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A NEW REFINEMENT OF THE KY FAN INEQUALITY

JOZSEF SANDOR AND TIBERIU TRIF

(communicated by J. Pecari¢)

Abstract. Inthis note we obtain a new refinement, involving the identric mean of several variables,
of the inequality G, /G, < An/AJ,, due to Ky Fan.

1. Introduction

Let xi,...,x, be a sequence of positive real numbers lying in the open interval
10,1[, and let A,,, G,, and H, denote their arithmetic, geometric, and harmonic mean,
respectively, i. e.

n n 1/n
1 n
An = Z § Xi, Gn = Hxi ) H, = W
i=1 i=1

i=1 x;

Further, let A/, G}, and H, denote the arithmetic, geometric, and harmonic mean,

n?

respectively,of 1 —x,..., 1 —x,,1i. e.

n n 1/n
1

PR ST | (1) I A—

. i1 i =

The arithmetic-geometric mean inequality G, < A, (and its weighted variant)
played an important role in the development of the theory of inequalities. Because of its
importance, many proofs and refinements have been published. In 1961, a remarkable
new counterpart of the AM-GM inequality was published in the famous book [7]:

THEOREM 1. If x; €10,1/2] forall i € {1,...,n}, then
Gﬂ Aﬂ
with equality holding if and only if x; = --- = x,,.

Inequality (1), which is due to Ky Fan, has evoked the interest of several mathe-
maticians, and different proofs as well as many extensions, sharpenings, and variants
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have been published. For proofs of (1) the reader is referred to [3], [6], [16], [17].
Refinements of (1) are proved in [1], [5], [6], [18], while generalizations can be found
n [9], [11], [19], [21]. For converses and related results see [2], [4], [14]. See also the
survey paper [6].

In 1984, Wang and Wang [20] established the following counterpart of (1):

H, < %. (2)

H, ~ G,

For extension to weighted means and other proofs of (2) see, for instance, [6] and [18].
In 1990, J. Séndor [15, relation (33)] proved the following refinement of (1) in the
case of two arguments (i. e. n =2):

G I A

agfgz7 (3)

where G = G,, G' = G’2 etc., and I denotes the so-called identric mean of two

numbers:
1 /52 1/(x2—x1) '
I(x1,x) = B <x%) , if x; # xp
I(x,x) = x.
Here I/()Cl,)Q) = I(l —xp, 1 —)Cz) and xi,x, € ]0, 1/2] .
In what follows, inequality (3) will be extended to the case of n arguments, thus
giving a new refinement of the Ky Fan inequality (1).

2. Main result

Let n > 2 be a given integer, and let
An_q :{(Al,...,kn_l) ‘AIZO, i=1,....n—1, Ai+--+ A1 < 1}

be the Euclidean simplex. Given X = (x,...,x,) (x; > 0 forall i € {1...,n}),
and a probability measure p on A,_;, for a continuous strictly monotone function
f 110,00 — R, the following functional mean of n arguments can be introduced:

M (X;u)=f"" (/A f(X%)dM(/l)) ; 4)

where X - A = >"7 | x;A; denotes the scalar product, A = (A1,...,4,—1) € A, , and
A‘nzlfxlf"'*lnfl-
For u = (n—1)! and f (r) = 1/, the unweighted logarithmic mean

L(x1,...,x,) = ((n I)Y/A }%‘Ml'--dlnl) (5)

n—1
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is obtained. For properties and an explicit form of this mean, the reader is referred to

[13].
For f () = logt we obtain a mean, which can be considered as a generalization

of the identric mean
I(X; ) = exp (/
A

Indeed, it is immediately seen that for the classical identric mean of two arguments one
has

log(X - l)du(/l)> : (6)

n—1

1
I(x1,x2) = exp (/0 log(tx; + (1 — t)xz)dt> .

For u = (n — 1)! we obtain the unweighted (and symmetric) identric mean of n

variables
I(xy,...,x,) =exp ((n - 1)!/
A

in analogy with (5). It should be noted that (7) is a special case of (4), which has been
considered in [13]. The mean (4) even is a special case of the B. C. Carlson’s function
M (see [8, p. 33]). For an explicit form of I(xi,...,x,) see [12].

Let n > 2,let u be a probability measure on A,_y,andlet i € {1,...,n}. The
ith weight w; associated to u is defined by

log(X - A)dA, - - -d/ln_1> : (7)

n—1

w; = / e if1<i<n—1, (8)

nl

Wn:/ (1 *Afl *"'*A’nfl)d.uv(l)a

Anfl

where A = (A4,...,A,—1) € A,—1. Obviously, w; > 0 forall i € {1,...,n}, and

wi+---+w, = 1. Moreover,if u = (n—1)!,then w; = 1/n forallie {1,...,n}.
We are now in a position to state the main result of the paper, a weighted improve-

ment of the Ky Fan inequality.

THEOREM 2. Let n > 2, let U be a probability measure on A,_; whose weights
Wi, ..., w, are given by (8), andlet x; €10,1/2] (i=1,...,n). Then

H?:I -x;'/v" < I(X], N ,xn;u) < z:l:l WiX;
[T, (1 =) S —xp, . L= xu) S wi(l—x)

©)

Proof. First remark that the function ¢ : ]0,1/2] — R defined by ¢(¢) = logr —
log(1 — #) is concave. Consequently

Zw, o (x;) / O(X - A)du(A (wa,) ) (10)
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This inequality has been established in [10]. From (10), after a simple computation we
deduce (9). O

REMARK. For u = (n — 1)!, inequality (9) reduces to the following unweighted
improvement of the Ky Fan inequality, which generalizes (3):

N

I =

F

A n
7.
n

N

Here I, = I(x1,...,x,), while I =I1(1 —x,...,1 —x,).
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