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SEVERAL PROPERTIES ON CLASS A INCLUDING

p –HYPONORMAL AND LOG–HYPONORMAL OPERATORS

MASATOSHI ITO

(communicated by T. Furuta)

Abstract. In this paper, we shall show that Yamazaki’s result in [23] remains valid for class A
introduced in [13] as a class of operators including p -hyponormal and log-hyponormal operators.
Moreover we shall show several properties on class A which correspond to the properties on
paranormal in [8][12][18] and [19].

1. Introduction

A capital letter means a bounded linear operator on a complex Hilbert space H .
An operator T is said to be positive (denoted by T � 0 ) if (Tx, x) � 0 for all x ∈ H .

An operator T is said to be p -hyponormal for p > 0 if (T∗T)p � (TT∗)p and
an operator T is said to be log-hyponormal if T is invertible and logT∗T � logTT∗ .
p -Hyponormal and log-hyponormal operators are defined as extensions of hyponormal
ones, i.e., T∗T � TT∗ , and also they have been studied by many authors, for instance,
[1][2][4][7][15][16][17][22][23] and [24]. It is easily obtained that every p -hyponormal
operator is q -hyponormal for p � q > 0 by Löwner-Heinz theorem “A � B � 0
ensures Aα � Bα for any α ∈ [0, 1] ", and every p -hyponormal operator is log-
hyponormal since log t is an operator monotone function.

Very recently, Aluthge and Wang [2] showed the followingTheorem A.1 on powers
of p -hyponormal operators.

THEOREM A.1. ([2]) Let T be a p -hyponormal operator for p ∈ (0, 1] . The
inequalities

(Tn∗Tn)
p
n � (T∗T)p � (TT∗)p � (TnTn∗)

p
n

hold for all positive integer n .

Theorem A.1 asserts that if T is a p -hyponormal operator for p ∈ (0, 1] , then Tn

is p
n -hyponormal for any positive integer n .

As generalizations of Theorem A.1, Furuta-Yanagida [16] and Yamazaki [23] ob-
tained the following results.

THEOREM A.2. ([16, Theorem 1]) Let T be a p -hyponormal operator for p ∈
(0, 1] . Then
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(1) (T∗T)p+1 � (T2∗T2)
p+1

2 � · · · � (Tn∗Tn)
p+1
n ,

(2) (TT∗)p+1 � (T2T2∗)
p+1

2 � · · · � (TnTn∗)
p+1
n ,

hold for all positive integer n .

THEOREM A.3. ([23, Theorem 2]) Let T be a log-hyponormal operator. Then
(1) T∗T � (T2∗T2)

1
2 � · · · � (Tn∗Tn)

1
n ,

(2) TT∗ � (T2T2∗)
1
2 � · · · � (TnTn∗)

1
n ,

hold for all positive integer n .

We remark that Theorem A.3 is a parallel result to Theorem A.2. In fact, Theorem
A.3 corresponds to TheoremA.2 in the case p → +0 since p -hyponormality of T (i.e.,
(T∗T)p � (TT∗)p ) approaches log-hyponormality of T (i.e., logT∗T � logTT∗ ) as
p → +0 .

An operator T is paranormal if
∥
∥T2x

∥
∥ �

∥
∥Tx

∥
∥

2
for every unit vector x ∈ H .

It has been studied by many authors, so there are too many to cite their references, for
instance, [3][8][12] and [19].

An operator T belongs to class A if |T2| � |T|2 . We call an operator T “class A
operator" briefly if T belongs to class A . In [13], we showed that every log-hyponormal
operator is a class A operator and every class A operator is a paranormal operator.
It turns out that these results contain another proof of Ando’s result [3] which every
log-hyponormal operator is a paranormal operator.

Moreover, in [13], we introduced new classes of operators as follows: An operator
T belongs to class A(k) for k > 0 if (T∗|T|2kT)

1
k+1 � |T|2 , and also an operator T

is absolute- k -paranormal for k > 0 if
∥
∥|T|kTx

∥
∥ �

∥
∥Tx

∥
∥

k+1
for every unit vector

x ∈ H . Particularly an operator T is a class A (resp. paranormal) operator if and only
if T is a class A(1) (resp. absolute- 1 -paranormal) operator. On class A(k) operators
and absolute- k -paranormal operators, we proved the following result.

THEOREM B. ([13, Theorem 2])
(1) Every log-hyponormal operator is a class A(k) operator for k > 0 .
(2) For each k > 0 , every invertible class A(k) operator is a class A(l) operator

for l � k .
(3) For each k > 0 , every absolute- k -paranormal operator is an absolute- l -

paranormal operator for l � k .
(4) For each k > 0 , every class A(k) operator is an absolute- k -paranormal opera-

tor.

Theorem B states that invertible class A(k) operators determined by operator
inequalities and absolute- k -paranormal operators determined by norm inequalities have
monotonicity on k > 0 , namely they constitute clearly parallel and increasing lines.

In this paper, we shall show that Theorem A.3 remains valid for class A operators
which are extensions of log-hyponormal operators. Moreover we shall show several
properties on class A which correspond to the properties on paranormal in [8][12][18]
and [19].
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2. Results

LEMMA 1. Let T be an invertible operator such that

(T∗|Tn−1|2kT)
1

(n−1)k+1 � |T|2
for some k > 0 and n = 2, 3, · · · . Then for any fixed δ � −1 ,

f n,δ (l) = (T∗|Tn−1|2lT)
δ+1

(n−1)l+1 (2.1)

is increasing for l � max{k, δ
n−1} .

By using Lemma 1, we obtain the following results.

THEOREM 2. Let T be an invertible and class A operator. Then the following
assertions hold;

(1) |Tn| 2
n � (T∗|Tn−1| 2

n−1 T)
1
2 � |T|2 for n = 2, 3, · · · .

(2) |Tn+1| 2n
n+1 � |Tn|2 for all positive integer n .

(3) |T2n| � |Tn|2 for all positive integer n .
(4) |T|2 � |T2| � · · · � |Tn| 2

n for all positive integer n .
(5) |T−2| � |T−1|2 .

THEOREM 3. Let T be an invertible and class A operator. Then the following
assertions hold;

(1) |T∗|2 � (T|Tn−1∗ | 2
n−1 T∗)

1
2 � |Tn∗ | 2

n for n = 2, 3, · · · .
(2) |Tn∗ |2 � |Tn+1∗ | 2n

n+1 for all positive integer n .
(3) |Tn∗ |2 � |T2n∗ | for all positive integer n .
(4) |T∗|2 � |T2∗ | � · · · � |Tn∗ | 2

n for all positive integer n .

(4) of Theorem 2 (resp. (4) of Theorem 3) coincides with (1) of Theorem A.3
(resp. (2) of Theorem A.3), that is, Theorem A.3 holds even if T is an invertible and
class A operator.

Theorem 2 can be rewritten in the following form.

COROLLARY 4.
(1) If T is an invertible and class A operator, then |Tn| 2

n � |T|2 holds for all positive
integer n .

(2) If T is an invertible and class A operator, then Tn is also a class A operator
for all positive integer n .

(3) If T is an invertible and class A operator, then T−1 is also a class A operator.
(4) If T is an invertible and class A operator, then

|T|2 � |T2| � · · · � |Tn| 2
n

hold for all positive integer n .

(1), (2), (3) and (4) of Corollary 4 follows from (1), (3), (5) and (4) of Theorem
2, respectively.
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3. Proofs of the results

We need the following Theorem C’ in order to give a proof of Lemma 1.

THEOREM C’. Let A and B be positive invertible operators such that

(B
1
2 AB

1
2 )

β0
α0+β0 � B holds for fixed α0 � 0 and β0 � 0 with α0 + β0 > 0 . Then for

any fixed δ � −β0 ,

g(λ ,μ) = B
−μ

2 (B
μ
2 AλB

μ
2 )

δ+β0μ
α0λ+β0μ B

−μ
2

is an increasing function of both λ and μ for λ � 1 and μ � 1 such that α0λ � δ .

By replacing A with B−1 and B with A−1 in the following Theorem C which
has been proved by Furuta inequality [9] (see also [5][10] and [20]), we easily obtain
Theorem C’.

THEOREM C. ([14, Theorem 1]) Let A and B be positive invertible operators such
that

A � (A
1
2 BA

1
2 )

β0
α0+β0 holds for fixed α0 � 0 and β0 � 0 with α0 + β0 > 0 . Then for

any fixed δ � −β0 ,

f (λ ,μ) = A
−μ

2 (A
μ
2 BλA

μ
2 )

δ+β0μ
α0λ+β0μ A

−μ
2

is a decreasing function of both λ and μ for λ � 1 and μ � 1 such that α0λ � δ .

Proof of Lemma 1. Let T = U|T| be the polar decomposition of T . We remark
that U is unitary since T is invertible. Suppose that

(T∗|Tn−1|2kT)
1

(n−1)k+1 � |T|2. (3.1)

Since

(T∗|Tn−1|2kT)
1

(n−1)k+1 = (U∗|T∗||Tn−1|2k|T∗|U)
1

(n−1)k+1 = U∗(|T∗||Tn−1|2k|T∗|) 1
(n−1)k+1 U,

(3.1) holds if and only if

U∗(|T∗||Tn−1|2k|T∗|) 1
(n−1)k+1 U � |T|2

if and only if

(|T∗||Tn−1|2k|T∗|) 1
(n−1)k+1 � U|T|2U∗ = |T∗|2. (3.2)

Let A = |Tn−1|2k and B = |T∗|2 . Then (3.2) is equivalent to the following (3.3):

(B
1
2 AB

1
2 )

1
(n−1)k+1 � B. (3.3)

By applying Theorem C’ to (3.3), for any fixed δ � −1 ,

g(λ ) = B
−1
2 (B

1
2 AλB

1
2 )

δ+1
(n−1)kλ+1 B

−1
2

= |T∗|−1(|T∗||Tn−1|2kλ |T∗|) δ+1
(n−1)kλ+1 |T∗|−1



SEVERAL PROPERTIES ON CLASS A 573

is increasing for λ � 1 such that (n − 1)kλ � δ , and we have that

g( l
k ) = |T∗|−1(|T∗||Tn−1|2l|T∗|) δ+1

(n−1)l+1 |T∗|−1

= |T∗|−1(UU∗|T∗||Tn−1|2l|T∗|UU∗)
δ+1

(n−1)l+1 |T∗|−1

= |T∗|−1U(T∗|Tn−1|2lT)
δ+1

(n−1)l+1 U∗|T∗|−1 since U is unitary

= T∗−1

f n,δ (l)T−1

is increasing for l � k such that (n − 1)l � δ . Hence f n,δ (l) is increasing for
l � max{k, δ

n−1} , that is, the proof of Lemma 1 is complete. �

Proof of Theorem 2. Define f n,δ (l) as (2.1) in Lemma 1.
Proof of (1) . We will use induction to establish the inequalities

|Tn| 2
n � (T∗|Tn−1| 2

n−1 T)
1
2 � |T|2 for n = 2, 3, · · · . (3.4)

In case n = 2 , |T2| = (T∗|T|2T)
1
2 � |T|2 hold since T is a class A operator.

Assume that (3.4) holds for some n � 2 . Then

|T|2 � |T2| since T is a class A operator

= (T∗|T|2T)
1
2 (3.5)

� (T∗|Tn| 2
n T)

1
2 by (3.4) and Löwner-Heinz theorem.

Then (3.5) and Lemma 1 ensure that

f n+1,0(l) = (T∗|Tn|2lT)
1

nl+1 is increasing for l � max{ 1
n , 0} = 1

n , (3.6)

and we have

(T∗|Tn| 2
n T)

1
2 = f n+1,0( 1

n )
� f n+1,0(1) by (3.6) (3.7)

= (T∗|Tn|2T)
1

n+1

= |Tn+1| 2
n+1 .

Hence (3.5) and (3.7) ensure |Tn+1| 2
n+1 � (T∗|Tn| 2

n T)
1
2 � |T|2 , so that (3.4) hold

for n = 2, 3, · · · by induction, that is, the proof of (1) is complete.

Proof of (2) . We will use induction to establish the inequality

|Tn+1| 2n
n+1 � |Tn|2 for all positive integer n . (3.8)

In case n = 1 , |T2| � |T|2 holds since T is a class A operator.
Assume that (3.8) holds for some n . We remark the following:

Since (T∗|Tn+1| 2
n+1 T)

1
2 � |T|2 holds by (1), Lemma 1 ensures that

f n+2,n(l) = (T∗|Tn+1|2lT)
n+1

(n+1)l+1 is increasing for l � max{ 1
n+1 ,

n
n+1} = n

n+1 . (3.9)
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Then we have
|Tn+1|2 = T∗|Tn|2T

� T∗|Tn+1| 2n
n+1 T by (3.8)

= f n+2,n( n
n+1 )

� f n+2,n(1) by (3.9)

= (T∗|Tn+1|2T)
n+1
n+2

= |Tn+2| 2(n+1)
n+2 .

Hence (3.8) holds for all positive integer n by induction, that is, the proof of (2) is
complete.

Proof of (3) . By (2) and Löwner-Heinz theorem, we obtain

|Tn|2 � |Tn+1| 2n
n+1 = |Tn+1|2· n

n+1

� |Tn+2| 2(n+1)
n+2 · n

n+1 = |Tn+2|2· n
n+2

� · · ·
� |T2n| 2(2n−1)

2n · n
2n−1 = |T2n|2· n

2n = |T2n|,
so that we have (3).

Proof of (4) . Applying Löwner-Heinz theorem to (2), |Tn+1| 2
n+1 � |Tn| 2

n holds for all
positive integer n . Therefore we obtain

|T|2 � |T2| � · · · � |Tn| 2
n for all positive integer n .

Proof of (5) . We cite the following obvious result (see also [11][13]): Let S be an
invertible operator. Then

(S∗S)λ = S∗(SS∗)λ−1S holds for any real number λ . (3.10)

Suppose that T is an invertible class A operator. Then

T∗T = |T|2 � |T2| = (T2∗T2)
1
2 = T2∗(T2T2∗)

−1
2 T2 (3.11)

holds by (3.10). (3.11) holds if and only if

T−1∗T−1 � (T2T2∗)
−1
2 = (T−2∗T−2)

1
2

if and only if
|T−2| � |T−1|2,

so that the proof of (5) is complete.
Whence the proof of Theorem 2 is complete. �

Proof of Theorem 3. First of all, we remark that

|S−1| = (S−1∗S−1)
1
2 = (SS∗)

−1
2 = |S∗|−1 for any invertible operator S . (3.12)



SEVERAL PROPERTIES ON CLASS A 575

Suppose that T is an invertible and class A operator. Then T−1 is also a class A
operator by (5) of Theorem 2.

Proof of (1) . Since T−1 is a class A operator, applying (1) of Theorem 2, we have

|T−n| 2
n � (T−1∗ |T−(n−1)| 2

n−1 T−1)
1
2 � |T−1|2. (3.13)

By (3.12), (3.13) hold if and only if

|Tn∗ |−2
n � (T−1∗ |Tn−1∗ | −2

n−1 T−1)
1
2 � |T∗|−2

if and only if

|T∗|2 � (T|Tn−1∗ | 2
n−1 T∗)

1
2 � |Tn∗ | 2

n .

Proof of (2) . Since T−1 is a class A operator, applying (2) of Theorem 2, we have

|T−(n+1)| 2n
n+1 � |T−n|2. (3.14)

By (3.12), (3.14) holds if and only if

|Tn∗ |2 = |T−n|−2 � |T−(n+1)|−2n
n+1 = |Tn+1∗ | 2n

n+1 .

Proof of (3) . Since T−1 is a class A operator, applying (3) of Theorem 2, we have

|T−2n| � |T−n|2. (3.15)

By (3.12), (3.15) holds if and only if

|Tn∗ |2 = |T−n|−2 � |T−2n|−1 = |T2n∗ |.

Proof of (4) . Since T−1 is a class A operator, applying (4) of Theorem 2, we have

|T−1|2 � |T−2| � · · · � |T−n| 2
n . (3.16)

By (3.12), (3.16) hold if and only if

|T∗|−2 � |T2∗ |−1 � · · · � |Tn∗ |−2
n

if and only if

|T∗|2 � |T2∗ | � · · · � |Tn∗ | 2
n .

Hence the proof of Theorem 3 is complete. �
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4. Properties on paranormal which correspond to Corollary 4

On paranormal operators, the following Theorem D is obtained in [8][12][18] and
[19] except (4). We recognize that Corollary 4 on class A corresponds to Theorem D
on paranormal.

THEOREM D. ([8][12][18][19])

(1) If T is a paranormal operator, then
∥
∥Tnx

∥
∥

1
n �

∥
∥Tx

∥
∥ holds for every unit vector

x ∈ H and all positive integer n .
(2) If T is a paranormal operator, then Tn is also a paranormal operator for all

positive integer n .
(3) If T is an invertible and paranormal operator, then T−1 is also a paranormal

operator.
(4) If T is a paranormal operator, then

∥
∥Tx

∥
∥ �

∥
∥T2x

∥
∥

1
2 � · · · �

∥
∥Tnx

∥
∥

1
n (4.1)

hold for every unit vector x ∈ H and all positive integer n .

(4) of Theorem D follows from the following fundamental inequalities on para-
normal operators in [8]: If T is a paranormal operator, then

∥
∥T

∥
∥ � · · · �

∥
∥Tn+2x

∥
∥

∥
∥Tn+1x

∥
∥

�
∥
∥Tn+1x

∥
∥

∥
∥Tnx

∥
∥

�
∥
∥Tnx

∥
∥

∥
∥Tn−1x

∥
∥

� · · · �
∥
∥T2x

∥
∥

∥
∥Tx

∥
∥

�
∥
∥Tx

∥
∥

∥
∥x

∥
∥

(4.2)

hold for all x ∈ H and all positive integer n . For the sake of convenience, we give a
proof of (4) of Theorem D.

Proof of (4) of Theorem D. We will use induction to establish the inequality

∥
∥Tnx

∥
∥

1
n �

∥
∥Tn+1x

∥
∥

1
n+1 (4.3)

for every unit vector x ∈ H and all positive integer n . In case n = 1 ,
∥
∥Tx

∥
∥ �

∥
∥T2x

∥
∥

1
2

holds since T is a paranormal operator.
Assume that (4.3) holds for some n . Then for every unit vector x ∈ H , we have

the following (4.4).
∥
∥Tn+1x

∥
∥

2 �
∥
∥Tn+2x

∥
∥
∥
∥Tnx

∥
∥ by (4.2) (4.4)

�
∥
∥Tn+2x

∥
∥
∥
∥Tn+1x

∥
∥

n
n+1 by (4.3).

Therefore
∥
∥Tn+1x

∥
∥

1
n+1 �

∥
∥Tn+2x

∥
∥

1
n+2

holds for every unit vector x ∈ H , so that (4.3) holds for all positive integer n by
induction.

Consequently we have

‖Tx‖ � ‖T2x‖ 1
2 � · · · �

∥
∥Tnx

∥
∥

1
n (4.1)
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hold for every unit vector x ∈ H and all positive integer n , that is, the proof of (4) of
Theorem D is complete. �

An operator T is n -paranormal for positive integer n such that n � 2 if
∥
∥Tnx

∥
∥ �

∥
∥Tx

∥
∥

n
for every unit vector x ∈ H . It has been studied in [6][12] and [18]. (1) of

Theorem D states the following well-known result that every paranormal operator is an
n -paranormal operator for n = 2, 3, · · · , and also we have the following Proposition 5.

PROPOSITION 5. If T satisfies |Tn| 2
n � |T|2 for some positive integer n such that

n � 2 , then T is an n -paranormal operator.

In case n = 2 , Proposition 5 means that every class A operator is a paranormal
operator [13]. We need the following theorem in order to give a proof of Proposition 5.

THEOREM E. (Hölder-McCarthy inequality [21]) Let A be a positive operator.
Then the following inequalities hold for all x ∈ H :

(i) (Arx, x) � (Ax, x)r
∥
∥x

∥
∥

2(1−r)
for 0 < r � 1 .

(ii) (Arx, x) � (Ax, x)r
∥
∥x

∥
∥

2(1−r)
for r � 1 .

Proof of Proposition 5. Suppose that T satisfies

|Tn| 2
n � |T|2 (4.5)

for some positive integer n such that n � 2 . Then for every unit vector x ∈ H ,
∥
∥Tnx

∥
∥

2 = (|Tn|2x, x)
� (|Tn| 2

n x, x)n by (ii) of Theorem E

� (|T|2x, x)n by (4.5)

=
∥
∥Tx

∥
∥

2n
.

Hence we have
∥
∥Tnx

∥
∥ �

∥
∥Tx

∥
∥

n
for every unit vector x ∈ H,

so that T is n -paranormal for positive integer n such that n � 2 . �

Remark. An operator T is n -perinormal for positive integer n such that n � 2
if T∗nTn � (T∗T)n . n -Perinormal operators are introduced by Fujii, Izumino and
Nakamoto [6]. Particularly the class of 2 -perinormal operators coincides with the class
of quasihyponormal one, i.e., T∗(T∗T)T � T∗(TT∗)T . We easily obtain the following
result by Löwner-Heinz theorem: For each positive integer n such that n � 2 , every
n -perinormal operator satisfies |Tn| 2

n � |T|2 .
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[19] V. ISTRĂŢESCU, T. SAITO AND T. YOSHINO, On a class of operators, Tôhoku Math. J., 18 (1966),
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