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EXISTENCE THEOREMS OF GENERALIZED QUASI–VARIATIONAL

INEQUALITIES WITH UPPER HEMI–CONTINUOUS

AND DEMI OPERATORS ON NON–COMPACT SETS

MOHAMMAD S. R. CHOWDHURY 1 AND ENAYET TARAFDAR

(communicated by J. Pečarić)

Abstract. Suppose that E is a topological vector space and X is a non-empty subset of E . Let

S : X → 2X and T : X → 2E∗
be two maps. Then the generalized quasi-variational inequality

problem (GQVI) is to find a point ŷ ∈ S(ŷ) and a point ŵ ∈ T(ŷ) such that Re〈 ŵ, ŷ − x〉 � 0
for all x ∈ S(ŷ) . We shall use Chowdhury and Tan’s generalized version [4] of Ky Fan’s
minimax inequality [7] as a tool to obtain some general theorems on solutions of the GQVI in
locally convex Hausdorff topological vector spaces. We obtain the existence theorems of GQVI
on paracompact sets X where the set-valued operators T are demi operators [3] and are upper
hemi-continuous [5] along line segments in X to the weak ∗ -topology on E∗ .

1. Introduction

Let X be a non-empty set, and 2X be the family of all non-empty subsets of X .
Let E be a topological vector space. We shall denote by E∗ the continuous dual of E ,
by 〈w, x〉 the pairing between E∗ and E for w ∈ E∗ and x ∈ E and by Re〈w, x〉 the
real part of 〈w, x〉 . Given the maps S : X → 2X and T : X → 2E∗

, the generalized
quasi-variational inequality problem (GQVI) is to find a point ŷ ∈ S(ŷ) and a point
ŵ ∈ T(ŷ) such that Re〈 ŵ, ŷ − x〉 � 0 for all x ∈ S(ŷ) . The GQVI was introduced by
Chan and Pang [2] in 1982 if E = R

n and by Shih and Tan [10] in 1985 if E is infinite
dimensional.

In this paper we shall obtain some general theorems on solutions of the GQVI.
In obtaining these results we shall mainly use the following generalized version of Ky
Fan’s minimax inequality [7] due to Chowdhury and Tan [4].

THEOREM 1.1. Let E be a topological vector space, X be a non-empty convex
subset of E and f : X × X → R ∪ {−∞, +∞} be such that

(a) for each A ∈ F(X) and each fixed x ∈ co(A) , y �−→ f (x, y) is lower
semicontinuous on co(A) ;

(b) for each A ∈ F(X) and each y ∈ co(A) , minx∈A f (x, y) � 0 ;
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(c) for each A ∈ F(X) and each x, y ∈ co(A) and every net {yα}α∈Γ in X
converging to y with f (tx + (1 − t)y, yα) � 0 for all α ∈ Γ and all t ∈ [0, 1] , we
have f (x, y) � 0 ;

(d) there exist a non-empty closed and compact subset K of X and x0 ∈ K such
that f (x0, y) > 0 for all y ∈ X\K .

Then there exists ŷ ∈ K such that f (x, ŷ) � 0 for all x ∈ X .

2. Preliminaries

If X is a topological space and {Uα : α ∈ A} is an open cover for X , then a
partition of unity subordinated to the open cover {Uα : α ∈ A} is a family {βα : α ∈
A} of continuous real-valued functions βα : X → [0, 1] such that

(a) βα(y) = 0 for all y ∈ X \ Uα ,
(b) { support βα : α ∈ A} is locally finite and
(c) Σα∈Aβα(y) = 1 for each y ∈ X .

We shall first state the following result which is Lemma 1 of Shih and Tan in [10]:

LEMMA 2.1. Let X be a non-empty subset of a Hausdorff topological vector space
E and S : X → 2E be an upper semicontinuous map such that S(x) is a bounded subset
of E for each x ∈ X . Then for each continuous linear functional p on E , the map
f p : X → R defined by f p(y) = supx∈S(y) Re〈 p, x〉 is upper semicontinuous; i.e., for
each λ ∈ R , the set {y ∈ X : f p(y) = supx∈S(y) Re〈 p, x〉 < λ} is open in X .

The following result is Lemma 3 of Takahashi in [12] (see also Lemma 3 in [11]):

LEMMA 2.2. Let X and Y be topological spaces, f : X → R be non-negative and
continuous and g : Y → R be lower semicontinuous. Then the map F : X × Y → R ,
defined by F(x, y) = f (x)g(y) for all (x, y) ∈ X × Y, is lower semicontinuous.

We shall need the following Kneser’s minimax theorem in [8] (see also Aubin [1]):

THEOREM 2.1. Let X be a non-empty convex subset of a vector space and Y be
a non-empty compact convex subset of a Hausdorff topological vector space. Suppose
that f is a real-valued funtion on X × Y such that for each fixed x ∈ X, the map
y �→ f (x, y) is lower semicontinuous and convex on Y and for each fixed y ∈ Y, the
map x �→ f (x, y) is concave on X . Then

min
y∈Y

sup
x∈X

f (x, y) = sup
x∈X

min
y∈Y

f (x, y).

The following definition is Definition 2 in [3]:

DEFINITION 2.1. Let E be a topological vector space, X be a non-empty subset
of E and T : X → 2E∗

. If h : X → R , then T is said to be an h -demi (respectively, a
strong h -demi) operator if for each y ∈ X and every net {yα}α∈Γ in X converging to
y (respectively, weakly to y ) with

lim sup
α∈Γ

[ inf
u∈T(y)

Re〈 u, yα − y〉 + h(yα) − h(y)] � 0
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we have

lim sup
α∈Γ

[ inf
u∈T(x)

Re〈 u, yα − x〉 + h(yα) − h(x)]

� inf
u∈T(x)

Re〈 u, y− x〉 + h(y) − h(x) for all x ∈ X.

T is said to be a demi (respectively, strong demi) operator if T is an h -demi (respec-
tively, a strong h -demi) operator with h ≡ 0 .

The following proposition is Proposition 2 in [3]:

PROPOSITION 2.1. Let X be a non-empty bounded subset of a topological vector
space E , h : X → R be weakly lower semicontinuous and T : X → 2E∗

be an operator
such that each T(x) is strongly compact. Then T is an h -demi and a strong h -demi
operator.

The following definition is Definition 2.1(b) in [5]:

DEFINITION 2.2. Let E be a topological vector space, X be a non-empty subset
of E and T : X → 2E∗

. Then T is said to be upper hemicontinuous on X if and only
if for each p ∈ E , the function f p : X → R ∪ {+∞} , defined by

f p(z) = sup
u∈T(z)

Re〈 u, p〉 for each z ∈ X,

is upper semicontinuous on X (if and only if for each p ∈ E , the function gp : X →
R ∪ {−∞} , defined by

gp(z) = inf
u∈T(z)

Re〈 u, p〉 for each z ∈ X,

is lower semicontinuous on X ).

The following proposition is Proposition 2.4 in [5]:

PROPOSITION 2.2. Let E be a topological vector space and X be a non-empty
subset of E . Let T : X → 2E∗

be upper semicontinuous from relative topology on X
to the weak ∗ topology σ〈E∗, E〉 on E∗ . Then T is upper hemicontinuous on X .

Note that there is a typo in Proposition 2.4 in [5]. The convexity of X is not needed.

The following result is Lemma 3 in [3]:

LEMMA 2.3. Let E be a Hausdorff topological vector space, A ∈ F(E) , X =
co(A) and C be a non-empty weak ∗ -compact subset of E∗ . Let f : X × X → R be
defined by f (x, y) = infw∈C Re〈w, y− x〉 for all x, y ∈ X . Then for each fixed x ∈ X ,
y �−→ f (x, y) is continuous on X .

The following result is Lemma 4.2 in [5]:
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LEMMA 2.4. Let E be a topological vector space, X be a non-empty convex
subset of E , h : X → R be convex and T : X → 2E∗

be upper hemicontinuous
along line segments in X . Suppose ŷ ∈ X is such that infu∈T(x) Re〈 u, ŷ − x〉 �
h(x) − h(ŷ) for all x ∈ X. Then

inf
w∈T(ŷ)

Re〈w, ŷ − x〉 � h(x) − h(ŷ) for all x ∈ X.

3. Generalized quasi-variational inequalities for both upper
hemi-continuous and demi operators on non-compact sets.

In this sectionwe shall obtain some general theorems on solutions of the generalized
quasi-variational inequalities for both upper hemi-continuous and demi operators on
non-compact sets.

We shall first establish the following result:

THEOREM 3.1. Let E be a locally convex Hausdorff topological vector space, X
be a non-empty paracompact convex and bounded subset of E and h : E → R be
convex with h(X) bounded. Let S : X → 2X be upper semicontinuous such that each
S(x) is compact convex and T : X → 2E∗

be an h -demi operator and be upper hemi-
continuous along line segments in X to the weak ∗ -topology on E∗ such that each T(x)
is weak ∗ -compact convex. Suppose that the set

Σ = {y ∈ X : sup
x∈S(y)

[ inf
u∈T(x)

Re〈 u, y− x〉 + h(y) − h(x)] > 0}

is open in X and for each A ∈ F(X) and each y ∈ co(A) there exist x̄ ∈ A and
ū ∈ T(x̄) such that β0(y)[Re〈 ū, y − x̄〉 + h(y) − h(x̄)] + Σp∈E∗βp(y)Re〈 p, y− x̄〉 � 0
for every family {β0, βp : p ∈ E∗} of non-negative real-valued functions from X into
[0,1]. Suppose further that there exists a non-empty compact subset K of X and a
point x0 ∈ X such that x0 ∈ K∩S(y) and minu∈T(x0) Re〈 u, y− x0〉 +h(y)−h(x0) > 0
for all y ∈ X \ K . Then there exists a point ŷ ∈ K such that

(i) ŷ ∈ S(ŷ) and
(ii) there exist a point ŵ ∈ T(ŷ) with Re〈 ŵ, ŷ−x〉 � h(x)−h(ŷ) for all x ∈ S(ŷ) .

Proof. We divide the proof into three steps:

Step 1. There exists a point ŷ ∈ X such that ŷ ∈ S(ŷ) and

sup
x∈S(ŷ)

[ inf
u∈T(x)

Re〈 u, ŷ− x〉 + h(ŷ) − h(x)] � 0.

Suppose the contrary. Then for each y ∈ X , either y �∈ S(y) or there exists
x ∈ S(y) such that infu∈T(x) Re〈 u, y − x〉 + h(y) − h(x) > 0; that is, for each y ∈ X ,
either y �∈ S(y) or y ∈ Σ . If y �∈ S(y) , then by a separation theorem for convex sets
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in locally convex Hausdorff topological vector spaces, there exists p ∈ E∗ such that
Re〈 p, y〉 − supx∈S(y) Re〈 p, x〉 > 0. For each y ∈ X , set

γ (y) := sup
x∈S(y)

[ inf
u∈T(x)

Re〈 u, y− x〉 + h(y) − h(x)].

Let V0 := {y ∈ X|γ (y) > 0} = Σ and for each p ∈ E∗ , set

Vp := {y ∈ X : Re〈 p, y〉 − sup
x∈S(y)

Re〈 p, x〉 > 0}.

Then X = V0∪
⋃

p∈E∗ Vp. Since each Vp is open in X by Lemma 2.1 and V0 is open in
X by hypothesis, {V0, Vp : p ∈ E∗} is an open covering for X . Since X is paracompact,
there is a continuous partition of unity {β0, βp : p ∈ E∗} for X subordinated to the
open cover {V0, Vp : p ∈ E∗} (see, e.g., Theorem VIII.4.2 of Dugundji in [6]); that is
for each p ∈ E∗ , βp : X → [0, 1] and β0 : X → [0, 1] are continuous functions such
that for each p ∈ E∗ , βp(y) = 0 for all y ∈ X \ Vp and β0(y) = 0 for all y ∈ X \ V0

and { support β0, support βp : p ∈ E∗} is locally finite and β0(y) + Σp∈E∗βp(y) = 1
for each y ∈ X . Note that for each A ∈ F(X) , h is continuous on co(A) (see e.g. [9],
Corollary 10.1.1, p.83)). Define φ,ψ : X × X → R by

φ(x, y) = β0(y)[ min
u∈T(x)

Re〈 u, y− x〉 + h(y) − h(x)] + Σp∈E∗βp(y)Re〈 p, y− x〉

for each x, y ∈ X . Then we have the following.
(a) Since E is Hausdorff, for each A ∈ F(X) and each fixed x ∈ co(A) , the map

y �→ min
u∈T(x)

Re〈 u, y− x〉 + h(y) − h(x)

is continuous on co(A) by Lemma 2.3 and the fact that h is continuous on co(A) and
therefore the map

y �→ β0(y)[ min
u∈T(x)

Re〈 u, y− x〉 + h(y) − h(x)]

is lower semi-continuous on co(A) by Lemma 2.2. Also for each fixed x ∈ X ,

y �→ Σp∈E∗βp(y)Re〈 p, y − x〉
is continuous on X . Hence, for each A ∈ F(X) and each fixed x ∈ co(A) , the map
y �−→ φ(x, y) is lower semicontinuous on co(A) .

(b) Since {β0, βp : p ∈ E∗} is a family of non-negative real-valued functions from
X into [0,1], by hypothesis, for each A ∈ F(X) and each y ∈ co(A) , there exist x̄ ∈ A
and ū ∈ T(x̄) such that β0(y)[Re〈 ū, y−x̄〉+h(y)−h(x̄)]+Σp∈E∗βp(y)Re〈 p, y−x̄〉 � 0 .
Thus

min
u∈T(x)

[β0(y)(Re〈 u, y − x̄〉 + h(y) − h(x̄)) + Σp∈E∗βp(y)Re〈 p, y − x̄〉 ] � 0,

i.e.,

β0(y)[ min
u∈T(x)

Re〈 u, y− x̄〉 + h(y) − h(x̄)] + Σp∈E∗βp(y)Re〈 p, y − x̄〉 � 0.
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Therefore

min
x∈A

[β0(y)( min
u∈T(x)

Re〈 u, y− x〉 + h(y) − h(x)) + Σp∈E∗βp(y)Re〈 p, y− x〉 ] � 0.

Thus we have minx∈A φ(x, y) � 0 for each A ∈ F(X) and each y ∈ co(A) .
(c) Suppose that A ∈ F(X) , x, y ∈ co(A) and {yα}α∈Γ is a net in X converging

to y with φ(tx + (1 − t)y, yα) � 0 for all α ∈ Γ and all t ∈ [0, 1].

Case 1: β0(y) = 0 .
Since β0 is continuous and yα → y , we have β0(yα) → β0(y) = 0 . Note that

β0(yα) � 0 for each α ∈ Γ . Since T(x) is strongly bounded and {yα}α∈Γ is a
bounded net, it follows that

lim sup
α

[β0(yα)( min
u∈T(x)

Re〈 u, yα − x〉 + h(yα) − h(x))] = 0.

Also
β0(y)[ min

u∈T(x)
Re〈 u, y− x〉 + h(y) − h(x)] = 0.

Thus

lim sup
α

[β0(yα)( min
u∈T(x)

Re〈 u, yα − x〉 + h(yα) − h(x))] + Σp∈E∗βp(y)Re〈 p, y − x〉
= β0(y)[ min

u∈T(x)
Re〈 u, y− x〉 + h(y) − h(x)] + Σp∈E∗βp(y)Re〈 p, y− x〉 (1)

For t = 1 we have φ(x, yα) � 0 for all α ∈ Γ , i.e.,

β0(yα)[ min
u∈T(x)

Re〈 u, yα − x〉 + h(yα) − h(x)] + Σp∈E∗βp(yα)Re〈 p, yα − x〉 � 0

for all α ∈ Γ . It follows that

lim sup
α

[β0(yα)( min
u∈T(x)

Re〈 u, yα − x〉 + h(yα)− h(x))] + Σp∈E∗βp(y)Re〈 p, y− x〉 � 0.

(2)
Hence by (1) and (2), we have φ(x, y) � 0 .

Case 2: β0(y) > 0 .
Since β0 is continuous, β0(yα) → β0(y) . Again since β0(y) > 0 , there exists

λ ∈ Γ such that β0(yα) > 0 for all α � λ .
Then for t = 0 wehave φ(y, yα) � 0 for all α ∈ Γ , i.e., β0(yα)[minu∈T(y) Re〈 u, yα

−y〉 + h(yα) − h(y)] + Σp∈E∗βp(yα)Re〈 p, yα − y〉 � 0 for all α ∈ Γ . It follows that
lim supα [β0(yα)(minu∈T(y) Re〈 u, yα − y〉 + h(yα) − h(y))] � 0 .

Since β0(yα) > 0 for all α � λ , it follows that β0(y) lim supα [minu∈T(y) Re〈 u, yα
−y〉 + h(yα) − h(y)]) � 0. Therefore

lim sup
α

[ min
u∈T(y)

Re〈 u, yα − y〉 + h(yα) − h(y)]) � 0.

Since T is an h -demi operator on X , we have

lim sup
α

[ min
u∈T(x)

Re〈 u, yα−x〉 +h(yα)−h(x)] � min
u∈T(x)

Re〈 u, y−x〉 +h(y)−h(x). (3)
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Since β0(y) > 0 , we have

β0(y)[lim sup
α

( min
u∈T(x)

Re〈 u, yα − x〉 + h(yα) − h(x))]

� β0(y)[ min
u∈T(x)

Re〈 u, y− x〉 + h(y) − h(x)].

Thus

β0(y)[lim sup
α

( min
u∈T(x)

Re〈 u, yα − x〉 + h(yα) − h(x))] + Σp∈E∗βp(y)Re〈 p, y − x〉
� β0(y)[ min

u∈T(x)
Re〈 u, y− x〉 + h(y) − h(x)] + Σp∈E∗βp(y)Re〈 p, y − x〉 . (4)

For t = 1 we also have φ(x, yα) � 0 for all α ∈ Γ , i.e.,

β0(yα)[ min
u∈T(x)

Re〈 u, yα − x〉 + h(yα) − h(x)] + Σp∈E∗βp(yα)Re〈 p, yα − x〉 � 0

for all α ∈ Γ . It follows that

lim sup
α

[β0(yα)( min
u∈T(x)

Re〈 u, yα − x〉 + h(yα) − h(x))] + Σp∈E∗βp(y)Re〈 p, y− x〉 � 0.

Thus

β0(y)[lim sup
α

( min
u∈T(x)

Re〈 u, yα−x〉+h(yα)−h(x))]+Σp∈E∗βp(y)Re〈 p, y−x〉 � 0. (5)

Hence by (4) and (5), we have φ(x, y) � 0 .
(d) By hypothesis, there exists a non-empty compact (and therefore closed) subset

K of X and a point x0 ∈ X such that x0 ∈ K∩S(y) and minu∈T(x0) Re〈 u, y−x0〉+h(y)−
h(x0) > 0 for each y ∈ X \ K . Thus for each y ∈ X \ K , supx∈S(y)[minu∈T(x) Re〈 u ,
y − x〉 + h(y) − h(x)] > 0 . Hence y ∈ V0 and β0(y)[minu∈T(x0) Re〈 u, y − x0〉 +
h(y) − h(x0) > 0 for all y ∈ X \ K ; also Re〈 p, y − x0〉 > 0 whenever βp(y) > 0 for
p ∈ E∗ . Consequently, φ(x0, y) = β0(y)[minu∈T(x0) Re〈 u, y − x0〉 + h(y) − h(x0)] +
Σp∈E∗βp(y)Re〈 p, y − x0〉 > 0 for all y ∈ X \ K .

Then φ satisfies all hypotheses of Theorem 1.1. Hence by Theorem 1.1, there
exists a point ŷ ∈ K such that φ(x, ŷ) � 0 for all x ∈ X ; i.e.,

β0(ŷ)[ min
u∈T(x)

Re〈 u, ŷ− x〉 + h(ŷ) − h(x)] + Σp∈E∗βp(ŷ)Re〈 p, ŷ− x〉 � 0 (6)

for all x ∈ X .
If β0(ŷ) > 0 , then ŷ ∈ V0 = Σ so that γ (ŷ) > 0. Choose x̂ ∈ S(ŷ) ⊂ X such that

min
u∈T(x̂)

Re〈 u, ŷ− x̂〉 + h(ŷ) − h(x̂) � γ (ŷ)
2

> 0;

it follows that
β0(ŷ)[ min

u∈T(x̂)
Re〈 u, ŷ− x̂〉 + h(ŷ) − h(x̂)] > 0.

If βp(ŷ) > 0 for some p ∈ E∗ , then ŷ ∈ Vp and hence

Re〈 p, ŷ〉 > sup
x∈S(ŷ)

Re〈 p, x〉 � Re〈 p, x̂〉
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so that Re〈 p, ŷ− x̂〉 > 0. Then note that

βp(ŷ)Re〈 p, ŷ− x̂〉 > 0 whenever βp(ŷ) > 0 for p ∈ E∗.

Since β0(ŷ) > 0 or βp(ŷ) > 0 for some p ∈ E∗ , it follows that

φ(x̂, ŷ) = β0(ŷ)[ min
u∈T(x̂)

Re〈 u, ŷ− x̂〉 + h(ŷ) − h(x̂)] + Σp∈E∗βp(ŷ)Re〈 p, ŷ − x̂〉 > 0,

which contradicts (6). This contradiction proves Step 1.

Step 2.
inf

w∈T(ŷ)
Re〈w, ŷ− x〉 � h(x) − h(ŷ) for all x ∈ S(ŷ).

Indeed, from Step 1, ŷ ∈ S(ŷ) which is a convex subset of X , and

inf
u∈T(x)

Re〈 u, ŷ− x〉 � h(x) − h(ŷ) for all x ∈ S(ŷ).

Hence by Lemma 2.4, we have

inf
w∈T(ŷ)

Re〈w, ŷ − x〉 � h(x) − h(ŷ) for all x ∈ S(ŷ).

Step 3. There exist a point ŵ ∈ T(ŷ) with Re〈 ŵ, ŷ − x〉 � h(x) − h(ŷ) for all x ∈
S(ŷ).

From Step 2 we have

sup
x∈S(ŷ)

[ inf
w∈T(ŷ)

Re〈w, ŷ− x〉 + h(ŷ) − h(x)] � 0, (7)

where T(ŷ) is a weak ∗ -compact convex subset of the Hausdorff topological vector
space E∗ and S(ŷ) is a convex subset of X .

Indeed, define f : S(ŷ) × T(ŷ) → R by f (x, w) = Re〈w, ŷ − x〉 + h(ŷ) − h(x)
for each x ∈ S(ŷ) and each w ∈ T(ŷ). Note that for each fixed x ∈ S(ŷ) , the map
w �−→ f (x, w) is convex and continuous on T(ŷ) and for each fixed w ∈ T(ŷ) , the
map x �−→ f (x, w) is concave on S(ŷ) . Thus by Theorem 2.1, we have

min
w∈T(ŷ)

sup
x∈S(ŷ)

[Re〈w, ŷ − x〉 + h(ŷ) − h(x)] = sup
x∈S(ŷ)

min
w∈T(ŷ)

[Re〈w, ŷ − x〉 + h(ŷ) − h(x)].

Hence
min

w∈T(ŷ)
sup

x∈S(ŷ)
[Re〈w, ŷ − x〉 + h(ŷ) − h(x)] � 0, by (7).

Since T(ŷ) is compact, there exists ŵ ∈ T(ŷ) such that

Re〈 ŵ, ŷ − x〉 � h(x) − h(ŷ) for all x ∈ S(ŷ). �

If X is compact, we obtain the following immediate consequence of Theorem 3.1:
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COROLLARY 3.1. Let E be a locally convex Hausdorff topological vector space,
X be a non-empty compact convex subset of E and h : E → R be convex with h(X)
bounded. Let S : X → 2X be upper semicontinuous such that each S(x) is closed convex
and T : X → 2E∗

be an h -demi operator and be upper hemi-continuous along line
segments in X to the weak ∗ -topology on E∗ such that each T(x) is weak ∗ -compact
convex. Suppose that the set

Σ = {y ∈ X : sup
x∈S(y)

[ inf
u∈T(x)

Re〈 u, y− x〉 + h(y) − h(x)] > 0}

is open in X and for each A ∈ F(X) and each y ∈ co(A) there exist x̄ ∈ A and
ū ∈ T(x̄) such that β0(y)[Re〈 ū, y − x̄〉 + h(y) − h(x̄)] + Σp∈E∗βp(y)Re〈 p, y− x̄〉 � 0
for every family {β0, βp : p ∈ E∗} of non-negative real-valued functions from X into
[0,1]. Then there exists ŷ ∈ X such that

(i) ŷ ∈ S(ŷ) and
(ii) there exists a point ŵ ∈ T(ŷ) with Re〈 ŵ, ŷ − x〉 � h(x) − h(ŷ) for all

x ∈ S(ŷ) .

Note that if the map S : X → 2X is, in addition, lower semicontinuous and for each
y ∈ Σ , T is upper semi-continuous at some point x in S(y) with infu∈T(x) Re〈 u, y −
x〉 + h(y) − h(x)] > 0 , then the set Σ in Theorem 3.1 is always open in X as can be
seen in the proof of the following:

THEOREM 3.2. Let E be a locally convexHausdorff topological vector space, X be
a non-empty paracompact convex and bounded subset of E and h : E → R be convex
with h(X) bounded. Let S : X → 2X be continuous such that each S(x) is compact
convex and T : X → 2E∗

be an h -demi operator and be upper hemi-continuous along
line segments in X to theweak ∗ -topology on E∗ such that each T(x) is weak ∗ -compact
convex. Suppose that for each A ∈ F(X) and each y ∈ co(A) there exist x̄ ∈ A and
ū ∈ T(x̄) such that β0(y)[Re〈 ū, y − x̄〉 + h(y) − h(x̄)] + Σp∈E∗βp(y)Re〈 p, y− x̄〉 � 0
for every family {β0, βp : p ∈ E∗} of non-negative real-valued functions from X into
[0,1]. Suppose further that

(a) for each y ∈ Σ = {y ∈ X : supx∈S(y)[infu∈T(x) Re〈 u, y−x〉+h(y)−h(x)] > 0} ,
T is upper semicontinuous at some point x in S(y) with infu∈T(x) Re〈 u, y−x〉 +h(y)−
h(x)] > 0 and

(b) there exists a non-empty compact subset K of X and a point x0 ∈ X such
that x0 ∈ K ∩ S(y) and minu∈T(x0) Re〈 u, y− x0〉 + h(y)− h(x0) > 0 for all y ∈ X \K .

Then there exists ŷ ∈ K such that
(i) ŷ ∈ S(ŷ) and
(ii) there exists a point ŵ ∈ T(ŷ) with Re〈 ŵ, ŷ − x〉 � h(x) − h(ŷ) for all

x ∈ S(ŷ) .

Proof. By virtue of Theorem 3.1, it suffices to show that the set

Σ = {y ∈ X : sup
x∈S(y)

[ inf
u∈T(x)

Re〈 u, y− x〉 + h(y) − h(x)] > 0}
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is open in X . Indeed, let y0 ∈ Σ ; then by hypothesis, T is upper semicontinuous at
some point x0 in S(y0) with infu∈T(x0) Re〈 u, y0 − x0〉 + h(y0) − h(x0) > 0 . Let

α := inf
u∈T(x0)

Re〈 u, y0 − x0〉 + h(y0) − h(x0).

Then α > 0. Also let

W := {w ∈ E∗ : sup
z1,z2∈X

|〈w, z1 − z2〉 | < α/6}.

Then W is a strongly open neighborhood of 0 in E∗ so that U1 := T(x0) + W is
an open neighborhood of T(x0) in E∗ . Since T is upper semicontinuous at x0 , there
exists an open neighborhood V1 of x0 in X such that T(x) ⊂ U1 for all x ∈ V1 .

As the map x �−→ infu∈T(x0) Re〈 u, x0 − x〉 + h(x0) − h(x) is continuous at x0 ,
there exists an open neighborhood V2 of x0 in X such that

| inf
u∈T(x0)

Re〈 u, x0 − x〉 + h(x0) − h(x)| < α/6 for all x ∈ V2.

Let V0 := V1 ∩ V2 ; then V0 is an open neighborhood of x0 in X . Since x0 ∈
V0∩S(y0) �= ∅ and S is lower semicontinuous at y0 , there exists an open neighborhood
N1 of y0 in X such that S(y) ∩ V0 �= ∅ for all y ∈ N1 .

Since the map y �−→ infu∈T(x0) Re〈 u, y− y0〉 + h(y)− h(y0) is continuous at y0 ,
there exists an open neighborhood N2 of y0 in X such that

| inf
u∈T(x0)

Re〈 u, y− y0〉 + h(y) − h(y0)| < α/6 for all y ∈ N2.

Let N0 := N1 ∩ N2 . Then N0 is an open neighborhood of y0 in X such that for each
y1 ∈ N0 , we have

(i) S(y1) ∩ V0 �= ∅ as y1 ∈ N1; so we can choose any x1 ∈ S(y1) ∩ V0;
(ii) | infu∈T(x0) Re〈 u, y1 − y0〉 + h(y1) − h(y0)| < α/6 as y1 ∈ N2 ;
(iii) T(x1) ⊂ U1 = T(x0) + W as x1 ∈ V1;
(iv) | infu∈T(x0) Re〈 u, x0 − x1〉 + h(x0) − h(x1)| < α/6 as x1 ∈ V2.

It follows that

inf
u∈T(x1)

Re〈 u, y1 − x1〉 + h(y1) − h(x1)

� inf
[u∈T(x0)+W]

Re〈 u, y1 − x1〉 + h(y1) − h(x1) ( by (iii)),

� inf
u∈T(x0)

Re〈 u, y1 − x1〉 + h(y1) − h(x1) + inf
u∈W

Re〈 u, y1 − x1〉
� inf

u∈T(x0)
Re〈 u, y1 − y0〉 + h(y1) − h(y0)

+ inf
u∈T(x0)

Re〈 u, y0 − x0〉 + h(y0) − h(x0)

+ inf
u∈T(x0)

Re〈 u, x0 − x1〉 + h(x0) − h(x1) + inf
u∈W

Re〈 u, y1 − x1〉

� −α
6

+ α − α
6
− α

6
=

α
2

> 0 ( by (ii) and (iv));
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therefore
sup

x∈S(y1)
[ inf
u∈T(x)

Re〈 u, y1 − x〉 + h(y1) − h(x)] > 0

as x1 ∈ S(y1). This shows that y1 ∈ Σ for all y1 ∈ N0, so that Σ is open in X . This
completes the proof. �

The compact version of this result follows immediately from Theorem 3.2 when
X is also compact.

4. Generalized quasi-variational inequalities for only
upper hemi-continuous operators on non compact sets

In this sectionwe shall obtain some general theorems on solutions of the generalized
quasi-variational inequalities for only upper hemi-continuous operators on non compact
sets.

In Theorem 3.1 if h is, in addition, continuous on X , then h can be defined only
on X and T need not be an h -demi operator. Thus we have the following result for
only upper hemi-continuous operators T :

THEOREM 4.1. Let E be a locally convex Hausdorff topological vector space, X
be a non-empty paracompact convex subset of E and h : X → R be convex and
continuous. Let S : X → 2X be upper semicontinuous such that each S(x) is compact
convex and T : X → 2E∗

be upper hemi-continuous along line segments in X to the
weak ∗ -topology on E∗ such that each T(x) is weak ∗ -compact convex. Suppose that
the set

Σ = {y ∈ X : sup
x∈S(y)

[ inf
u∈T(x)

Re〈 u, y− x〉 + h(y) − h(x)] > 0}

is open in X and for each A ∈ F(X) and each y ∈ co(A) there exist x̄ ∈ A and
ū ∈ T(x̄) such that β0(y)[Re〈 ū, y − x̄〉 + h(y) − h(x̄)] + Σp∈E∗βp(y)Re〈 p, y− x̄〉 � 0
for every family {β0, βp : p ∈ E∗} of non-negative real-valued functions from X into
[0,1]. Suppose further that there exists a non-empty compact subset K of X and a
point x0 ∈ X such that x0 ∈ K∩S(y) and minu∈T(x0) Re〈 u, y− x0〉 +h(y)−h(x0) > 0
for all y ∈ X \ K . Then there exists a point ŷ ∈ K such that

(i) ŷ ∈ S(ŷ) and
(ii) there exists a point ŵ ∈ T(ŷ) with Re〈 ŵ, ŷ − x〉 � h(x) − h(ŷ) for all

x ∈ S(ŷ) .

Proof. The proof is exactly same until (c) in the proof of Theorem 3.1. Then, we
shall prove (c) as follows:

(c) Suppose that A ∈ F(X) , x, y ∈ co(A) and {yα}α∈Γ is a net in X converging
to y with φ(tx + (1 − t)y, yα) � 0 for all α ∈ Γ and all t ∈ [0, 1].

For t = 1 we have φ(x, yα) � 0 for all α ∈ Γ , i.e.,

β0(yα)[ min
u∈T(x)

Re〈 u, yα − x〉 + h(yα) − h(x)] + Σp∈E∗βp(yα)Re〈 p, yα − x〉 � 0
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for all α ∈ Γ . It follows that

lim sup
α

[β0(yα)( min
u∈T(x)

Re〈 u, yα − x〉 + h(yα) − h(x))] + Σp∈E∗βp(y)Re〈 p, y− x〉 � 0.

Thus by continuity, we have

β0(y)[ min
u∈T(x)

Re〈 u, y− x〉 + h(y) − h(x)] + Σp∈E∗βp(y)Re〈 p, y− x〉
= β0(y)[lim sup

α
( min
u∈T(x)

Re〈 u, yα − x〉 + h(yα) − h(x))] + Σp∈E∗βp(y)Re〈 p, y − x〉
� 0.

Hence φ(x, y) � 0 .
The rest of the proof is exactly same as in the proof of Theorem 3.1. Consequently

Theorem 4.1 is proved.

When h ≡ 0 in Theorem 4.1, we can have the standard form of this result. The
compact versions of Theorem 4.1 and Theorem 4.1 with h ≡ 0 follow immediately
when X is also compact. Since these are trivial, we omit the statements of these results.

Again, if the map S : X → 2X is, in addition, lower semicontinuous and for each
y ∈ Σ , T is upper semi-continuous at some point x in S(y) with infu∈T(x) Re〈 u, y −
x〉 + h(y)− h(x)] > 0 , then the set Σ in Theorem 4.1 is always open in X and we have
the following:

THEOREM 4.2. Let E be a locally convex Hausdorff topological vector space, X
be a non-empty paracompact convex subset of E and h : X → R be convex and
continuous. Let S : X → 2X be continuous such that each S(x) is compact convex
and T : X → 2E∗

be upper hemi-continuous along line segments in X to the weak ∗ -
topology on E∗ such that each T(x) is weak ∗ -compact convex. Suppose that for
each A ∈ F(X) and each y ∈ co(A) there exist x̄ ∈ A and ū ∈ T(x̄) such that
β0(y)[Re〈 ū, y − x̄〉 + h(y) − h(x̄)] + Σp∈E∗βp(y)Re〈 p, y − x̄〉 � 0 for every family
{β0, βp : p ∈ E∗} of non-negative real-valued functions from X into [0,1]. Suppose
further that

(a) for each y ∈ Σ = {y ∈ X : supx∈S(y)[infu∈T(x) Re〈 u, y−x〉+h(y)−h(x)] > 0} ,
T is upper semicontinuous at some point x in S(y) with infu∈T(x) Re〈 u, y−x〉 +h(y)−
h(x)] > 0 and

(b) there exists a non-empty compact subset K of X and a point x0 ∈ X such
that x0 ∈ K ∩ S(y) and minu∈T(x0) Re〈 u, y− x0〉 + h(y)− h(x0) > 0 for all y ∈ X \K .

Then there exists a point ŷ ∈ K such that
(i) ŷ ∈ S(ŷ) and
(ii) there exists a point ŵ ∈ T(ŷ) with Re〈 ŵ, ŷ − x〉 � h(x) − h(ŷ) for all

x ∈ S(ŷ) .

When h ≡ 0 in Theorem 4.2, we can have the standard form of this result. The
compact versions of Theorem 4.2 and Theorem 4.2 with h ≡ 0 follow immediately
when X is also compact. Since these are trivial results, we omit their statements.
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