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UNIFYING APPROACH TO THE STUDY OF

p –HYPONORMAL OPERATORS VIA FURUTA INEQUALITY

C.-S. LIN

(communicated by T. Furuta)

Abstract. In this paper we propose a unifying approach to the study of the operators | T |g U |
T |h and | T∗ |g U | T∗ |h being p -hyponormal. This approach is based on the direct use
of combined Furuta inequalities, and, consequently, characterizations of a normal operator are
presented.

1. Notation and terminology

Throughout this note it is to be understood that the capital letters mean bounded
linear operators acting on a Hilbert space H. T is positive (written T � O ) in case
(Tx, x) � 0 for all x ∈H. If S and T are Hermitian, we write T � S in case T−S � O.
T = U | T | is the polar decomposition of T with U the partial isometry, and | T | the
positive square root of the positive operator T∗T such that N(U) = N(| T |), where
N(T) denotes the kernel of T.

In [10] Xia first introduced the semi-hyponormal operator, i.e., T is such an opera-
tor if (T∗T)1/2 � (TT∗)1/2. Its natural generalization is the p -hyponormal operator [1,
11], viz. (T∗T)p � (TT∗)p holds for 0 < p � 1, and T is hyponormal when p = 1
in particular. If 0 < p′ � p and T is p -hyponormal, then T is p′ -hyponormal by the
Löwner-Heinz formula (Aα � Bα if A � B � O and α ∈ [0, 1]).

2. Characterization of a p-hyponormal operator by Furuta inequalities

We recall first the following celebrated Furuta inequality [3, 5], which is a remark-
able generalization of the Löwner-Heinz formula.
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THEOREMF (Furuta inequality).
If A � B � O, then for each r � 0,
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The domain drawn for p, q and r in the Figure is best possible one for the Furuta
inequality by K. Tanahashi [9]. For r � 0, k � 0 and q � 1 with (1 + 2r)q � k + 2r
and suppose that A � B � C � O, we may put the two inequalities (i) and (ii) into
one expression, i.e., the combined Furuta inequalities, viz.

(*) (BrAkBr)
1
q � B

k+2r
q � (BrCkBr)

1
q .

We notice first that the followingwell-knownbasic relations(cf.[2, 4, 8]) are crucial
in the proofs of results. Let T = U | T | be the polar decomposition. For m, n > 0,
(U | T |m U∗)n = U | T |mn U∗ holds in general, but (U∗ | T |m U)n = U∗ | T |mn U
holds if N(T) = N(T∗). U∗U and UU∗ are the initial projection and the final
projection, respectively. | T∗ |m= U | T |m U∗ holds in general, and UU∗ = U∗U if
N(T) = N(T∗). We shall cite the following obvious result.

PROPOSITION. Let A � O with N(A) = N(T), and a, b > 0. Then | T |a A |
T |a=| T |b+2a if and only if A =| T |b . (Recall that without N(A) = N(T), there
exists an easy counterexample to Proposition.)

It is clear now that T = U | T | is p -hyponormal if and only if U | T |p
is hyponormal, a well-known result. The next result is a characterization of a p -
hyponormal operator by using (i) and (ii) in above, which is required in the main
result.

LEMMA. Let T = U | T | be the polar decomposition and 0 < p � 1. Then the
following are equivalent.

(1) T is a p -hyponormal operator;

(2) U∗{| T∗ |2pr| T |2pk| T∗ |2pr} 1
q U �| T | 2p(k+2r)

q � {| T |2pr| T∗ |2pk| T |2pr} 1
q ,

or

{| T∗ |2pr| T |2pk| T∗ |2pr} 1
q �| T∗ | 2p(k+2r)

q � U{| T |2pr| T∗ |2pk| T |2pr} 1
q U∗

for k, r � 0 and q � 1 such that (1 + 2r)q � k + 2r;

(3) U∗ | T |2p U �| T |2p� U | T |2p U∗,
or
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U∗ | T∗ |2p U �| T∗ |2p� U | T∗ |2p U∗.

Proof. (1) implies (2). Notice first that T is p -hyponormal if and only if |
T∗ |2p�| T |2p . Let A =| T |2p and B =| T∗ |2p in (i) and (ii) above, respectively.
Then we have

{| T∗ |2pr| T |2pk| T∗ |2pr} 1
q �| T∗ | 2p(k+2r)

q = U | T | 2p(k+2r)
q U∗

and
U∗ | T∗ | 2p(k+2r)

q U =| T | 2p(k+2r)
q � {| T |2pr| T∗ |2pk| T |2pr} 1

q .

(2) implies (3). Let k = q = 1 and r = 0 in (2).
Clearly, (3) implies that T is p -hyponormal since U | T |2p U∗ =| T∗ |2p and

U∗ | T∗ |2p U =| T |2p .

3. Unifying approach to the study of p-hyponormal
operators via combined Furuta inequalities

Recently a p -hyponormal operator of the type | T |g U | T |h for certain g, h > 0
has been intensively studied by several authors and the results obtained have been found
useful in the operator theory [1, 6, 7, 8, and the references cited therein]. By using the
combinedFuruta inequalities (*) our nextmain result shows such type of p -hyponormal
operator in a more general form, and operator of the type | T∗ |g U | T∗ |h is equally
discussed.

THEOREM. Let T = U | T | be a p -hyponormal operator, 0 < p � 1, N(T) =
N(T∗), and let ˜T =| T |kp U | T |2pr, ̂T = | T |2pr U | T |kp, ˜S =| T∗ |kp U | T∗ |2pr,

and ̂S = | T∗ |2pr U | T∗ |kp for k, r � 0 and q � 1 . Then we have

(1) (˜T∗
˜T)

1
q �| T | 2p(k+2r)

q � (̂T ̂T∗)
1
q with (1 + 2r)q � k + 2r;

(2) (̂T∗
̂T)

1
q �| T | 2p(k+2r)

q � (˜T ˜T∗)
1
q with (1 + k)q � k + 2r;

(3) (˜S∗˜S)
1
q �| T∗ | 2p(k+2r)

q � (̂ŜS∗)
1
q with (1 + 2r)q � k + 2r;

(4) (̂S∗̂S)
1
q �| T∗ | 2p(k+2r)

q � (˜S˜S∗)
1
q with (1 + k)q � k + 2r.

Moreover, all four statements are equivalent. In particular, the operators ˜T , ̂T,
˜S, and ̂S are all α -hyponormal with α �min { 1+2r

k+2r ,
1+k
k+2r , 1}.

Proof. To prove (1), due to Lemma we may let A = U∗ | T |2p U, B =| T |2p,
and C = U | T |2p U∗ in the inequalities (*). Then,

{| T |2pr (U∗ | T |2p U)k | T |2pr} 1
q �| T | 2p(k+2r)

q � {| T |2pr (U | T |2p U∗)k | T |2pr} 1
q ,

so that since N(T) = N(T∗)

{| T |2pr U∗ | T |2kp U | T |2pr} 1
q �| T | 2p(k+2r)

q � {| T |2pr U | T |2kp U∗ | T |2pr} 1
q

for k, r � 0 and q � 1 with (1 + 2r)q � k + 2r, and (1) follows.
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(1) implies (2). Since k, r � 0, we may replace k by 2r , and vice versa, in the
last inequalities of the above proof without affecting the inequalities themself. Thus,

{| T |kp U∗ | T |4pr U | T |kp} 1
q �| T | 2p(k+2r)

q � {| T |kp U | T |4pr U∗ | T |kp} 1
q

for k, r � 0 and q � 1 with (1 + k)q � k + 2r , and (2) follows.
(2) implies (1). Use the same method as the proof (1) implies (2) in above.
To prove (3), due to Lemma we may put A = U∗ | T∗ |2p U, B =| T∗ |2p, and

C = U | T∗ |2p U∗ in the inequalities (*), and the process goes exactly the same as
above.

Similarly, we can show the two inequalities (3) and (4) are equivalent. In fact, all
four inequalities are equivalent.

It is readily seen that the last statement of Theorem follows immediately by com-
bining inequalities (1) and (2), and (3) and (4), respectively.

Let us point out three most recent results in this area. Firstly, it was mentioned
in [6, Theorem 1 ′ ], and was proved in [7, Theorem 1] that both | T |s U | T |t and
| T |t U | T |s are ( p+s

s+t ) -hyponormal operators for s � 0 and t �max {p, s}. A
simple calculation shows that this is the case when kp = s and 2pr = t in Theorem
, then min { p+t

s+t , p+s
s+t , 1} = p+s

s+t if t �max {p, s} . Moreover, the two operators
| T∗ |s U | T∗ |t and | T∗ |t U | T∗ |s have exactly the same properties as the
above two. Secondly, in [7, Theorem 2] it was shown that | T |t U | T |s−t is a
j -hyponormal operator for s > 0, s � t � 0, and j = min { p+t

s , p+s−t
s , 1} without

the assumption N(T) = N(T∗). This is another case when kp = t and 2pr = s − t
in Theorem, then α � min { p+t

s , p+s−t
s , 1}. In fact, the operators | T |s−t U | T |t,

| T∗ |t U | T∗ |s−t, and | T∗ |s−t U | T∗ |t are all α -hyponormal. Thirdly, the operator
| T |1/2 U | T |1/2 was proved to be (p + 1

2 ) -hyponormal if 0 < p � 1
2 [1, Theorem 2].

This follows easily if we put kp = 2pr = 1
2 in Theorem so that min{p+ 1

2 , 1} = p+ 1
2 .

Besides, the operator | T∗ |1/2 U | T∗ |1/2 is (p + 1
2 ) -hyponormal, too. Thus we see

that our Theorem is indeed in a more general setting.

4. Applications

As easy consequences of Theorem we obtain the following two results. The first
one is a generalization of [1, Theorem 1] and [6, Theorem 2], and the second one is new
characterizations of a normal operator.

COROLLARY 1. Let T = U | T | be a p -hyponormal operator, 0 < p � 1,
and N(T) = N(T∗). Then the operators | T |kp U | T |2pr, | T |2pr U | T |kp,
| T∗ |kp U | T∗ |2pr, and | T∗ |2pr U | T∗ |kp are all hyponormal for k, 2r ∈ (0, 1]
(hence, α -hyponormal for 0 < α � 1 ).

Proof. Let 1+2r
k+2r and 1+k

k+2r � 1 in Theorem. Then k, 2r ∈ (0, 1] and α � 1.
It may be noted that two particular cases of Corollary 1 are as follows. Let

T = U | T | be p -hyponormal. Then: (1) | T |1/2 U | T |1/2 is hyponormal for
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1
2 � p < 1 [1, Theorem 1], and (2) | T |q U | T |q is hyponormal for 1 � p � q > 0
[6, Theorem 2].

COROLLARY 2. Let T = U | T | be the polar decomposition, 0 < p � 1,

N(T) = N(T∗), and let ˜T =| T |kp U | T |2pr, ̂T = | T |2pr U | T |kp, ˜S
=| T∗ |kp U | T∗ |2pr, and ̂S = | T∗ |2pr U | T∗ |kp for k, r � 0 with k + r > 0. Then
the following are equivalent.

(1) T is a normal operator;
(2) ˜T is a normal operator, and ˜T∗

˜T = ˜T ˜T∗ =| T |2p(k+2r);
(3) ̂T is a normal operator, and ̂T∗

̂T = ̂T ̂T∗ =| T |2p(k+2r);
(4) ˜S is a normal operator, and ˜S∗˜S = ˜S˜S∗ =| T∗ |2p(k+2r);
(5) ̂S is a normal operator, and ̂S∗̂S = ̂ŜS∗ =| T∗ |2p(k+2r) .

Proof. (1) implies (2) and (3). Notice that T is normal if and only if ‖ T∗x ‖=‖
Tx ‖ for all x ∈H, equivalently, | T |2=| T∗ |2, or U∗ | T |2 U =| T |2= U | T |2 U∗.
Hence, U∗ | T |2p U =| T |2p= U | T |2p U∗ since N(T) = N(T∗). Let q = 1. Then
from the proof of Theorem we have

˜T∗
˜T =| T |2p(k+2r)= ̂T ̂T∗;

and
̂T∗

̂T =| T |2p(k+2r)= ˜T ˜T∗.

(2) implies (1). Suppose that ˜T is normal and ˜T∗
˜T = ˜T ˜T∗ =| T |2p(k+2r), then

| T |2pr U∗ | T |2kp U | T |2pr=| T |2p(k+2r)=| T |kp U | T |4pr U∗ | T |kp .

Now, consider the following two cases: (a) If k �= 0, then the first equality in above
becomes U∗ | T |2kp U =| T |2kp by Proposition, so that | T |2kp= UU∗ | T |2kp

UU∗ = U | T |2kp U∗ = | T∗ |2kp since N(T) = N(T∗). Hence, | T |2= | T∗ |2 .
(b) If r �= 0, then the second equality in above becomes | T |4pr= U | T |4pr U∗ by
Proposition, i.e., | T |4pr= | T∗ |4pr so that | T |2= | T∗ |2 .

That (3) implies (1) may be carried out similarly.

Notice that | T∗ |a= U | T |a U∗ for a > 0, and so we may change the relation
in (4) to that in (2), and (5) to (3).
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