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Abstract. We will prove some inequalities for unitarily invariant norms involving functions of
two variables. Some of our results generalize known results.

1. Introduction

Let m ∈ N . By Mm , we will denote the space of m × m complex matrices. Im
will denote the identity element in Mm . I, J will be intervals in R . By Sm(I) , we
will denote the set of all hermitian matrices in Mm whose spectrum is contained in I .
Pm will denote the set of all positive definite matrices in Mm and Sm will denote the
set of all positive semidefinite matrices in Mm . ‖| · ‖| will denote a unitarily invariant
norm on Mm where as ‖ · ‖ will denote the spectral norm. The Schur product or the
Hadamard product of two matrices X, Y ∈ Mm will be denoted as X ◦ Y . This is the
matrix whose (i, j) entry is xijyij . The halmos � will denote the end of the proof.

The classical arithmetic-geometric mean inequality for positive numbers a, b

(ab)
1
2 � a + b

2

has been extended to the case of matrices in several ways (see [5], [6], [8]). In section 2,
we will consider a more general case of a generalization considered in [5]. In section 3,
we will prove some inequalities for norms involving operatormonotone functions of two
variables studied in [9]. In this section the influence of Ando [1] is easily discernable.

2. Arithmetic-geometric mean inequalities

A real valued function f defined on an interval I is called convex if

f (λ s + (1 − λ )t) � λ f (s) + (1 − λ )f (t)

for all s, t ∈ I and 0 � λ � 1 .
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This definition of convex functions is extendable to the case of functions of two
variables. A real valued function F defined on I × J is called convex if

F(λ s1 + (1 − λ )s2, λ t1 + (1 − λ )t2) � λF(s1, t1) + (1 − λ )F(s2, t2)

for all s1, s2 ∈ I , t1, t2 ∈ J and 0 � λ � 1 . In case J = I , the function F is called
diagonally convex if the corresponding function f of single variable defined by

f (s) = F(s, s); s ∈ I

is convex. It is clear that if F : I × I → R is convex then F is diagonally convex,
however the converse need not be true. The function F(s, t) = st is diagonally convex
on (0,∞) × (0,∞) but is not convex on (0,∞) × (0,∞) . For properties of convex
functions the reader may refer to [11].

It is proved in [5] that the function

f (s) = ‖|A1+sXB1−s + A1−sXB1+s‖|
is convex on [−1, 1] , where A, B ∈ Pn and X ∈ Mm . It is equivalent to saying that
the function F(s, t) of two variables defined as F(s, t) = ‖|A1+sXB1−t + A1−sXB1+t‖|
is diagonally convex on [−1, 1] × [−1, 1] . Here we will prove that the function F is
convex on [−1, 1] × [−1, 1] . To prove this we need the following lemma, a proof of
which can be found in [5].

LEMMA 2.1. Let A, B, X ∈ Mn . Then

‖|A∗XB‖| � 1
2
‖|A∗AX + XBB∗‖|.

THEOREM 2.2. Let A, B ∈ Pn and X ∈ Mn . Then the function

F(s, t) = ‖|A1+sXB1−t + A1−sXB1+t‖|
is convex on [−1, 1]× [−1, 1] and attains its minimum at (0, 0) .

Proof. The function F is continuous and F(s, t) = F(−s,−t) . Thus both con-
clusions will follow if we show that

F(s1, t1) � 1
2
[F(s1 + s2, t1 + t2) + F(s1 − s2, t1 − t2)],

whenever s1 ± s2, t1 ± t2 ∈ [−1, 1]× [−1 × 1] .
Let s, t ∈ [−1, 1] . Consider the map

M(s,t)(Y) = 1
2
(AsYB−t + A−sYBt),

Y ∈ Mn . Then we have for each Y ∈ Mn ,

‖|Y‖| = ‖|A−s(AsYBt)B−t‖| � 1
2‖|A

sYB−t + A−sYBt‖| = ‖|M(s,t)(Y)‖|,

using Lemma 2.1.
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From this inequality it follows that

‖|M(s1,t1)(AXB)‖| � ‖|M(s2,t2)M(s1,t1)(AXB)‖|
for all s1, s2 and t1, t2 in [−1, 1] .

But

M(s2,t2)(M(s1,t1)(Y))=1
4
[As2(As1YB−t1+A−s1YBt1)B−t2+A−s2(As1YB−t1+A−s1YBt1)Bt2 ]

=1
4
[As1+s2YB−(t1+t2)+A−s1+s2YBt1−t2+As1−s2YB−t1+t2+A−(s1+s2)YB(t1+t2)]

i.e.
M(s2,t2)(M(s1,t1)) = 1

2(M(s1+s2,t1+t2) + M(s1−s2,t1−t2)).

Therefore, we have

‖|M(s1,t1)(AXB)‖| � 1
2

(
‖|M(s1+s2,t1+t2)(AXB)‖| + ‖|M(s1−s2,t1−t2)(AXB)‖|

)

i.e.
F(s1, t1) � 1

2
[F(s1 + s2, t1 + t2) + F(s1 − s2, t1 − t2)]

which completes the proof. �
COROLLARY 2.3. Let A, B ∈ Pn and X ∈ Mn . Then the function

G(s, t) = ‖|AsXB1−t + A1−tXBt‖|
is convex on [0, 1] × [0, 1] .

Proof. Replacing A by A
1
2 , B by B

1
2 in above theorem and then putting

1 + s
2

=

s1 ,
1 + t

2
= t1 , we get the desired result. �

3. Inequalities involving matrix functions of two variables

Let T ∈ Mm be given. Define the linear map HT : Mm → Mm by

HT(X) → T ◦ X,

X ∈ Mm . Define ‖HT‖ , the induced norm of ‖HT‖ , to be

‖HT‖ = max
{‖T ◦ X‖ : ‖X‖ � 1

}
.

It is not easy to compute ‖HT‖ for a general matrix, but in special case when T = (tij)
is positive semidefinite it is known that

‖HT‖ = max
{
tii : i = 1, 2, . . . , m

}
.

The following lemma will be used in the sequel. For a proof of this, the reader
may refer to [2].
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LEMMA 3.1. If T, X ∈ Mm , then we have

‖|T ◦ X‖| � ‖HT‖ ‖|X‖|,
for any unitarily invariant norm ‖| · ‖| .

Now let A = diag(λ1, λ2, . . . , λm) and B = diag(μ1,μ2, . . . ,μn) . Let f k(s, t)
and gk(s, t) be continuous real valued functions defined on I×J . Let I and J contains
the eigenvalues of A and B respectively. Then f (A, B) is an element of Mm ⊗Mn (see
[9]). Consider the map

φ(X, Y) =
∑

k

[
gk(A, B)(Im ⊗ Y)f k(A, B)(X ⊗ In) + (X ⊗ In)f k(A, B)(Im ⊗ Y)gk(A, B)

]

from Mm × Mn to Mm ⊗ Mn . The map φ is realized as the Hadamard multiplier
generated by the matrix(∑

k

[
f k(λi,μq)gk(λi,μp) + f k(λj,μp)gk(λj,μq)

])
i,p;j,q

,

i.e., via

(X, Y) → φ(X, Y)

=
(∑

k

[
f k(λi,μq)gk(λi,μp) + f k(λj,μp)gk(λj,μq)

]) ◦ (X ⊗ Y).

Thus using Lemma 3.1, we get the following result.

LEMMA 3.2. Let T =
(∑

k[f k(λi,μq)gk(λi,μp) + f k(λj,μp)gk(λj,μq)]
)

i,p;j,q
. If

‖HT‖ � γ , then
‖|φ(X, Y)‖| � γ ‖|X ⊗ Y‖|.

THEOREM 3.3. Let I = J = (0,∞) and f k(s, t) , gk(s, t) be continuous functions
defined on I × J . Let A, C ∈ Sm(I) and B, D ∈ Sn(J) . If for every choice of λi > 0 ,
i = 1, 2, . . . , 2m and μp > 0 , p = 1, 2, . . . , 2n

‖HT‖ � γ (1)

where T =
(∑

k

[
f k(λi,μq)gk(λi,μp) + f k(λj,μp)gk(λj,μq)

(λi + λj)(μp + μq)

])
i,p;j,q

, then

∥∥∥
∣∣∣ ∑

k

[
gk(A, B)(Im ⊗ Y)f k(A, D)(X ⊗ In) + (X ⊗ In)f k(C, B)(Im ⊗ Y)gk(C, D)

]∥∥∥
∣∣∣

� γ ‖|(AX + XC) ⊗ (BY + YD)‖|
for all unitarily invariant norms.

Proof. First we shall prove the theorem when C = A , D = B . Choose a system
of matrix units for Mm and Mn such that

A = diag(λ1, λ2, . . . , λm)
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and
B = diag(μ1,μ2, . . . ,μn).

Let X = (xij)i,j ∈ Mm and Y = (yp,q)p,q ∈ Mn .
Put X1 = AX + XA , Y1 = BY + YB .
Then∑

k

[
gk(A, B)(Im,⊗Y)f k(A, B)(X ⊗ In) + (X ⊗ In)f k(A, B)(Im ⊗ Y)gk(A, B)

]

=

⎡
⎣

∑
k

[
f k(λi,μq)gk(λi,μp) + f k(λj,μp)gk(λj,μq)

]
(λi + λj)(μp + μq)

⎤
⎦

i,p;j,q

◦ (X1 ⊗ Y1).

Therefore it follows from (1) and Lemma 3.2 that∥∥∥
∣∣∣ ∑

k

[
gk(A, B)(Im ⊗ Y)f k(A, B)(X ⊗ In) + (X ⊗ In)f k(A, B)(Im ⊗ Y)gk(A, B)

]∥∥∥
∣∣∣

� γ ‖|(AX + XA) ⊗ (BY + YB)‖|. (2)

Now on replacing A by A1 =
(

A 0
0 C

)
, B by B1 =

(
B 0
0 D

)
, X by X1 =(

0 X
0 0

)
and Y by Y1 =

(
0 Y
0 0

)
in (2), we get the desired result on using that∥∥∥∥

∣∣∣∣
(

0 Z
0 0

)∥∥∥∥
∣∣∣∣ = ‖|Z‖| . �

The operator monotone functions of two variables has been studied by Koranyi
[9]. A function f : I × J → R is called operator monotone if for A � C , B � D , the
following

f (A, B) − f (C, B) − f (A, D) + f (C, D) � 0,

holds for all A, C ∈ Sm(I) and B, D ∈ Sn(J) . Throughout, thereafter we shall assume
that the operator monotone function f : I × J → R , 0 ∈ I ∩ J be such that its first
partial derivatives and the mixed second partial derivatives exist and are continuous.
Also f satisfies the normalization condition f (s, 0) = f (0, t) = 0 for all s ∈ I, t ∈ J .
Koranyi [9] gave an integral representation for such an operator monotone function on
(−1, 1)× (−1, 1) .

A function f : (−1, 1) × (−1, 1) → R is operator monotone if and only if f
admits the integral representation

f (s, t) =

1∫
−1

1∫
−1

s
1 − λ s

t
1 − μt

dω(λ ,μ),

where ω is a positive measure.
We modify this integral representation for operatormonotone function f : [0,∞)×

[0,∞) → R for our purpose. It follows that an operator monotone function on
[0,∞) × [0,∞) with f (s, 0) = f (0, t) = 0 for all s, t ∈ [0,∞) , is non negative.
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Indeed, we have

f (s, t) = f (s, t) − f (0, t) − f (s, 0) + f (0, 0) � 0.

By applaying the transformation u → u − 1
u + 1

from [0,∞) to [−1, 1] for change of

variables in the above integral representation we get the following lemma.

LEMMA 3.4. A function f : [0,∞) × [0,∞) → R is operator monotone if and
only if f admits the integral representation

f (s, t) =

∞∫
0

∞∫
0

s
λ + s

t
μ + t

dη(λ ,μ),

where η is a positive measure.

LEMMA 3.5. Let f (s, t) be operator monotone on [0,∞)× [0,∞) . Then for every
choice of si > 0 , i = 1, 2, . . . , m and tp > 0 , p = 1, 2, . . . , n , the matrix

( f (si, tp) + f (si, tq) + f (sj, tp) + f (sj, tq)
(si + sj)(tp + tq)

)
i,p;j,q

is positive semidefinite.

Proof. From Lemma 3.4, it follows that the above matrix can be written as

∞∫
0

∞∫
0

( si
λ+si

+ sj
λ+sj

s + sj

)
i,j

⊗
( tp

μ+tp
+ tq

μ+tq

tp + tq

)
p,q

dη(λ ,μ).

Now the matrix

( si
λ+si

+ sj
λ+sj

s + sj

)
i,j

and

( tp
μ+tp

+ tq
μ+tq

tp + tq

)
p,q

are both positive semidefi-

nite.
Indeed, ( si

λ+si
+ sj

λ+sj

s + sj

)
i,j

= 2DXD + λD1JmD1,

where D = diag
( s1

λ + s1
, . . . ,

sm

λ + sm

)
, X =

( 1
si + sj

)
i,j

, D1 = diag
( 1
λ + s1

,

. . . ,
1

λ + sm

)
and Jm is m×m matrix with each entry equal to 1. The matrix X being

the Cauchy matrix is known to be positive semidefinite. Thus the matrix in question is
positive semidefinite.

Similarly the matrix

( tp
μ+tp

+ tq
μ+tq

tp + tq

)
p,q

is positive semidefinite.

Hence the result follows since the tensor product of positive semidefinite matrices
is positive semidefinite. �
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THEOREM 3.6. Let A, C ∈ Pm and B, D ∈ Pn be such that A � ε1Im > 0 ,
C � ε1Im > 0 and B � ε2In > 0 , D � ε2In > 0 and let f (s, t) be operator monotone
on [0,∞) × [0,∞) . Then

‖|f (A, B)(X⊗Y)+(X⊗In)f (C, B)(Im⊗Y)+(Im⊗Y)f (A, D)(X⊗In)+(X⊗Y)f (C, D)‖|
� f (ε1, ε2)

ε1ε2
‖|(AX + XC) ⊗ (BY + YYD)‖|,

for all X ∈ Mm and Y ∈ Mn .

Proof. The function f (s, t) is concave coordinatewise and therefore the function
f (s, t)

st
is decreasing coordinatewise. Hence for every choice of si > 0 , i = 1, 2, . . . , m

and tp > 0 , p = 1, 2, . . . , n , we have

‖HT‖ = max
si>0,tj>0

f (si, tp)
sitp

=
f (ε1, ε2)
ε1ε2

since by Lemma 3.5 the matrix T =
( f (si, tp) + f (si, tq) + f (sj, tp) + f (sj, tq)

(si + sj)(tp + tq)

)
i,p;j,q

is positive semidefinite. The result now follows from Theorem 3.3.

LEMMA 3.7. Let f (s, t) be operator monotone on [0,∞)× [0,∞) . Then for every
choice of si > 0 , i = 1, 2, . . . , m and tp > 0 , p = 1, 2, . . . , n , the matrix

( f (si, tp) − f (si, tq) − f (sj, tp) + f (sj, tq)
(si − sj)(tp − tq)

)
i,p;j,q

is positive semidefinite. The entries in above matrix are to be defined appropriately in
case si = sj or tp = tq .

A proof of the above lemma can be found in [3].
The Lemma 3.7 gives us the following result, a proof of which is exactly similar

to the proof of Theorem 3.6.

THEOREM 3.8. Let A, C ∈ Pm and B, D ∈ Pn be such that A � ε1Im > 0 ,
C � ε1Im > 0 and B � ε2In > 0 , D � ε2In > 0 and let f (s, t) be operator monotone
on [0,∞) × [0,∞) . Then

‖|f (A, B)(X⊗Y)+(X⊗In)f (C, B)(Im⊗Y)−(Im⊗Y)f (A, D)(X⊗In)+(X⊗Y)f (C, D)‖|

� ∂2f
∂s∂t

∣∣∣∣
s=ε1,t=ε2

‖|(AX − XC) ⊗ (BY − YD)‖|,

for all X ∈ Mm and Y ∈ Mn . �
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