
Mathematical
Inequalities

& Applications
Volume 2, Number 4 (1999), 509–516

ON THE FACTORIZATION OF INEQUALITIES

L. LEINDLER

(communicated by R. Mohapatra)

Abstract. We generalize two theorems pertaining to the factorization of inequalities of infinite
numerical series.

1. Introduction

G. Bennett [1] presented several very interesting results concerning the problem
of factorization of inequalities. In [1] we can read the motivation of this problem, the
precise definition of the factorization of inequalities and an account of its benefits. I do
believe that the best way to get acquainted with this interesting research field is to read
Bennett’s work.

In some recent papers we also studied such problems.
The aim of the present paper is to prove some further theorems of this type.
In order to recall some results to be generalized here we have to recollect some

notations and notions.
Let x := {xn} denote an arbitrary sequence of real (or complex) numbers. Let

λ := {λn} be a sequence of nonnegative terms having infinitely many positive ones.
We shall use the following notations:

Λn :=
∞∑
k=n

λk,

(whenever Λn appears it also signals that Λ1 < ∞, except if the contrary is explicitly
stated)

Hn :=
{

1, if 1 � n < n0,

1 +
∑n

k=1 λk, if n � n0,

where n0 is the smallest natural number satisfying λn0 > 0 .
Given p, q > 0 , we shall write ϕ ∈ Φ(p) if ϕ is a nonnegative increasing

function on [0,∞) , ϕ(0) = 0 , ϕ(x)x−p is nonincreasing, and ϕ ∈ Ψ(q) will denote
if ϕ(x)x−q is nondecreasing.
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Furthermore we agree that the constants K , Ki to be appearing in inequalities
may vary from occurance to occurance, and they are positive. If we wish to express the
dependence explicitly, we write K in the form K(α, . . .) .

A summation sign
∑

in which the limits of the summation are omitted will denote
summation from 1 to ∞ .

We define for p > 1 and c � 0 the following sets:

�p :=
{

x :
∑

|xn|p < ∞
}
,

(1.1) h(p, c,Λ) :=
{

x :
∑

λnΛ−c
n

( n∑
k=1

|xk|
)p

< ∞
}
,

(1.2) H(p, c,Λ) :=
{

x :
n∑

k=1

|xk|p = O(Λ(1−p)(1−c)
n )

}
,

(1.3) h(p, c, H) :=
{

x :
∑

λnH
−c
n

( n∑
k=1

|xk|
)p

< ∞
}

,

(1.4) H(p, c, H) :=
{

x :
n∑

k=1

|xk|p = O(H(1−p)(1−c)
n )

}
,

and the norms:

‖x‖p :=
(∑

|xn|p
)1/p

,

‖x‖h(p,c,Λ) :=
{∑

λnΛ−c
n

( n∑
k=1

|xk|
)p}1/p

,

‖x‖H(p,c,Λ) := sup
n

(Λ(p−1)(1−c)
n

n∑
k=1

|xk|p)1/p,

‖x‖h(p,c,H) :=
{∑

λnH
−c
n

( n∑
k=1

|xk|
)p}1/p

,

and

‖x‖H(p,c,H) := sup
n

(
H(p−1)(1−c)

n

n∑
k=1

|xk|p
)1/p

.

We underline that if c = 0 then the sets h(p, 0,Λ) and h(p, 0, H) defined in (1.1)
and (1.3) are the same, i.e.

(1.5) h(p, 0,Λ) ≡ h(p, 0, H).

A sequence γ := {γn} of positive terms will be called quasi β -power-monotone
decreasing if there exists a constant K = K(β , γ ) � 1 such that

nβγn � Kmβγm
holds for any n � m and for all m .

Now we recall the results of [2] to be improved here.
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THEOREM A. Let 0 � c < 1 < p and let λ := {λn} be a given sequence of
nonnegative terms having infinitely many positive ones.

(i) If a sequence x belongs to h(p, c,Λ) then it admits a factorization

(1.6) x = y · z (xn = ynzn)

with

(1.7) y ∈ �p and z ∈ H(p∗, c,Λ), p∗ :=
p

p − 1
.

(ii) Conversely, if the sequence λ satisfies the additional conditions

(1.8) Λn � KΛ2n

and the sequence {Λn} is quasi β -power-monotone decreasing with some positive β ,
furthermore the sequence x admits a factorization (1.6) with (1.7) , then x belongs
to h(p, c,Λ) .

THEOREM B. Let 1 < c, p and let λ be a given sequence of nonnegative terms
having infinitely many positive ones.

(i) If Λ1 = ∞, Hn+1 � KHn and a sequence x belongs to h(p, c, H) then it
admits a factorization (1.6) with

(1.9) y ∈ �p and z ∈ H(p∗, c, H).

(ii) Conversely, if the sequence λ satisfies the additional conditions

(1.10) H2n � KHn

and the sequence {H−1
n } is quasi β -power-monotone decreasing with some positive

β , plus the sequence x admits a factorization (1.6) with (1.9) , then x belongs to
h(p, c, H) .

In [3] and [4] we considered such a problem of factorization where the crucial
function xp , appearing in the previously considered sets h(p, c,Λ) and h(p, c, H) , is
replaced by more general functions ϕ(x) from the sets either Φ(p) or Ψ(q) , given
above.

In these papers we generalized only the special case c = 0 of Theorem A. Now
we intend to prove generalizations with positive c , furthermore not only for Theorem
A, however for Theorem B, too.

If in the definition of the sets h(p, c,Λ) and h(p, c, H) we replace the function xp

by ϕ(x) the new sets will be denoted by h(ϕ, c,Λ) and h(ϕ, c, H) , respectively, i.e.

(1.11) h(ϕ, c,Λ) :=
{

x :
∑

λnΛ−c
n ϕ

( n∑
k=1

|xk|
)

< ∞
}

and

(1.12) h(ϕ, c, H) :=
{

x :
∑

λnH
−c
n ϕ

( n∑
k=1

|xk|
)

< ∞
}
.

Finally we define the set

�ϕ :=
{

x :
∑

ϕ(|xn|) < ∞
}

.



512 L. LEINDLER

2. Results

We shall prove the following theorems.

THEOREM 1. Let 0 � c < 1 and let λ := {λn} be a given sequence of nonnegative
terms having infinitely many positive ones.

(i) If q > 1 , ϕ ∈ Ψ(q) and a sequence x belongs to h(ϕ, c,Λ) then it admits
a factorization (1.6) with

(2.1) y ∈ �ϕ and z ∈ H(q∗, c,Λ), q∗ :=
q

q − 1
.

(ii) Conversely, if p > 1, ϕ ∈ Φ(p) and the sequence λ satisfies the condition
(1.8) and the sequence {Λn} is quasi β -power-monotonedecreasingwith some positive
β , furthermore x admits a factorization (1.6) with

(2.2) y ∈ �ϕ and z ∈ H(p∗, c,Λ),

then x belongs to h(ϕ, c,Λ) .

THEOREM 2. Let 1 < c and let λ be a given sequence of nonnegative terms
having infinitely many positive ones.

(i) If Λ1 = ∞ , Hn+1 � KHn , q > 1 , ϕ ∈ Ψ(q) and a sequence x belongs to
h(ϕ, c, H) then it admits a factorization (1.6) with

(2.3) y ∈ �ϕ and z ∈ H(q∗, c, H)

(ii) Conversely, if p > 1 , ϕ ∈ Φ(p) and the sequence λ satisfies the additional
conditions (1.10) , plus the sequence {H−1

n } is quasi β -power-monotone decreasing
with some positive β , moreover the sequence x admits a factorization (1.6) with

(2.4) y ∈ �ϕ and z ∈ H(p∗, c, H)

then x belongs to h(ϕ, c, H) .

We mention that the first part of Theorem 1 with c = 0 contains the result of [3],
and its second part includes the theorem of [4] disregarding the estimates given there.
A careful analysis of our present proofs would yield similar estimates in these general
cases, too, but the constants to be apprearing in these new estimates would depend on
several parameters.

3. Lemmas

We require the following lemmas.
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LEMMA 1. If p > 0 and ϕ ∈ Φ(p) then

(3.1) tpϕ(x) � ϕ(tx) f or 0 � t � 1, x � 0,

and

(3.2) ϕ(tx) � tpϕ(x) f or t � 1, x � 0.

If q > 0 and ϕ ∈ Ψ(q) then

(3.3) ϕ(tx) � tqϕ(x) f or 0 � t � 1, x � 0,

and

(3.4) tqϕ(x) � ϕ(tx) f or t � 1, x � 0.

These inequalities are obvious consequences of the definition of the sets Φ(p) and
Ψ(q) .

LEMMA 2. If c > 1 , λ is a sequence of nonnegative terms such that Λ1 = ∞
and Hn+1 � KHn , then

(3.5) K1(c)H1−c
n �

∞∑
k=n

λkH
−c
k � K2(c)H1−c

n .

The inqualities (3.5) were proved in [2] , see Lemmas 3 and 5 given there.

LEMMA 3. If c > 1 , λ is a sequence of nonnegative terms such that Hn+1 � KHn

and the sequence {H−1
n } is quasi β -power-monotone decreasing with some positive

β , then the sequence

Λ̃n :=
∞∑
k=n

λkH
−c
k

is quasi β̃ -power-monotone decreasing with β̃ := β(c − 1) > 0 .

This lemma is known, see Lemma 7 in [2].

4. Proofs

Proof of Theorem 1. First we define a new sequance λ := {λ n} as follows:

λ n := λnΛ−c
n .

Then the assumption x ∈ h(ϕ, c,Λ) can be written as follows

(4.1)
∑

λ nϕ
( n∑

k=1

|xk|
)

< ∞.
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Since ϕ ∈ Ψ(q) , (4.1) and (3.4) imply that

(4.2)
∑

λ n

( n∑
k=1

|xk|
)q

< ∞

also holds.
If we denote by h(p, 0,Λ) and H(p, 0,Λ) the sets defined in (1.1) and (1.2)

with this new sequence λ and c = 0 , respectively, then (4.2) clearly means that
x ∈ h(q, 0,Λ) .

Hereafter utilizing the part (i) of Theorem A, we get that x admits a factization
(1.6) with

(4.3) y ∈ �q and z ∈ H(q∗, 0,Λ) (q∗ =
q

q − 1
).

Since ϕ ∈ Ψ(q) thus, by (3.3), y ∈ �q implies that y ∈ �ϕ ; and because
z ∈ H(q∗, 0,Λ) is equivalent to z ∈ H(q∗, c,Λ) , thus, by (4.3), we have proved our
assertion that x ∈ h(ϕ, c,Λ) implies the embedding relations given in (2.1).

The second part of Theorem 1 is an easy consequence of the part (ii) of Theorem
A.

Namely, since ϕ ∈ Φ(p) , thus by (3.1) y ∈ �ϕ implies y ∈ �p . On the other hand,
y ∈ �p and z ∈ H(p∗, c,Λ) , by the part (ii) of Theorem A, imply that x ∈ h(p, c,Λ) ,
i.e. ∑

λnΛ−c
n

( n∑
k=1

|xk|
)p

< ∞.

Hence, ϕ ∈ Φ(p) and (3.2), convey

∑
λnΛ−c

n ϕ
( n∑

k=1

|xk|
)

< ∞,

and this is the required inequality showing that x ∈ h(ϕ, c,Λ) .
The proof of Theorem 1 is complete.

Proof of Theorem 2. The proof is essentially the same as that of Theorem 1. Now
we define again a new sequence λ̃ := {λ̃n} as follows:

λ̃n := λnH
−c
n .

Then the assumption x ∈ h(ϕ, c, H) can be rewritten as follows

(4.4)
∑

λ̃nϕ
( n∑

k=1

|xk|
)

< ∞.

Since ϕ ∈ Ψ(q) , (4.4) and (3.4) imply that

(4.5)
∑

λ̃n

( n∑
k=1

|xk|
)q

< ∞.
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If we denote by h(p, 0, H̃) and H(p, 0, H̃) the sets defined in (1.3) and (1.4)
with this new sequence λ̃ and c = 0 , respectively, then (4.5) plainly means that
x ∈ h(q, 0, H̃) ≡ h(q, 0, Λ̃) , see (1.5).

Thus, by the part (i) of Theorem A with λ̃ and c = 0 , we obtain that x admits a
factorization (1.6) with

(4.6) y ∈ �q and z ∈ H(q∗, 0, Λ̃).

By (1.2) z ∈ H(q∗, 0, Λ̃) means that

n∑
k=1

|zk|q∗ = O
(( ∞∑

k=n

λkH
−c
k )

)1−q∗)
.

Hence, by Lemma 2, it is obvious that z ∈ H(q∗, 0, Λ̃) implies z ∈ H(q∗, c, H) . This
and (4.6) proves (2.3), namely y ∈ �q also implies y ∈ �ϕ , arguing as in Theorem 1.

To prove the part (ii) of Theorem 2 first we show that the new sequence λ̃ satisfies
all of the additional conditions of Theorem A claimed on the sequence λ in part (ii) .

Since

Λ̃n :=
∞∑
k=n

λ̃k =
∞∑
k=n

λkH
−c
k ,

thus, by Lemma 2,

(4.7) K1(c)H1−c
n � Λ̃n � K2(c)H1−c

n ,

whence and from (1.10), because c > 1 , we can see that the condition (1.8) is satisfied
with Λ̃n in place of Λn .

Furthermore Lemma 3 shows that the sequence {Λ̃n} is quasi β -power-monotone
decreasing with β̃ := β(c − 1) > 0 .

Herewith we have verified that the sequence λ̃ fulfills all of the additional condi-
tions of Theorem A.

Since ϕ ∈ Φ(p) thus y ∈ �ϕ implies y ∈ �p , furthermore by (4.7)

H(p∗, c, H) ≡ H(p∗, 0, Λ̃).

Taking into account these facts we see that (2.4) yields that

y ∈ �p and z ∈ H(p∗, 0, Λ̃)

hold.
Consequently, applying the part (ii) of Theorem A, we obtain that x ∈ h(p, 0, Λ̃) .

By the definition of λ̃ it is clear that

h(p, 0, Λ̃) ≡ h(p, c, H),

i.e. we have got that

(4.8)
∑

λnH
−c
n

( n∑
k=1

|xk|
)p

< ∞.
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Since ϕ ∈ Φ(p) , thus (4.8) and (3.2) imply that

∑
λnH

−c
n ϕ

( n∑
k=1

|xk|
)

< ∞

also holds.
Herewith we verified that the factorization (1.6) with (2.4) implies that x belongs

to the set h(ϕ, c, H) .
The proof is complete.
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