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FURTHER IMPROVEMENTS OF SOME BOUNDS ON

ENTROPY MEASURES IN INFORMATION THEORY

M. MATIĆ, C. E. M. PEARCE AND J. PEČARIĆ

(communicated by G. Peskir)

Abstract. Recently Dragomir and Goh have produced some interesting new bounds on entropy
measures in information theory. We strengthen further their results.

1. Introduction

The entropy function plays a key role in information theory. A key property is
concavity, by virtue of which Jensen’s inequality provides upper bounds for entropy
measures. Recently Dragomir and Goh [1,2] have addressed the question of establishing
lower bounds for the entropy measures of discrete–valued random variables and shown
that these may also be provided by a suitable extension of Jensen’s theorem. Dragomir
and Goh derive several interesting bounds from their extension of Jensen’s theorem
and a corollary to it. Improvements of their results were given in [3] and [4]. In this
paper, we shall give some further improvements of such results. First let us give an
improvement of Dragomir-Goh key lemma:

LEMMA 1. (i) Suppose ξk > 0, pk > 0, (k = 1, ..., n) with
∑n

k=1 pk = 1 . Then

0 � log

(
n∑

k=1

pkξk

)
−

n∑
k=1

pk log ξk

� log

⎛
⎝ n∑

k=1

pkξk

n∑
j=1

pj

ξj

⎞
⎠

� 1
ln b

⎛
⎝ n∑

k=1

pkξk

n∑
j=1

pj
ξj

− 1

⎞
⎠ (1.1)

where all logarithms are of base b > 1 .
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(ii) If also ρ := max
i,k

ξi/ξk, then

0 � log

(
n∑

k=1

pkξk

)
−

n∑
k=1

pk log ξk

� log

(
1
4

(√
ρ +

1√ρ

)2
)

� 1
4 ln b

(√
ρ − 1√ρ

)2

. (1.2)

(iii) If
ρ � Φ(ε) := 2bε − 1 + 2

√
bε(bε − 1) (1.3)

for ε > 0 , then

0 � log

(
n∑

k=1

pkξk

)
−

n∑
k=1

pk log ξk � ε. (1.4)

Proof. (i) Jensen’s inequality for concave function f (x) = log x states:

log

(
n∑

k=1

pkxk

)
�

n∑
k=1

pk log xk (1.5)

By using xk = ξk and xk = 1/ξk , we have

log

(
n∑

k=1

pkξk

)
�

n∑
k=1

pk log ξk (1.6)

and

log

(
n∑

k=1

pk

ξk

)
�

n∑
k=1

pk log
1
ξk

,

that is

−
n∑

k=1

pk log ξk � log
n∑

k=1

pk

ξk
. (1.7)

(1.6) gives the first inequality in (1.1), while (1.7) gives the second inequality in (1.1).
Moreover,we can also obtain these inequalities from the well-known inequality between
the arithmetic, the geometric and the harmonic means, that is(

n∑
i=1

pi

ξi

)−1

�
n∏

i=1

ξ pi
i �

n∑
i=1

piξi

wherefrom we have

− log

(
n∑

i=1

pi

ξi

)
�

n∑
i=1

pi log ξi � log
n∑

i=1

piξi. (1.8)
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The first inequality in (1.8) is our inequality (1.7), while the second inequality in (1.8)
is (1.6).The last inequality in (1.1) is a simple consequence of the following elementary
inequality

log x � 1
ln b

(x − 1) (1.9)

(ii) Note that the following inequality was proved in [3]:
n∑

k=1

pkξk

n∑
j=1

pj

ξ j
− 1 � 1

4

(√
ρ − 1√ρ

)2

wherefrom we have
n∑

k=1

pkξk

n∑
j=1

pj
ξ j

� 1
4

(√
ρ − 1√ρ

)2

+ 1 =
1
4

(√
ρ +

1√ρ

)2

,

that is

log

⎛
⎝ n∑

k=1

pkξk

n∑
j=1

pj

ξ j

⎞
⎠ � log

(
1
4

(√
ρ +

1√ρ

)2
)

, (1.10)

and (1.2) is a simple consequence of (1.1), (1.10) and (1.9).
(iii) Set

log

(
1
4

(√
ρ +

1√ρ

)2

j

)
� ε,

so that
ρ2 − 2ρ(2bε − 1) + 1 � 0.

This holds if and only if

2bε − 1 − 2
√

bε(bε − 1) � ρ � 2bε − 1 + 2
√

bε(bε − 1).

Since

2bε − 1 − 2
√

bε(bε − 1) =
(
2bε − 1 + 2

√
bε(bε − 1)

)−1
,

(1.4) now follows from (1.2), that is, (1.4) holds for all ρ satisfying (1.3). �

Remark 1. The third part of Lemma 1 gives an improvement of the key result in
[1] and [3], where the conditions

ρ � φ(ε) := 1 + ε ln b +
√

(2 + ε ln b)ε ln b and ρ � φ(2ε)

were used (respectively) in place of (1.3). Also φ(ε) is obviously strictly increasing
for ε > 0 so that we have

φ(ε) < φ(2ε) = 1 + 2 ln bε + 2
√

(1 + ln bε) ln bε

< 1 + 2 (bε − 1) + 2
√

(1 + bε − 1) (bε − 1)
= Φ(ε),

since bε > 1.
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2. Bounds on the entropy of a random variable

Let X be a discrete–valued random variable with finite range {x1, . . . , xr} . As-
sume pi = P{X = xi} > 0 ( i = 1, . . . , r ). The b -entropy of X is defined by

Hb(X) :=
r∑

i=1

pi log(1/pi).

The following bounds on the entropy function give further improvement of Theorem 1
of [1].

THEOREM 1. (i) With X as above

0 � log r − Hb(X)

� log

(
r

r∑
k=1

p2
k

)

� 1
ln b

(
r

r∑
k=1

p2
k − 1

)
. (2.1)

(ii) Define ρ := maxi,k pi/pk . We have

0 � log r − Hb(X)

� log

(
1
4

(√
ρ +

1√ρ

)2
)

� 1
4 ln b

(√
ρ − 1√ρ

)2

. (2.2)

(iii) If ρ � Φ(ε) for ε > 0 , then

0 � log r − Hb(X) � ε. (2.3)

Proof. Set n = r and ξk = 1/pk in Lemma 1. �

Remark 2. Since Hb(X) � 0 , the second inequality in (2.2) is nontrivial if

1
4

(√
ρ +

1√ρ

)2

< r

that is, if
ρ2 − 2ρ(2r − 1) + 1 < 0. (2.4)

Inequality (2.4) holds if (since ρ � 1 ):

ρ < 2r − 1 + 2
√

r(r − 1). (2.5)
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Nontriviallity of the last bound in (2.2) was considered in [3].

THEOREM 2. With X as above, define M = maxi pi and m = mini pi . Then

0 � log r − Hb(X) � log

([
r2

4

]
(M − m)2 + 1

)
� (M − m)2

ln b

[
r2

4

]
. (2.6)

If

max
1�i<j�r

|pi − pj| �
√

bε − 1
[r2/4]

, (2.7)

then (2.3) is valid. (For a ∈ R , [a] denotes the greatest integer less than or equal to
a .)

Proof. We have proved in [4]

r
r∑

i=1

p2
i − 1 �

[ r
2

] (
r −

[ r
2

])
(M − m)2 .

It is easy to check that
[

r
2

] (
r − [ r

2

])
=
[

r2

4

]
holds for all r ∈ N , so that we have

log

(
r

r∑
i=1

p2
i

]
� log

{[
r2

4

)
(M − m)2 + 1

}

and (2.6) follows from (2.1) and (1.9). �

Remark 3. A similar result was proved in [4] but condition (2.7) was with ε ln b
instead bε−1 on the right-hand side. Note that by (1.9) we have ε ln b = ln bε < bε−1 ,
since bε > 1, so result is better than this from [4].

Remark 4. The second inequality in (2.6) is nontrivial (since Hb(X) � 0 ), if[
r2

4

]
(M − m)2 + 1 < r , that is if M − m <

√
(r − 1)/ [r2/4] . If we compare it with

(2.7), it is clear that we should have bε < r for nontriviality of (2.3). For nontriviality
of the last bound in (2.6) we should have M − m <

√
(ln r)/ [r2/4].

3. Bounds on conditional entropy

Let X , Y be a pair of random variables with respective ranges {x1, x2, . . . , xr}
and {y1, y2, . . . , ys} . The conditional entropy of X given Y is defined by

Hb(X | Y) :=
∑
i,j

p(xi, yj) log(1/p(xi|yj)),

where
p(xi, yj) := P{X = xi, Y = yj}

and
p(xi|yj) := P{X = xi | Y = yj} = p(xi, yj)/p(yj).
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(See, for example, [5, p. 22].) Without loss of generality we need to define these
quantities only for those (i, j) for which p(xi, yj) > 0 . There will be n(� rs) such
pairs. The conditional entropy can be interpreted as the amount of uncertainty remaining
about X after Y has been observed.

THEOREM 3. Let X and Y be as above. For 1 � j � s , define Vj := {i :

p(xi, yj) > 0} and U := {(i, j) : i ∈ Vj} and let r′ =
s∑

j=1
p(yj) |Vj| . Then we have

0 � log r′ − Hb(X|Y)

� log

⎛
⎝r′

∑
(i,j)∈U

p(yj)p2 (xi|yj)

⎞
⎠

� 1
ln b

⎛
⎝r′

∑
(i,j)∈U

p(yj)p2 (xi|yj) − 1

⎞
⎠ . (3.1)

If ρ := max(i,j),(u,v)∈U p(xi|yj)/p(xu|yv) , then

0 � log r′ − Hb(X | Y)

� log

(
1
4

(√
ρ +

1√ρ

)2
)

� 1
4 ln b

(√
ρ − 1√ρ

)2

. (3.2)

If
ρ � Φ(ε), ε > 0, (3.3)

then
0 � log r′ − Hb(X | Y) � ε. (3.4)

Proof. We may label those pairs (i, j) for which p(xi, yj) > 0, that is the
pairs (i, j) ∈ U , as k = 1, 2, · · · , n . We then put pk = p(xi, yj) and ξk =
1/p(xi|yj) =p(yj)/p (xi, yj) in Lemma 1. This gives:

0 � log

⎛
⎝ ∑

(i,j)∈U

p(yj)

⎞
⎠−

∑
(i,j)∈U

p (xi|yj) log
1

p (xi|yj)

� log

⎛
⎝ ∑

(i,j)∈U

p(yj)
∑

(u,v)∈U

p(yv)p2 (xu|yv)

⎞
⎠ .

This is equivalent to the first two inequalities in (3.1) since∑
(i,j)∈U

p(yj) =
∑

j

p(yj)
∑
i∈Vj

1 = r′.
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The rest of theorem is a similar consequence of Lemma 1. �

Let us note that in [4] the following result was proved:

∑
(i,j)∈U

p(yj)
∑

(u,v)∈U

p(yv)p2 (xu|yv)

� 1
4

(
max

(i,j)∈U
p (xi|yj) − min

(i,j)∈U
p (xi|yj)

)2

r′2 + 1.

Therefore, from Theorem 3, using (1.9).we get the following result:

THEOREM 4. Let X, Y and U be as in Theorem 3. Define M = max
(i,j)∈U

p (xi|yj) and

m = min
(i,j)∈U

p (xi|yj) . Then

0 � log r′ − Hb(X|Y) � log

(
1
4
(M − m)2r′2 + 1

)
� (M − m)2

4 ln b
r′2. (3.5)

If

max
(i,j),(u,v)∈U

|p (xi|yj) − p (xu|yv)| � 2
r′
√

bε − 1, (3.6)

then (3.4) is valid.

Remark 5. Note that the second inequality in (3.2) is not trivial if we have ρ <

2r′ − 1 + 2
√

r′(r′ − 1) . Also, the second inequality in (3.5) is not trivial if M − m <

(2/r′)
√

r′ − 1 .

We now introduce a third discrete–valued random variable Z , assuming values
z1, · · · , zt , each with positive probability. As in [2, Theorem 1.2], we define an as-
sociated random variable A which takes on the value

∑
i,j p(xi, yj, zk)/p(xi|yj) with

probability p(zk) ( k = 1, · · · , t ). The following theorem gives improvements of
Theorem 3.2 from [3].

THEOREM 5. With ρ defined as in Theorem 3, we have

0 � Hb(Z) + E(logA) − Hb(X | Y)

� log

(
1
4

(√
ρ +

1√ρ

)2
)

� 1
4 ln b

(√
ρ − 1√ρ

)2

.

If condition (3.3) holds, then

0 � Hb(Z) + E(logA) − Hb(X | Y) � ε.
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Proof. For fixed z� , put pk = p(xi, yj, z�)/p(z�) and ξk = 1/p(xi|yj) , where much
as in Theorem 3 we relabel k = (i, j) for those (i, j) for which p(xi, yj, z�) > 0 . We
derive from Lemma 1 that

0 � log

(∑
k

p(xi, yj, z�)
p(z�)

1
p(xi|yj)

)
−
∑

k

p(xi, yj, z�)
p(z�)

log
1

p(xi|yj)

� log

(
1
4

(√
ρ +

1√ρ

)2
)

� 1
4 ln b

(√
ρ − 1√ρ

)2

.

Multiplication by p(z�) and summation over � = 1, · · · , t yields

0 � Hb(Z) +
t∑

�=1

p(z�) log

(∑
k

p(xi, yj, z�)
p(xi|yj)

)
− Hb(X|Y)

� log

(
1
4

(√
ρ +

1√ρ

)2
)

� 1
4 ln b

(√
ρ − 1√ρ

)2

.

The desired results follow. �
We may use the preceding result for further improvements to Fano’s inequality,

which states the following:
If X , Y have a common range and Pe = P(X �= Y) , then

Hb(X|Y) � Hb(Pe) + Pe log(r − 1).

We note that it is also tacit in Fano’s inequality that p(xi, yj) > 0 ∀i, j .
The following result extends related results from [1] and [3]:

COROLLARY 1. Suppose X , Y have the same range. Define Z by Z = 0 if X = Y
and Z = 1 if X �= Y . Further, define

Tj := |{i : i �= j, p(xi, yj) > 0}|,

Rj := |Vj| − Tj =
{

1 if p(xj, yj) > 0
0 otherwise

.

Then

0 � Hb(Pe) + Pe log

(∑
j

p(yj)Tj

)
+ (1 − Pe) log

(∑
j

p(yj)Rj

)
− Hb(X | Y)

� log

(
1
4

(√
ρ +

1√ρ

)2
)

� 1
4 ln b

(√
ρ − 1√ρ

)2

.
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If (3.3) holds, then

0 � Hb(Pe) + Pe log

(∑
j

p(yj)Tj

)
+ (1 − Pe) log

(∑
j

p(yj)Rj

)
− Hb(X | Y) � ε.

We may interpret this result in terms of the transmission of discrete characters.
If X is sent and Y received, then Pe is the probability of erroneous reception and
Hb(Z) = Hb(Pe) = −Pe logPe − (1 − Pe) log(1 − Pe) .

Similarly we can obtain the following improvement of the related results from [4]:

THEOREM 6. Let X, Y, Z and A be as in Theorem 5. Along with the notations from
Theorem 5 we define also

K :=
t∑

�=1

1
p(z�)

A2(z�),

where A(z�) =
∑

(i,j)∈U p(xi, yj, z�)/p(xi|yj) for � = 1, · · · , t . Finally we put

M = max
(i,j)∈U

p(xi|yj) and m = min
(i,j)∈U

p(xi|yj).

Then we have

0 � Hb(Z) + E(logA) − Hb(X|Y)

� log

(
1
4

(M − m)2 min

{
K,

1
Mm

}
+ 1

)

� (M − m)2

4 ln b
min

{
K,

1
Mm

}
.

If ε > 0 is given and

max
(i,j),(u,v)∈U

|p(xi|yj) − p(xu|yv)| � 2

√
bε − 1

K
,

then
0 � Hb(Z) + E(logA) − Hb(X|Y) � ε.

COROLLARY 2. Suppose X , Y and Z are as in Corollary 1. If Tj, Rj (j =
1, · · · , s) and Pe are defined as in Corollary 1, then

A(0) =
s∑

j=1

p(yj)Rj, A(1) =
s∑

j=1

p(yj)Tj.

For given ε > 0, if

max
(i,j),(u,v)∈U

|p(xi|yj) − p(xu|yv)| � 2

√
(1 − Pe)Pe(bε − 1)

A2(0)Pe + A2(1)(1 − Pe)
,

then
0 � Hb(Pe) + Pe logA(1) + (1 − Pe) logA(0) − Hb(X|Y) � ε.
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4. Bounds on mutual information

The b –mutual information between random variables X , Y is defined by

Ib(X; Y) := Hb(X) − Hb(X | Y) =
∑
i,j

p(xi, yj) log
p(xi, yj)

p(xi)p(yj)
.

The following results improve the bounds on mutual information given in [1-4].

THEOREM 7. Let V := {(i, j) : p(xi, yj) > 0} and

K :=
∑

(i,j)∈V

p2(xi, yj)
p(xi)p(yj)

, S :=
∑

(i,j)∈V

p(xi)p(yj).

Then

0 � log S + Ib(X; Y) � log(SK) � 1
ln b

(SK − 1). (4.1)

Suppose

ρ := max
(i,j),(u,v)∈V

p(xi)p(yj)p(xu, yv)
p(xu)p(yv)p(xi, yj)

.

Then

0 � log S + Ib(X; Y)

� log

(
1
4

(√
ρ +

1√ρ

)2
)

� 1
4 ln b

(√
ρ − 1√ρ

)2

. (4.2)

If ρ � Φ(ε) for ε > 0 , then

0 � log S + Ib(X; Y) � ε. (4.3)

Proof. This follows the lines of our earlier proofs, setting pk = p(xi, yj) and
ξk = p(xi)p(yj)/p(xi, yj) in Lemma 1 after suitable relabelling. �

THEOREM 8. If

max
(i,j),(u,v)∈V

∣∣∣∣p(xi)p(yj)
p(xi, yj)

− p(xu)p(yv)
p(xu, yv)

∣∣∣∣ � 2
K

√
bε − 1

then (4.3) is valid.

THEOREM 9. Suppose W := {(i, j, k) : p(xi, yj, zk) > 0} and define

L :=
∑

(i,j,k)∈W

p2(xi, yj, zk)
p(xi, yj)p(zk|yj)

, T :=
∑

(i,j,k)∈W

p(xi, yj)p(zk|yj).
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Then

0 � logT + Ib(X, Y; Z) − Ib(Y; Z) � log(TL) � 1
ln b

(TL − 1).

If

ρ := max
(i,j,k),(u,v,w)∈W

p(zk|xi, yj)p(zw|yv)
p(zw|xu, yv)p(zk|yj)

,

then

0 � logT + Ib(X, Y; Z) − Ib(Y; Z)

� log

(
1
4

(√
ρ +

1√ρ

)2
)

� 1
4 ln b

(√
ρ − 1√ρ

)2

.

If ρ � Φ(ε) for ε > 0 , then

0 � logT + Ib(X, Y; Z) − Ib(Y; Z) � ε.

THEOREM 10. Suppose the conditions of Theorem 9 are satisfied and

M := max
(i,j,k)∈W

p(zk|xi, yj)
p(zk|yj)

, m := min
(i,j,k)∈W

p(zk|xi, yj)
p(zk|yj)

.

Then

0 � logT + Ib(X, Y; Z) − Ib(Y; Z)

� log

(
1
4
(M − m)2 min

{
T2,

1
Mm

}
+ 1

)

� (M − m)2

4 ln b
min

{
T2,

1
Mm

}
.

5. Remarks and further improvements

As we can see, the main improvement in our result are based on new term

log

⎛
⎝ n∑

k=1

pkξk

n∑
j=1

pj

ξj

⎞
⎠

in our Lemma 1. As in [3, Remarks and further improvements] we can give improve-
ments of some previous results in the case when (ξk) is monotonic sequence by using
an result from [8]. Namely, as in [3] we can prove the following result:

LEMMA 2. Suppose ξk ∈ (0,∞) and pk � 0 with
∑n

k=1 pk = 1 . Let σ be a

permutation of (1, . . . , n) such that (ξσ(k))n
1 is monotone and set Pk :=

∑k
i=1 pσ(i) and
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ρ := maxi,k ξi/ξk . Define M := max1�k<n Pk(1 − Pk) . Then for b > 1 we have

0 � log

(
n∑

k=1

pkξk

)
−

n∑
k=1

pk log ξk

� log
(
M (

√
ρ − 1/

√
ρ)2 + 1

)
� M

ln b
(
√
ρ − 1/

√
ρ)2

. (5.1)

If

ρ � ΦM(ε) := 1 +
bε − 1
2M

+
1

2M

√
(4M + bε − 1) (bε − 1) (5.2)

for some ε > 0 , then

0 � log

(
n∑

k=1

pkξk

)
−

n∑
k=1

pk log ξk � ε. (5.3)

THEOREM 11. Let X be a discrete–valued random variable with finite range
{x1, . . . , xr} and probability distribution pk = P{X = xk} (1 � k � r) , and set
ρ := maxi,k pi/pk . Let σ be a permutation of (1, . . . , n) such that (pσ(k))n

1 ismonotone.

Define Pk :=
∑k

i=1 pσ(i) and M := max1�k<n Pk(1 − Pk) . Then

0 � log r − Hb(X) � log
(
M (

√
ρ − 1/

√
ρ)2 + 1

)
� M

ln b
(
√
ρ − 1/

√
ρ)2.

If ρ � ΦM(ε) for some ε > 0 then

0 � log r − Hb(X) � ε.

Proof. Set n = r and ξk = 1/pk in Lemma 2. �

Remark 6. Again we have the situation in which Theorem 11 gives a nontrivial
upper bound for the difference log r − Hb(X) if and only if

M

(√
ρ − 1√ρ

)2

+ 1 < r,

which is equivalent to

ρ2 − 2

(
1 +

r − 1
2M

)
ρ + 1 < 0

and (since ρ � 1 ) to

ρ < 1 +
r − 1
2M

+
1

2M

√
(4M + r − 1)(r − 1).

Analogous improvements can be given for the results in Sections 3 and 4.
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