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FUNCTIONAL STOLARSKY MEANS

C. E. M. PEARCE, J. PECARIC AND V. SIMIC

Abstract. A functional generalization is given for Stolarsky mean and its basic properties inves-
tigated. Functional means in n variables are also considered.

1. Introduction

As a response to the needs of diverse applications, a considerable variety of partic-
ular means of sets of numbers have been proposed and studied in the literature. See, for
example, the compendious treatment of Bullen, Mitrinovi¢ and Vasic¢ [1]. Valuable work
has been done in systematizing and unifying this area via the judicious introduction of
parameters.

A helpful paradigm is due to Stolarsky [18]. See also Tobey [19]. The Stolarsky
mean E,(x,y) of two positive numbers x and y is given by E,(x,x) = x when the
numbers coincide and otherwise by

rysixv 1/(s=r)

{— } ,r#£s, rs#0

sy —x"

1 ro__ 1/r

{_u} r£0,5=0

E(x,y) = rlny—lnx( ) (1.1)

N\ ="
x*

el e ,s=r#0
y

/Xy s r=s5=0.

For various choices of the parameters r, s, this subsumes a number of commonly
employed means as special cases. Apart from direct application, it has theoretical
interest. Thus there is a comparison theorem prescribing for which pairs (r,s), (u,v)
the inequality E, (x,y) < E,,(x,y) holds for all x # y (see Leach and Sholander
[7] and Péles [10, 11]). A trivial special case is the familiar inequality between the
geometric and arithmetic means of a pair of distinct positive numbers.
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An interesting representation has been found [13] linking the Stolarsky mean with
power means and integral means. The power mean m,(x,y; ) of order r and weights
t and 1 —¢ (for 7 € [0, 1] ) of positive numbers x, y is defined by

(o + (L= 1)) if r £ 0,

mp(x,y;t) = 1.2
(1) {x’yl_’ , if r=0, (1.2)

while the integral mean over [0, 1] of a positive function f is
1/r
or@yal ™ itr£o,

Mr(f) =
exp ( Jn f(t)dt) L ifr=0.

It can be verified readily that
Er,s ()C, y) = Ms—r(mr)7

where m, (1) := m,(x,y;1).

This suggests that a natural way to generalize the Stolarsky mean is to replace
the role of a power mean in this relation by a quasiarithmetic mean. In this paper
we develop such a generalization, which is seen to subsume and unify some recently
proposed functional means.

In Section 2 we define a general class of weighted functional Stolarsky means and
establish a basic comparison theorem. In Section 3 we generalize some Hadamard—type
results from [13] for r—convex functions. We conclude in Section 4 by addressing
multidimensional generalizations.

2. Functional Stolarsky means

DEFINITION 2.1. Let g(-) be strictly monotone and continuous function on an
interval 7, and let f be strictly monotone and continuous on the range of g~!. Suppose
W is a probability measure on [0, 1]. Then the weighted functional Stolarsky mean of
two real numbers x, y € I is given by

Oro(x, i) =f " {/0 I lg  (ug(y) + (1 — u)g(x))] du(u)}~

We have trivially that ¢ ,(x,x;u) = x. Our definition subsumes a number of
means extant in the literature. Thus for g(x) := x, f : (0,00) — R, we have a
functional mean considered in [2]. If u(u) := u, we suppress u from the notation
for ¢ and write ¢ .(x,y). For f(x) = x*~" and g(x) = x", ¢y 4(x,y) reduces to the
classical Stolarsky mean E,(x,y) givenby (1.1).

For x # y, set t = u[g(y) — g(x)] + g(x) . Under this change of variable we derive

¢f,g(x7y) :f71
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For f (x) := x, this reduces to the mean considered in [17].
The general functional Stolarsky mean admits the following comparison theorem.

THEOREM 2.2. Suppose f, g satisfy the conditions of Definition 2.1 and similarly
for F,G. If
(i) Fof~! is convex and F is increasing, or F of~' is concave and F is
decreasing, and
(ii) either Gog~" is convex and G is increasing, or Go g~
is decreasing,

Uis concave and G

then
o (x, v 1) < OrG(x, y; ).
If
(iii) either F o f~' is convex and F is decreasing, or Fof ! is concave and F
is increasing, and
(iv) either Go g~ is convex and G is decreasing, or Go g~
is increasing,

Uis concave and G

then

O g (X, v 1) = rG(x,y; ).

Proof. Suppose G o g~! is convex. Then the discrete Jensen inequality gives for

X, Y in the domain of G o g~! that
(Gog X +(1-0Y) <t((Gog™)(X) + (1 =1)(Gog™")(Y).
For X = g(x) and Y = g(y), this is equivalent to
G{g™'[rg(x) + (1 = )g()]} < 1G(x) + (1 = )G().
If G is increasing, we have consequently that

g '[1g(x) + (1 = )g(»)] < G [1G(x) + (1 = G()]. (2.1)

Similarly, we can prove that (2.1) holds if Gog™! is concave and G is decreasing,

and that the inequality is reversed if either G o g~! is convex and G is decreasing, or
Go g~ is concave and G is increasing.

Moreover, by the integral Jensen inequality for a convex function F o f~!, we
have for H integrable that

(Fof™! l/ H(t)du (1) ] / (Fof ~V)(H()du(),

which for H(¢) = f (h(¢)) becomes

F{f‘l VO f(h(t))du(t)l } </0 F(h(1))du(7)-

If F is also increasing we get

1
- [ / £ ((e))du(r)
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Similarly, we can prove that (2.2) appliesif Fof ~! isconcaveand F is decreasing,
and that (2.2) is reversed if either F of ~! is convex and F is decreasing, or F o f !
is concave and F is increasing. We have that f and f ~! are either both increasing or
both decreasing. Therefore if /i (¢) < hy(z), we have

! 1
ft [/0 f(hl(t))dﬂ(t)] <f! [/O f(hz(t))d‘u(t)] )

Now let x # y and suppose the conditions for (2.1) and (2.2) are satisfied. Then

1
Frg(x,ysp) =f " {/0 I g7 (ug(y) + (1 — u)g(x))] du(u)}

1
< { | #1676 + (- u>G<x>>1du<u>} (23)

<F! { / FIG™ (uG(y) + (1 - u)G(x))]dmm}

0

= Orc(x,y; ).

If the conditions apply for the inequalities in (2.1) and (2.2) to be reversed, we have the
reverse inequalities in (2.3) too. o

In the special case g(x) = G(x) = x with f and F strictly increasing on (0, 00),
this reduces to [2, Theorem 1.3].

3. Inequalities of Hadamard type for g-convex functions

In [13] the following definition was given.

DEFINITION 3.1.  Let f be a real-valued function on an interval [a,b] and g a
strictly monotone continuous function on the range of f . We say that f is g—convex
if, forall x and y € [a,b] and A € [0,1],

FAx+ (1 =2)y) <g ' Algof)(x) + (1 =A)(gof))].
We say that f is g—concave if the reverse inequality holds.

THEOREM 3.2. Suppose f is defined on [a,b] and let F be a strictly monotone
continuous function defined on the range of f . If f is G—convex, then

1
b—a

F*l

b
/ F(f(x))dx] < 0ro(f (a).f (b).
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If f is G—concave then the reverse inequality applies.

Proof. We have for a G—convex function f that

b 1
F! bia /u F(f (x))dx| = F~! /o F(f (ub+ (1 — u)a))du]
1
<rt| [ FoaTwGy ) + (1 u)G(f(a)))du]
= 0rc(f (a).f (b))
The second part follows similarly. ]

For F(x) = x” and G(x) = x", this reduces to [13, Theorem 3.1] and for F(x) = x
to a result from [17].

THEOREM 3.3. Suppose f : [a, b] — R iscontinuous. Let F be a strictly monotone
continuous function defined on the range of f and w : [a, b] — R an integrable positive
function. If either

(i) f is g-convex, Fog~

(ii) f is g-concave, Fog~

Ujs convex and F is decreasing, or

L js concave and F is increasing,

then
b
! {fu W(f)FW))dx} <M (gof)B) + (1- a)gof)@), ()
[, w(x)dx
where
_Xx—a . fab a(x)w(x)dx
o= &S 17 w(x)dx

The inequality in (3.1) is reversed if either
(iti) f is g-concave, Fog™!
(iv) f is g-concave, Fog™!
Moreover, if either

is convex and F is increasing, or
is concave and F is decreasing.

1
1

(v) f is g-convex, Fog~
(vi) f is g-convex, Fog~
then

- lj;”wu)F(f(x))dx
fab w(x)dx

is convex and F is increasing, or
is concave and F is decreasing,

1 SF o (Fof)(b) + (1 — o) (Fof)(a).  (32)

The inequality in (3.2) is reversed if either
1

1

(vii) f is g-concave, Fo g~
(viii) f is g-concave, Fog~

is convex and F is decreasing, or
is concave and F is increasing.



484 C. E. M. PEARCE, J. PECARIC AND V. SIMI¢

Proof. Let f be g-convex (respectively g-concave). We have

Fqlﬁwmnﬂ@mﬂ

fab w(x)dx
_ { S wO)FIF ()b + (1 — a(x»a)]dx}
S wix)dx
< {wa(x)F[g_l{a(x)(g of )(b) + (1 — a(x)) (g o )(@)}Jx
(2) fab w(x)dx

(3.3)
On the other hand, by Jensen’s integral inequality we have that if F o g~! is convex
(concave) then

i w@)F{g ™ [a(x)(g of )(B) + (1 — a(x))(g o f ) (a)] }dx
f w(x)dx
> g {gl Vu w(x)[a(x)(g o f)(b) + (1 — a(x))(g of)(a)]dxu (3.4)
(<) fab w(x)dx
=F{g7'[o"(gof )(b) + (1 — o")(g of )(@)]} .

From (3.3) and (3.4) we get (3.1) (the reverse inequality).
Moreover, by Jensen’s discrete inequality, if F o g_l is convex (concave), we have

that
Jiw)F{g " a(x)(g of )(b) + (1 — a(x))(g o f )(a)]}dx
fab w(x)dx
< Jv@{a@FEof)®) + (1 —a@)(Fof)@hdr ()
(=) j;b w(x)dx
=" (Fof)(b) + (1 —a")(Fof)(a).
From (3.3) and (3.5) we get (3.2) (its reverse inequality). m
Let F(x) = x and suppose w is symmetric on [a, b], that is,
wla+t)=wb—1), 0<r< %(b—a).

Then o* = 1/2 and we have a result obtained in [14].

DEFINITION 3.4. A positive function f is said to be r—convex on an interval [a, b]
if, for all x,y € [a,b] and A € [0, 1],

fAx+ (1= 2)y) <m(f(x).f (y);4),
where m, is defined by (1.2).
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COROLLARY 3.5. Let f : [a,b] — R be a positive continuous function and w an
integrable positive function.
(a) If f is r-convex and ¢ = max{r,p}, then

lf: W(X)(f(X))”dX] r
S wix)

(b) If f is r-concave and ¢ = min{r,p}, then the inequality is reversed.

<my(f (b),f (@); 4).

For p =1 and r = 0, that is, when f is a log-convex function, we have

b
fa w(x)f (x)dx <

[F eI (@) < [T Af (b) + (1 = A)f (a).

(see Fink [4] and Pecari¢ and Culjak [14]). For some related results see also [3], [5], [8],
[12].

4. Multidimensional functional Stolarsky—Tobey means

DEFINITION 4.1. Let E,_; C R*! represent the simplex

n—1
Enfl: (u17"'auﬂ*1):ui>0(1<i<n71)aZujgl
J=1

n—1
and set u, =1 — > u;. With w = (uy,...,u,), let u(u) be a probability measure on
j=1
E,_.
Forue E,_;, r € R and x = (x1,...,x,) € R, the power mean of order r of

X1, ...,%x, is defined by

n 1/r .
i i : ) f ’
my(x;u) == (Zn,:ﬂx,) ifr#0
[T %" , ifr=0.

i

The integral power mean M, of order + € R of a positive function f on E,
with probability measure u is defined by

[ @y ] e £0
exp [fE,H ln(f(u))du(u)} , ift =0,

assuming that the expressions involved are well-defined (see [6, Ch. 3]).
Let x = (x1,...,x,) € R% and r,r € R. Tobey [19] has studied the two—
parameter homogeneous mean

Lyy(X; ) 1= M (m,(x;-); 1)

Mi(fiu) ==
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of x1,...,x,.

Now let I be a real interval and x; € I (1 < i < n) and suppose f, g are two
strictly monotone continuous functions on /. We say that ¢ (x;u) is a functional
Stolarsky—Tobey mean if

Groxip) =f"" {/E f [gl (Zuig(xi)ﬂ du(U)},

where X = (x1,%2,...,X,) .

Special cases of the above means are .given in [2], [9], [15], [17]. For example, for
g(x) := x we have a functional mean considered in [2]. Tobey’s homogeneous mean is
subsumed under f (y) =", g(y) =y" and I = R.

The proof of the following theorem follows closely that of Theorem 2.2.

THEOREM 4.2. If

(i) either Fof~! is convex and F is increasing, or F o f ! is concave and F
is decreasing, and

(ii) either Gog~" is convex and G is increasing, or Go g~
is decreasing,

Uis concave and G

then
O (X; 1) < OrG(X; 1).
If
(iii) either Fof~! is convex and F is decreasing, or F o f~! is concave and F
is increasing, and

(iv) either Go g~ is convex and G is decreasing, or Go g~
is increasing,

Uis concave and G

then
B o (Xs 1) = OpG(xs ).

w; = /E udu(u)

n—1

Denote by

the i-th weight associated with the probability measure ¢ on E,_;. Then w; > 0
(I<ig<n)andwi+---+w,=1.

We have
Orp(xsp) =/ {Zwlf(xi)} ;
i=1
which is just the quasiarithmetic mean of the numbers {x;} with weights {w;} for the
function f .

THEOREM 4.3. If either

(i) fog ! isconvexand f isincreasing, or

(i) f og~!isconcave and f is decreasing,
then

Do (X5 10) < P o(xsu) < Gy (X5 10). (4.1)
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If either
(iii) f og~! is convexand f is decreasing, or
(iv) f og~!isconcave and f is increasing,
then the inequality is reversed.

Proof. By Jensen’s integral inequality we have that if f o g~! is convex,

/Enlf [g_l (; uig(xi)ﬂ du(u) > f {g_l UE,H (Z Mig(xi)> dﬂ(“)] }

i=1

o o]

= (9es(x: 1))
By Jensen’s discrete inequality we have that if f o g~! is convex, then

-1 g i8 (x; S uif (x;
/Enlf |fg (Zulg( t))] du(u) </13 Z if (xi)du ()

i=1 n—1 j=1

=D wif (%)
i=1
= (¢ (x;10)).

If f is increasing, (4.1) now follows from (4.2) and (4.3). The other cases are
derived similarly. ]

Our next theorem considers unweighted functional Stolarsky—Tobey means, when
u reduces to Lebesgue measure

du(a) = (n—1)ldu; ...du,—1 = (n— 1)\du.

An easy calculation gives

and

1
wi = /E udp(u) = -

n—1

We write ¢ o(x) for ¢y o(x, 1) in this case.

THEOREM 4.4. Suppose x; # x; for i # j and let H(t) be such that H= =
fog™\. Then

Ore(x) =f"" l(" -y
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where A(Q) :={1,2,...,n}\ {i}.

Proof. We use the well-known relation

- f(ti) / (n—1) -
hoonf =S =Wy wt; | du,
[ y Z [Liea i — 1) Ep_, ;

i=1

where [f1,...,1,|f stands for the divided differences of order n — 1 of ¢ with knots at
t,...,t, and t € C""Y(a,b), a = min(t;), b = max(t;), 1 <i < n. So we have

o= =1 [ (Fog™) | D ms) | w

Eyy
=f! m——n{/ HOD S “wig(x) | dup
En— i=1

whence the desired result. O

The above gives as special cases results obtained in [9], [15], [17].
Theorems 4.3 and 4.4 give the following.

COROLLARY 4.5. If either (i) or (ii) of Theorem 4.3 holds and H is as in
Theorem 4.4, then

n

I <t (H o g)(x)
g 280 | <F =D e )

<! %Zf(xi)
i=1

If either (i) or (ii) from Theorem 4.3 applies, then the inequalities are reversed.
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