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AN OSTROWSKI TYPE INEQUALITY FOR A

RANDOM VARIABLE WHOSE PROBABILITY

DENSITY FUNCTION BELONGS TO Lp [a, b] , p > 1

S. S. DRAGOMIR, N. S. BARNETT AND S. WANG

(communicated by B. Mond)

Abstract. An inequality of Ostrowski’s type for a random variable whose probability density
function is in Lp [a, b] , p > 1, in terms of the cumulative distribution function and expectation
is given. An application for a Beta random variable is also given.

1. Introduction

The following theorem contains the integral inequality which is known in the
literature as Ostrowski’s inequality [1, p. 469]:

THEOREM 1.1. Let f : I ⊆ R → R be a differentiable mapping in
◦
I (

◦
I is the

interior of I ), and let a, b ∈ ◦
I with a < b. If f ′ : (a, b) → R is bounded on (a, b) ,

i.e., ‖f ′‖∞ := sup
t∈(a,b)

|f ′ (t)| < ∞, then we have

∣∣∣∣∣∣f (x) − 1
b − a

b∫
a

f (t) dt

∣∣∣∣∣∣ �
[

1
4

+

(
x − a+b

2

)2

(b − a)2

]
(b − a) ‖f ′‖∞(1.1)

for all x ∈ [a, b] .
The constant 1

4 is sharp in the sense that it can not be replaced by a smaller one.

In [2], S.S Dragomir and S. Wang applied Ostrowski’s inequality in Numerical
Analysis obtaining an estimation of the error bound for the quadrature rules of Riemann
type in terms of the infinity norm. Application for special means: logarithmic mean,
identric mean, p− logarithmic mean etc... were also given.

In [3], N.S. Barnett and S.S. Dragomir established the following version of
Ostrowski’s inequality for cumulative distribution functions
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THEOREM 1.2. Let X be a random variable with the probability density function
f : [a, b] ⊂ R → R+ and with cumulative distribution function F (x) = Pr (X � x) . If
f ∈ L∞ [a, b] and ‖f ‖∞ := sup

t∈(a,b)
f (t) < ∞, then

∣∣∣∣Pr (X � x) − b − E (X)
b − a

∣∣∣∣ �
[

1
4

+

(
x − a+b

2

)2

(b − a)2

]
(b − a) ‖f ‖∞(1.2)

for all x ∈ [a, b] .
The constant 1

4 in (1.2) is sharp.

The main aim of this paper is to give an Ostrowski type inequality for a random
variable whose probability density functions are in Lp [a, b] (p > 1) . An application
for a Beta Random Variable is also given.

2. An Ostrowski type inequality

The following theorem holds

THEOREM 2.1. Let X be a random variable with the probability density function
f : [a, b] ⊂ R → R+ and with cumulative distribution function F (x) = Pr (X � x) . If
f ∈ Lp [a, b] , p > 1, then we have the inequality:∣∣∣∣Pr (X � x) − b − E (X)

b − a

∣∣∣∣(2.1)

� q
q + 1

‖f ‖p (b − a)
1
q

[(
x − a
b − a

) 1+q
q

+
(

b − x
b − a

) 1+q
q

]

� q
q + 1

‖f ‖p (b − a)
1
q

for all x ∈ [a, b] , where 1
p + 1

q = 1 .

Proof. By Hölder’s integral inequality we have

|F (x) − F (y)| =

∣∣∣∣∣∣
y∫

x

f (t) dt

∣∣∣∣∣∣(2.2)

�

∣∣∣∣∣∣
y∫

x

dt

∣∣∣∣∣∣
1
q
∣∣∣∣∣∣

y∫
x

|f (t)|p dt

∣∣∣∣∣∣
1
p

� |x − y| 1
q ‖f ‖p

for all x, y ∈ [a, b] , where p > 1, 1
p + 1

q = 1 and

‖f ‖p :=

⎛
⎝ b∫

a

|f (t)|p dt

⎞
⎠

1
p
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is the usual p−norm on Lp [a, b] .
The inequality (2.2) shows in fact that the mapping F (·) is of r − H−Hölder

type, i.e.,

|F (x) − F (y)| � H |x − y|r , (∀) x, y ∈ [a, b](2.3)

with 0 < H = ‖f ‖p and r = 1
q ∈ (0, 1) .

Integrating the inequality (2.2) over y ∈ [a, b] we get successively

∣∣∣∣∣∣F (x) − 1
b − a

b∫
a

F (y) dy

∣∣∣∣∣∣(2.4)

� 1
b − a

b∫
a

|F (x) − F (y)| dy � 1
b − a

‖f ‖p

b∫
a

|x − y| 1
q dy

=
1

b − a
‖f ‖p

⎡
⎣ x∫

a

(x − y)
1
q dy +

b∫
x

(y − x)
1
q dy

⎤
⎦

=
1

b − a
‖f ‖p

[
(x − a)

1
q +1

1
q + 1

+
(b − x)

1
q +1

1
q + 1

]

=
q

q + 1
· 1
b − a

‖f ‖p

[
(x − a)

1
q +1 + (b − x)

1
q +1

]

=
q

q + 1
‖f ‖p (b − a)

1
q

[(
x − a
b − a

) 1
q +1

+
(

b − x
b − a

) 1
q +1

]

for all x ∈ [a, b] .
It is well known that

E (X) = b −
b∫

a

F (t) dt

then, by (2.4) , we get the first inequality in (2.1) .

For the second inequality, we observe that

(
x − a
b − a

) 1
q +1

+
(

b − x
b − a

) 1
q +1

� 1, (∀) x ∈ [a, b]

and the theorem is completely proved. �

REMARK 2.1. The inequality (2.1) is equivalent to∣∣∣∣Pr (X � x) − E (X) − a
b − a

∣∣∣∣(2.5)
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� q
q + 1

‖f ‖p (b − a)
1
q

[(
x − a
b − a

) 1+q
q

+
(

b − x
b − a

) 1+q
q

]

� q
q + 1

‖f ‖p (b − a)
1
q , (∀) x ∈ [a, b] .

COROLLARY 2.2. Under the above assumptions, we have the double inequality

b − q
q + 1

‖f ‖p (b − a)1+ 1
q � E (X) � a +

q
q + 1

‖f ‖p (b − a)
1
q +1(2.6)

Proof. We know that a � E (X) � b.
Now, choose in (2.1) x = a to get∣∣∣∣b − E (X)

b − a

∣∣∣∣ � q
q + 1

‖f ‖p (b − a)
1
q

i.e.,
b − E (X) � q

q + 1
‖f ‖p (b − a)1+ 1

q

which is equivalent to the first inequality in (2.6) .
Also, choosing x = b in (2.1) , we get∣∣∣∣1 − b − E (X)

b − a

∣∣∣∣ � q
q + 1

‖f ‖p (b − a)
1
q

i.e.,
E (X) − a � q

q + 1
‖f ‖p (b − a)

1
q +1

which is equivalent to the second inequality in (2.6) . �

REMARK 2.2. We know that by Hölder’s integral inequality

1 =

b∫
a

f (t) dt � (b − a)
1
q ‖f ‖p

which gives

‖f ‖p � 1

(b − a)
1
q
.

Now, if we assume that ‖f ‖p is not too large, i.e.,

‖f ‖p � q + 1
q

· 1

(b − a)
1
q

(2.7)

then we get

a +
q

q + 1
‖f ‖p (b − a)

1
q +1 � b

and
b − q

q + 1
‖f ‖p (b − a)1+ 1

q � a

which shows that the inequality (2.6) is a tighter inequality than a � E (X) � b when
(2.7) holds.
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Another equivalent inequality to (2.6) which can be more useful in practice is the
following one:

COROLLARY 2.3. With the above assumptions, we have the inequality:∣∣∣∣E (X) − a + b
2

∣∣∣∣ � (b − a)
[

q
q + 1

‖f ‖p (b − a)
1
q − 1

2

]
(2.8)

Proof. From the inequality (2.6) we have:

b − a + b
2

− q
q + 1

‖f ‖p (b − a)1+ 1
q � E (X) − a + b

2

� a − a + b
2

+
q

q + 1
‖f ‖p (b − a)1+ 1

q

i.e.,

b − a
2

− q
q + 1

‖f ‖p (b − a)1+ 1
q � E (X) − a + b

2

� −b − a
2

+
q

q + 1
‖f ‖p (b − a)1+ 1

q

which is equivalent to∣∣∣∣E (X) − a + b
2

∣∣∣∣ � q
q + 1

‖f ‖p (b − a)1+ 1
q − b − a

2

= (b − a)
[

q
q + 1

‖f ‖p (b − a)
1
q − 1

2

]

and the inequality (2.8) is proved. �

This Corollary provides the possibility of finding a sufficient condition in terms of
‖f ‖p (p > 1) for the expectation E (X) to be close to the mean value a+b

2 .

COROLLARY 2.4. Let X and f be as above and ε > 0. If

‖f ‖p � q + 1
2q

· 1

(b − a)
1
q

+
ε (q + 1)

q (b − a)1+ 1
q

then ∣∣∣∣E (X) − a + b
2

∣∣∣∣ � ε.

The proof is similar, and we omit the details.
The following corollary of Theorem 2.1 also holds:

COROLLARY 2.5. Let X and f be as above. Then we have the inequality:∣∣∣∣Pr

(
X � a + b

2

)
− 1

2

∣∣∣∣ � q

2
1
q (q + 1)

‖f ‖p (b − a)
1
q +

1
b − a

∣∣∣∣E (X) − a + b
2

∣∣∣∣ .



506 S. S. DRAGOMIR, N. S. BARNETT AND S. WANG

Proof. If we choose in (2.1) x = a+b
2 , we get

∣∣∣∣Pr

(
X � a + b

2

)
− b − E (X)

b − a

∣∣∣∣ � q

2
1
q (q + 1)

‖f ‖p (b − a)
1
q

which is clearly equivalent to:∣∣∣∣Pr

(
X � a + b

2

)
− 1

2
+

1
b − a

(
E (X) − a + b

2

)∣∣∣∣ � q

2
1
q (q + 1)

‖f ‖p (b − a)
1
q .

Now, using the triangle inequality, we get∣∣∣∣Pr

(
X � a + b

2

)
− 1

2

∣∣∣∣
=

∣∣∣∣Pr

(
X � a + b

2

)
− 1

2
+

1
b − a

(
E (X) − a + b

2

)
− 1

b − a

(
E (X) − a + b

2

)∣∣∣∣
�

∣∣∣∣Pr

(
X � a + b

2

)
− 1

2
+

1
b − a

(
E (X) − a + b

2

)∣∣∣∣ +
1

b − a

∣∣∣∣E (X) − a + b
2

∣∣∣∣
� q

2
1
q (q + 1)

‖f ‖p (b − a)
1
q + +

1
b − a

∣∣∣∣E (X) − a + b
2

∣∣∣∣
and the corollary is proved. �

Finally, the following result also holds:

COROLLARY 2.6. With the above assumptions, we have:∣∣∣∣E (X) − a + b
2

∣∣∣∣
� q

2
1
q (q + 1)

‖f ‖p (b − a)1+ 1
q + (b − a)

∣∣∣∣Pr

(
X � a + b

2

)
− 1

2

∣∣∣∣ .
The proof is similar and we omit the details.

3. Applications for a beta random variable

A Beta Random Variable X with parameters (s, t) ∈ Ω has the probability density
function

f (x; s, t) :=
xs−1 (1 − x)t−1

B (s, t)
; 0 < x < 1

where

Ω := {(s, t) : s, t > 0}
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and

B (s, t) :=

1∫
0

τs−1 (1 − τ)t−1 dτ.

We observe that, for p > 1,

‖f (·; s, t)‖p =
1

B (s, t)

⎛
⎝ 1∫

0

τp(s−1) (1 − τ)p(t−1) dτ

⎞
⎠

1
p

=
1

B (s, t)

⎛
⎝ 1∫

0

τp(s−1)+1−1 (1 − τ)p(t−1)+1−1 dτ

⎞
⎠

1
p

=
1

B (s, t)
[B (p (s − 1) + 1, p (t − 1) + 1)]

1
p

provided

p (s − 1) + 1, p (t − 1) + 1 > 0

i.e.,

s > 1 − 1
p

and t > 1 − 1
p
.

Now, using Theorem 2.1, we can state the following proposition:

PROPOSITION 3.1. Let p > 1 and X be aBeta randomvariablewith the parameters
(s, t) , s > 1 − 1

p , t > 1 − 1
p . Then we have the inequality:

∣∣∣∣Pr (X � x) − t
s + t

∣∣∣∣(3.1)

� q
q + 1

[
x

1+q
q + (1 − x)

1+q
q

]
[B (p (s − 1) + 1, p (t − 1) + 1)]

1
p

B (s, t)

for all x ∈ [0, 1] .
Particularly, we have

∣∣∣∣Pr

(
X � 1

2

)
− t

s + t

∣∣∣∣ � q

2
1
q (q + 1)

[B (p (s − 1) + 1, p (t − 1) + 1)]
1
p

B (s, t)
.

The proof follows by Theorem 2.1 choosing f (x) = f (x; s, t) , x ∈ [0, 1] and
taking into account that E (X) = s

s+t .
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