ◦ f )(b) + (1 − α(x))(g ◦ f )(a)]dx∫ b

a w(x)dx

]}

= F
{
g−1[α∗(g ◦ f )(b) + (1 − α∗)(g ◦ f )(a)]

}
.

(3.4)

From (3.3) and (3.4) we get (3.1) (the reverse inequality).
Moreover, by Jensen’s discrete inequality, if F ◦g−1 is convex (concave), we have

that ∫ b
a w(x)F{g−1[α(x)(g ◦ f )(b) + (1 − α(x))(g ◦ f )(a)]}dx∫ b

a w(x)dx

�
(�)

∫ b
a w(x){α(x)(F ◦ f )(b) + (1 − α(x))(F ◦ f )(a)]}dx∫ b

a w(x)dx

= α∗(F ◦ f )(b) + (1 − α∗)(F ◦ f )(a).

(3.5)

From (3.3) and (3.5) we get (3.2) (its reverse inequality).

Let F(x) = x and suppose w is symmetric on [a, b] , that is,

w(a + t) = w(b − t), 0 � t � 1
2
(b − a).

Then α∗ = 1/2 and we have a result obtained in [14].

DEFINITION 3.4. A positive function f is said to be r –convex on an interval [a, b]
if, for all x, y ∈ [a, b] and λ ∈ [0, 1] ,

f (λx + (1 − λ )y) � mr(f (x), f (y); λ ),

where mr is defined by (1.2).
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COROLLARY 3.5. Let f : [a, b] → R be a positive continuous function and w an
integrable positive function.

(a) If f is r -convex and � = max{r, p} , then[∫ b
a w(x)(f (x))pdx∫ b

a w(x)

]1/p

� m�(f (b), f (a); λ ).

(b) If f is r -concave and � = min{r, p} , then the inequality is reversed.

For p = 1 and r = 0 , that is, when f is a log-convex function, we have

[f (b)]λ [f (a)]1−λ �
∫ b

a w(x)f (x)dx∫ b
a w(x)dx

� λ f (b) + (1 − λ )f (a).

(see Fink [4] and Pečarić and Čuljak [14]). For some related results see also [3], [5], [8],
[12].

4. Multidimensional functional Stolarsky–Tobey means

DEFINITION 4.1. Let En−1 ⊂ Rn−1 represent the simplex

En−1 =

⎧⎨
⎩(u1, . . . , un−1) : ui � 0 (1 � i � n − 1),

n−1∑
j=1

uj � 1

⎫⎬
⎭

and set un = 1 −
n−1∑
j=1

uj . With u = (u1, . . . , un) , let μ(u) be a probability measure on

En−1 .
For u ∈ En−1 , r ∈ R and x = (x1, . . . , xn) ∈ Rn

+ , the power mean of order r of
x1, . . . , xn is defined by

mr(x; u) :=

{ (∑n
i=1 uixr

i

)1/r
, if r �= 0,∏n

i=1 xui
i , if r = 0.

The integral power mean Mt of order t ∈ R of a positive function f on En−1

with probability measure μ is defined by

Mt(f ;μ) :=

⎧⎪⎨
⎪⎩
[∫

En−1
{f (u)}t dμ(u)

]1/t
, if t �= 0,

exp
[∫

En−1
ln(f (u))dμ(u)

]
, if t = 0,

assuming that the expressions involved are well–defined (see [6, Ch. 3]).
Let x = (x1, . . . , xn) ∈ Rn

+ and r, t ∈ R . Tobey [19] has studied the two–
parameter homogeneous mean

Lr,t(x;μ) := Mt(mr(x; ·);μ)
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of x1, . . . , xn .
Now let I be a real interval and xi ∈ I (1 � i � n) and suppose f , g are two

strictly monotone continuous functions on I . We say that φf ,g(x;μ) is a functional
Stolarsky–Tobey mean if

φf ,g(x;μ) = f −1

{∫
En−1

f

[
g−1

(
n∑

i=1

uig(xi)

)]
dμ(u)

}
,

where x = (x1, x2, . . . , xn) .

Special cases of the above means are .given in [2], [9], [15], [17]. For example, for
g(x) := x we have a functional mean considered in [2]. Tobey’s homogeneous mean is
subsumed under f (y) = yt , g(y) = yr and I = R .

The proof of the following theorem follows closely that of Theorem 2.2.

THEOREM 4.2. If
(i) either F ◦ f −1 is convex and F is increasing, or F ◦ f −1 is concave and F

is decreasing, and
(ii) either G ◦ g−1 is convex and G is increasing, or G ◦ g−1 is concave and G

is decreasing,
then

φf ,g(x;μ) � φF,G(x;μ).

If
(iii) either F ◦ f −1 is convex and F is decreasing, or F ◦ f −1 is concave and F

is increasing, and
(iv) either G ◦ g−1 is convex and G is decreasing, or G ◦ g−1 is concave and G

is increasing,
then

φf ,g(x;μ) � φF,G(x;μ).

Denote by

wi =
∫

En−1

uidμ(u)

the i -th weight associated with the probability measure μ on En−1 . Then wi > 0
(1 � i � n) and w1 + · · · + wn = 1 .

We have

φf ,f (x;μ) = f −1

{
n∑

i=1

wif (xi)

}
,

which is just the quasiarithmetic mean of the numbers {xi} with weights {wi} for the
function f .

THEOREM 4.3. If either
(i) f ◦ g−1 is convex and f is increasing, or
(ii) f ◦ g−1 is concave and f is decreasing,

then
φg,g(x;μ) � φf ,g(x;μ) � φf ,f (x;μ). (4.1)
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If either
(iii) f ◦ g−1 is convex and f is decreasing, or
(iv) f ◦ g−1 is concave and f is increasing,

then the inequality is reversed.

Proof. By Jensen’s integral inequality we have that if f ◦ g−1 is convex,

∫
En−1

f

[
g−1

(
n∑

i=1

uig(xi)

)]
dμ(u) � f

{
g−1

[∫
En−1

(
n∑

i=1

uig(xi)

)
dμ(u)

]}

= f

{
g−1

[
n∑

i=1

wig(xi)

]}

= f (φg,g(x;μ)).
(4.2)

By Jensen’s discrete inequality we have that if f ◦ g−1 is convex, then

∫
En−1

f

[
g−1

(
n∑

i=1

uig(xi)

)]
dμ(u) �

∫
En−1

n∑
i=1

uif (xi)dμ(u)

=
n∑

i=1

wif (xi)

= f (φf ,f (x;μ)).

(4.3)

If f is increasing, (4.1) now follows from (4.2) and (4.3). The other cases are
derived similarly.

Our next theorem considers unweighted functional Stolarsky–Tobey means, when
μ reduces to Lebesgue measure

dμ(u) = (n − 1)!du1 . . . dun−1 = (n − 1)!du.

An easy calculation gives ∫
En−1

du1 . . . dun−1 =
1

(n − 1)!

and

wi =
∫

En−1

uidμ(u) =
1
n
.

We write φf ,g(x) for φf ,g(x,μ) in this case.

THEOREM 4.4. Suppose xi �= xj for i �= j and let H(t) be such that H(n−1) =
f ◦ g−1. Then

φf ,g(x) = f −1

[
(n − 1)!

n∑
i=1

(H ◦ g)(xi)∏
j∈A(i)(g(xi) − g(xj))

]
,
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where A(i) := {1, 2, . . . , n} \ {i} .

Proof. We use the well–known relation

[t1, . . . , tn]f =
n∑

i=1

f (ti)∏
j∈A(i)(ti − tj)

=
∫

En−1

f (n−1)

(
n∑

i=1

uiti

)
du,

where [t1, . . . , tn]f stands for the divided differences of order n − 1 of t with knots at
t1, . . . , tn and t ∈ Cn−1(a, b) , a = min(ti) , b = max(ti) , 1 � i � n . So we have

φf ,g(x) = f −1

{
(n − 1)!

∫
En−1

(f ◦ g−1)

(
n∑

i=1

uig(xi)

)
du

}

= f −1

{
(n − 1)!

∫
En−1

H(n−1)

(
n∑

i=1

uig(xi)

)
du

}
,

whence the desired result.

The above gives as special cases results obtained in [9], [15], [17].
Theorems 4.3 and 4.4 give the following.

COROLLARY 4.5. If either (i) or (ii) of Theorem 4.3 holds and H is as in
Theorem 4.4, then

g

(
1
n

n∑
i=1

g(xi)

)
� f −1

[
(n − 1)!

n∑
i=1

(H ◦ g)(xi)∏
j∈A(i)(g(xi) − g(xj))

]

� f −1

(
1
n

n∑
i=1

f (xi)

)
.

If either (i) or (ii) from Theorem 4.3 applies, then the inequalities are reversed.
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