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STABILITY THEORY OF FUZZY DIFFERENTIAL

EQUATIONS VIA DIFFERENTIAL INEQUALITIES

V. LAKSHMIKANTHAM AND S. G. LEELA

(communicated by D. Bainov)

Abstract. Lyapunov theory of stability is developed for fuzzy differential equations employing
suitable theory of differential inequalities. Method of perturbing Lyapunov function is utilized
which provides weaker assumptions for discussing stability theory.

1. Introduction

The industrial interest in fuzzy control and logic [1, 14] has dramatically increased
the study of fuzzy systems. The calculus of fuzzy valued functions has recently been
developed [2, 3, 4] and the investigation of fuzzy differential equations has been initiated
[5, 6, 8, 12, 13].

In this paper, we shall develop stability theory which corresponds to Lyapunov
theory of stability for fuzzy differential systems. For this purpose, one needs to dis-
cuss comparison results in terms of Lyapunov-like functions employing the theory of
differential inequalities. Once such a result is available, it is comparatively eaisier
to systematically develop a theory parallel to Lyapunov’s stability theory. To avoid
monotony, we shall once for all consider the stability criteria by the method of perturb-
ing Lyapunov functions [11] so that the standard theorems on stability criteria result as
a consequence.

2. Preliminaries

Let Pk(Rn) denote the family of all nonempty compact, convex subsets of Rn . If
α, β ∈ R and A, B ∈ Pk(Rn) , then

α(A + B) = αA + αB, α(βA) = (αβ)A, 1A = A

and if α, β � 0 , then (α + β)A = αA + βA . Let I = [t0, t0 + α] , t0 � 0 and
a > 0 and denote by En = [u : Rn → [0, 1] such that u satisfies (i) to (iv) mentioned
bellow]:
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(i) u is normal, that is, there exists an x0 ∈ Rn such that u(x0) = 1 ;

(ii) u is fuzzy convex, that is, for x, y ∈ Rn and 0 � λ � 1 ,

u(λx + (1 − λ )y) � min[u(x), u(y)];

(iii) u is upper semicontinuous;
(iv) [u]0 = [x ∈ Rn : u(x) > 0] is compact.

For 0 < α < 1 , we denote [u]α = [x ∈ Rn : u(x) � α] . Then from (i) to (iv) ,
it follows that the α -level sets [u]α ∈ Pk(Rn) for 0 � α � 1 .

For later purposes, we define ô ∈ En as ô(x) = 1 if x = 0 and ô(x) = 0 if
x �= 0 .

Let dH(A, B) be the Hausdorff distance between the sets A, B ∈ Pk(Rn) . Then
we define

d[u, v] = sup
0�α�1

dH[[u]α , [v]α ],

which defines a metric in En and (En, d) is a comlete metric space. We list the
following properties of d[u, v] (see [6]):

d[u + w, v + w] = d[u, v] and d[u, v] = d[v, u],
d[λu, λv] = |λ | d[u, v],

d[u, v] � d[u, w] + d[w, v],

for all u, v, w ∈ En and λ ∈ R .
For x, y ∈ En if there exists a z ∈ En such that x = y + z , then z is called

the H -difference of x and y and is denoted by x − y . A mapping F : I → En is
differentiable at t ∈ I if there exists a F′(t) ∈ En such that the limits

lim
h→0+

F(t + h) − F(t)
h

and lim
h→0+

F(t) − F(t + h)
h

exist and are equal to F′(t) . Here the limits are taken in the metric space (En, d) .
Moreover, if F : I → En is continuous, then it is integrable and

b∫
a

F =

c∫
a

F +

b∫
c

F.

Also, the following properties of the integral are valid (see [3, 4, 5, 6]). If
F, G : I → En are integrable, λ ∈ R , then the following hold:

∫
(F + G) =

∫
F +

∫
G;

∫
λF = λ

∫
F, λ ∈ R;

d[F, G] is integrable;

d
[∫

F,

∫
G

]
�

∫
d[F, G].
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Finally, let F : I → En be continuous. Then the integral G(t) =
t∫

t0

F is differen-

tiable and G′(t) = F(t) . Furthermore,

F(t) − F(t0) =

t∫
a

F′(t)

(see [2, 3, 4, 5, 6] for details).

3. Comparison result

Consider the fuzzy differential equation

u′ = f (t, u), u(t0) = u0, (3.1)

where f ∈ C[R+ × S(ρ), En] and S(ρ) = [u ∈ En : d[u, ô] < ρ] . We assume that
f (t, ô) = ô so that we have the trivial solution for (3.1).

To investigate stability criteria, the follwing comparison result in terms of a Lya-
punov function is very important which can be proved via the theory of differential
inequalities [9]. Here Lyapunov function serves as a vehicle to transform the fuzzy
differential equation into a scalar comparison differential equation and therefiore, it is
enough to consider the stability properties of the simpler comparison equation.

THEOREM 3.1. Assume that
(i) V ∈ C[R+×S(ρ), R+] , |V(t, u1)−V(t, u2)| � Ld[u1, u2] , L > 0 and D+V(t, u) ≡

lim
h→0+

sup 1
h
[V(t + h, u + hf (t, u))− V(t, u)] � g(t, V(t, u)) , where g ∈ C[R2

+, R] .

Then, if u(t) is any solution of (3.1) existing on [t0,∞) such that V(t0, u0) � w0 ,
we have

V(t, u(t)) � r(t, t0, w0), t � t0,

where r(t, t0, w0) is the maximal solution of the scalar differential equation

w′ = g(t, w), w(t0) = w0 � 0, (3.2)

existing on [t0,∞) .

Proof. Let u(t) be any solution of (3.1) existing on [t0,∞) . Define m(t) =
V(t, u(t)) so that m(t0) = V(t0, u0) � w0 . Now for small h > 0 ,

m(t + h) − m(t) = V(t + h, u(t + h)) − V(t, u(t))
= V(t + h, u(t + h)) − V(t + h, u(t) + hf (t, u(t)))

+ V(t + h, u(t) + hf (t, u(t)) − V(t, u(t)),
� Ld[u(t + h), u(t) + hf (t, u(t))]

+ V(t + h, u(t) + hf (t, u(t))) − V(t, u(t)),
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using the Lipschitz condition given in (i) . Thus

D+m(t) = lim
h→0+

sup 1
h
[m(t + h) − m(t)] � D+V(t, u(t))

+ L lim
h→0+

sup 1
h
[d[u(t + h), u(t) + hf (t, u(t))]].

Let u(t + h) = u(t)+ z(t) , where z(t) is the H -difference for small h > 0 which
is assumed to exist. Hence employing the properties of d[u, v] , we see that

d[u(t + h), u(t) + hf (t, u(t)) = d[u(t) + z(t), u(t) + hf (t, u(t))]
= d[z(t), hf (t, u(t)]
= d[u(t + h) − u(t), hf (t, u(t))].

Consequently

1
h
d[u(t + h), u(t) + hf (t, u(t))] = d

[u(t + h) − u(t)
h

, f (t, u(t))
]

and therefore

lim
h→0+

sup 1
h
[d[u(t + h), u(t) + hf (t, u(t))]]

= lim
h→0+

sup 1
h

[
d
[u(t + h) − u(t)

h
, f (t, u(t))

]]

= d[u′(t), f (t, u(t))] = 0,

since u(t) is the solution of (3.1). We therefore have the scalar differential inequality

D+m(t) � g(t, m(t)), m(t0) � w0, t � t0,

which by the theory of differential inequalities [9] implies

m(t) � r(t, t0, w0), t � t0.

This proves the claimed estimate of the theorem.

The following corollaries are useful.

COROLLARY 3.1. The function g(t, w) ≡ 0 is admissible in Theorem 3.1 to yield
the estimate

V(t, u(t)) � V(t0, u0), t � t0.

COROLLARY 3.2. If, in Theorem 3.1, we strengthen the assumption on D+V(t, u)
to

D+V(t, u) � −C[w(t, u)] + g(t, V(t, u)),

where w ∈ C[R+ × S(ρ), R+] , C ∈ K = [a ∈ C[[o, ρ), R+] : a(w) is increasing in
w and a(0) = 0] , and g(t, w) is nondecreasing in w for each t ∈ R+ , then we get the
estimate

V(t, u(t)) +

t∫
t0

C[w(s, u(s))]ds � r(t, t0, w0), t � t0,
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whenever V(t0, u0) � w0 .

Proof. Set L(t, u(t)) = V(t, u(t)) +
t∫

t0

C[w(s, u(s))]ds and note that

D+L(t, u(t)) � D+V(t, u(t)) + C[w(t, u(t))] � g(t, V(t, u(t))) � g(t, L(t, u(t))),

using the monotone character of g(t, w) . We then get immediately by Theorem 3.1, the
estimate

L(t, u(t)) � r(t, t0, w0), t � t0,

where u(t) is any solution of (3.1). This implies the stated estimate.

A simple example of V(t, u) is d[u, ô] so that

D+V(t, u) = lim
h→0+

sup 1
h
[d[u + hf (t, u), ô] − d[u, ô]].

4. Stability criteria

Let u(t) be any solution of (3.1) existing on [t0,∞) .

DEFINITION 4.1. We say that the trivial solution of (3.1) is equi-stable, if given
0 < ε < ρ and t0 ∈ R+ , there exists a δ = δ(t0, ε) > 0 such that

d[u0, ô] < δ implies d[u(t), ô] < ε, t � t0.

If δ is independent of t0 , then the stability is uniform. Based on this definition,
the other notions of stability can be formulated. See [9, 10] for details.

We begin with the following result which provides nonuniform stability criteria
under weaker assumption. See [10].

THEOREM 4.1. Assume that
(A1) V1 ∈ C[R+×S(ρ), R+] , |V1(t, u1)−V1(t, u2)| � L1d[u1, u2] , L1 > 0 , V1(t, u) �

a0(t, d[u, ô]) , where a ∈ C[R+ × [0, p), R+] and a0(t, ·) ∈ K for each t ∈ R+ ;

(A2) D+V1(t, u) � g1(t, V1(t, u)) , (t, u) ∈ R+ × S(ρ) , where g1 ∈ C[R2
+, R] and

g1(t, 0) ≡ 0 ;

(A3) for every η > 0 , there exists a Vη ∈ C[R+ × S(ρ) ∩ Sc(η), R+] ,

|Vη(t, u1) − Vη(t, u2)| � Lηd[u1, u2],
b(d[u, ô]) � V(t, u) � a(d[u, ô]) a, b ∈ K ,

and
D+V1(t, u) + D+Vη(t, u) � g2(t, V1(t, u) + Vη(t, u))

for (t, u) ∈ R+ × S(ρ) ∩ Sc(η) .
(A4) the trivial solution w1 ≡ 0 of

w′
1 = g1(t, w1), w1(t0) = w10 � 0, (4.1)
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is equi-stable;
(A5) the trivial solution w2 = 0 of

w′
2 = g2(t, w2), w2(t0) = w20 � 0, (4.2)

is uniformly stable.
Then the trivial solution of (3.1) is equi-stable.

Proof. Let 0 < ε < ρ and t0 ∈ R+ be given. Since the trivial solution of (4.2)
is uniformly stable, given b(ε) > 0 and t0 ∈ R+ , there exists a δ 0 = δ 0(ε) > 0
satisfying

0 � w20 < δ 0 implies w2(t, t0, w20) < b(ε), t � t0, (4.3)

where w2(t, t0, w20) is any solution of (4.2). In view of the hypothesis on a(w) , there
is a δ2 = δ2(ε) > 0 such that

a(δ2) < δ 0

2 . (4.4)

Since the trivial solution of (4.1) is equi-stable, given δ 0

2 > 0 and t0 ∈ R+ , we

can find a δ∗ = δ∗(t0, ε) > 0 such that

0 � w10 < δ∗ implies w1(t, t0, w10) < δ 0

2 , t � t0, (4.5)

where w1(t, t0, w10) is any solution of (4.1).
Choose w10 = V1(t0, u0) . Since V1(t, u) � a0(t, d[u, 0̂]) , we see that there exists

a δ1 = δ1(t0, ε) > 0 satisfying

d[u0, 0̂] < δ1 and a0, (t0, d[u0, ô]) < δ∗, (4.6)

hold simultaneously. Define δ = min(δ1, δ2) . Then we claim that

d[u0, ô] < δ implies d[u(t), ô] < ε, t � t0, (4.7)

for any solution u(t) of (3.1). If this is false, there would exist a solution u(t) of (3.1)
with d[u0, ô] < δ and t1, t2 > t0 such that

d[u(t1), ô] = δ2, d[u(t2), ô] = ε and δ2 � d[u(t), ô] � ε � ρ (4.8)

for t1 � t � t2 . We let η = δ2 so that the existence of a Vη satisfying hypothesis
(A3) is assured. Hence, setting

m(t) = V1(t, u(t)) + Vη(t, u(t)), t ∈ [t1, t2],

we obtain the differential inequality

D+m(t) � g2(t, m(t)), t1 � t � t2,

which yields
V1(t2, u(t2)) + Vη(t2, u(t2)) � r2(t2, t1, w20), (4.9)

with w20 = V1(t1, u(t1))+ Vη(t1, u(t1)) , r2(t, t1, w20) is the maximal solution of (4.2).
We also have, because od (A1) and (A2) ,

V1(t1, u(t1)) � r1(t1, t0, w10),
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with w10 = V1(t0, u0) , where r1(t, t0, w10) is the maximal solution of (4.1). By (4.5)
and (4.6), we get

V1(t1, u(t1)) < δ0

2
. (4.10)

Also, by (4.4), (4.8) and (A3) , we arrive at

Vη(t1, u(t1)) � a(δ2) < δ0

2
. (4.11)

Thus (4.10) and (4.11) and the definition of w20 shows that w20 < δ0 which, in view
of (4.3) shows that w2(t2, t1, w20) < b(ε) . If then follows from (4.9), V1(t, u) � 0 and
(A3) ,

b(ε) = b(d[u(t2), ô]) � Vη(t2, u(t2)) � r2(t2, t1, w20) < b(ε).
This contradiction proves equi-stability of the trivial solution of (3.1) since (4.7) is then
true.

The proof is complete

The next result offers conditions for equi-asymptotic stability.

THEOREM 4.2. Let the assumptions of Theorem 4.1 hold except that condition (A2)
is strengthened to

(A∗
2) D+V1(t, u) � −c(w(t, u)) + g1(t, V1(t, (u)), c ∈ K , w ∈ C[R+ × S(ρ), R+] ,

|w(t, u1) − w(t, u2)| � Nd[u1, u2] , N > 0 and D+w(t, u) is bounded above or
below.

Then the trivial solution of (3.1) is equi-asymptotically stable, if g1(t, w) is monotone
nondecreasing in w and w(t, u) � b0(d[u, ô]) , b0 ∈ K .

Proof. By Theorem 4.1, the trivial solution of (3.1) is equi stable. Hence letting
ε = ρ so that δ0 = δ(ρ, t0) , we get, by equi-stability

d[u0, ô] < δ0 implies d[u(t), ô] < ρ, t � t0.

We shall show that, for any solution u(t) of (3.1) with d[u0, ô] < δ0 , it follows that
lim

t→∞w(t, u(t)) = 0 , which implies by the property of w(t, u) , lim
t→∞ d[u(t), ô] = 0 and

we are done.
Suppose that lim

t→∞ supw(t, u(t)) �= 0 . Then there would exist two divergent

sequences {t′i}, {t′′i } and a σ > 0 satisfying
(a) w(t′i , u(t′i)) = σ

2
, w(t′′i , u(t′′i )) = σ and w(t, u(t)) � σ

2
, t ∈ (t′′i , t′i) , or

(b) w(t′i , u(t′i)) = σ , w(t′′i , u(t′′i )) = σ
2 and w(t, u(t)) � σ

2 , t ∈ (t′′i , t′i) . Suppose

that D+w(t, u(t)) � M . Then using (a) we obtain

σ
2

= σ − σ
2

= w(t′′i , u(t′′i )) − w(t′i , u(t′i)) � M(t′′i − t′i),

which shows that t′′i − t′i � σ
2M

for each i . Hence by (A∗
2) and Corollary 3.2, we

have

V1(t, u(t)) � r1(t, t0, w10) =
n∑

i=1

t′′i∫

t′i

C[w(s, u(s))] ds, t � t0.
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Since w10 = V1(t0, u0) � a0(t0, d[u0, ô]) � a0(t0, δ0) < δ∗(ρ) , we get from (4.5)

w1(t, t0, w10) <
δ 0(ρ)

2 , t � t0 . We thus obtain

0 � V1(t, u(t)) � δ 0(ρ)
2 − C

(σ
2

) σ
2M

n.

For sufficiently larger n , we get a contradiction and therefore lim
t→∞ supw(t, u(t)) =

0 . Since w(t, u) � b0(d[u, ô]) by assumption, it follows that lim
t→∞ d[u(t), ô] = 0

and the proof is complete.

The following remarks are in order.

REMARK 4.1. The functions g1(t, w) = g2(t, w) ≡ 0 are admissible in Theorem
4.1 to imply the same conclusion. If V1(t, u) ≡ 0 and g1(t, w) ≡ 0 , then we get
uniform stability from Theorem 4.1. If, on the other hand, Vη(t, u) ≡ 0 , g2(t, w) ≡ 0
and V1(t, u) � b(d[u, ô]) , b ∈ K , then Theorem 4.1 yields equi-stability. We note
that known results on equi-stability require the assumption to hold everywhere in S(ρ)
and Theorem 4.1 relaxes such a requirement considerably by the method of perturbing
Lyapunov functions. See [9,10].

REMARK 4.2. The functions g1(t, w) ≡ g2(t, w) ≡ 0 are admissible in Theorem
4.2 to yield equi-asymptotic stability. Similarly, if Vη(t, u) ≡ 0 , g2(t, w) ≡ 0 with
V1(t, u) � b(d[u, ô]) , b ∈ K implies the same conclusion. If V1(t, u) ≡ 0 and
g1(t, w) ≡ 0 in Theorem 4.1, to get uniform asymptotic stability, one needs strenghten
the estimate on D+Vη(t, u) . This we state as a corollary.

COROLLARY4.1. Assume that the assumptions of Theorem 4.1 holdwith V1(t, u) ≡
0 , g1(t, w) ≡ 0 . Suppose further that

D+Vη(t, u) � −C[w(t, u)] + g2(t, Vη(t, u)), (t, u) ∈ R+ × S(ρ) ∩ Sc(η), (4.12)

where w ∈ C[R+ × S(ρ), R+] , w(t, u) � b(d[u, ô]) , c, b ∈ K and g2(t, w) is
nondecreasing in w . Then the trivial solution of (3.1) is uniformly asymptotically
stable.

Proof. The trivial solution of (3.1) is uniformly stable by Remark 4.1 in the present
case. Hence taking ε = ρ and designating by δ0 = δ(ρ) , we have

d[uo, ô] < δ0 implies d[u(t), ô] < ρ, t � t0.

To provr uniform attractivity, let o < ε < ρ be given. Let δ = δ(ε) > 0 be the

number relative to ε in uniform stability. Choose T = b(ρ)
C(δ) + 1 . Then we shall show

that there exists a t∗ ∈ [t0, t0 + T] such that w(t∗, u(t∗)) < b(δ) for any solution u(t)
of (3.1) with d[u0, ô] < δ0 . If this is not true, then w(t, u(t)) � b(δ) , t ∈ [t0, t0 + T] .
Now using the assumption (4.12) and arguing as in Corollary 3.2, we get

0 � Vη(t0 + T, u(t0 + T)) � r2(t0 + T, t0, w20) −
t0+T∫
t0

w(s, u(s)) ds.
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This yields, since r2(t, t0, w20) < b(ρ) and the choice of T ,

0 � Vη(t0 + T, u(t0 + T)) � b(ρ) − c(δ)T < 0,

which is a contradiction. Hence there exists a t∗ ∈ [t0, t0 +T] satisfying w(t∗, u(t∗)) <
b(δ) , which implies d[u(t∗), ô] < δ . Consequently, it follows, by uniform stability
that

d[u0, ô] < δ0 implies d[u(t), ô] < ε, t � t0 + T,

and the proof is complete
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