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ON SOME GENERALIZATIONS OF OSTROWSKI INEQUALITY FOR
LIPSCHITZ FUNCTIONS AND FUNCTIONS OF BOUNDED VARIATION

L. DEDIC, M. MATIC AND J. PECARIC

(communicated by T. Rassias)

Abstract. Some generalizations of Ostrowski inequality for Lipschitz functions and functions of
bounded variation are given.

1. Introduction

In 1938, Ostrowski [1] (see also [2, p. 468]) proved the following integral inequal-

ity:
1 b
b_a/uf(t)dt

%@—

where f : [a,b] — R is differentiable function such that |f'(x)| < M forall x € [a, b].
G. V. Milovanovi¢ and J. Pecari¢ [3] and A. M. Fink [4] (see also [2, p. 470]) have
considered generalizations of (1.1) in the form

< 1+()677#)2 (bfa)M VxG[ab} (11)
ST ey ’ 7 '

n—1 b
1 1
- Flx)| — 1dit| < K(n,p, ‘VW , 1.2
S V0] = [rwa <kep | a2
where Fi(x) is defined by
n—k
I S P ) Nk p(k—1) ok
B = =g VT @e—af e -p ] (3)
For n =1 the sum above is defined to be zero.
In fact, G. V. Milovanovi¢ and J. Pecari¢ have proved that ([2, p.469]):
(x o a)n+1 + (b o x)n+1
K = 1.4
(n,00,0) = ST —, (14)
while A. M. Fink proved that
[(x — @)™+ 4 (b — x)w" 1] / N
K = B((n—1 1 H'r 1.5
(n.p.%) it (= + 1P+ DY, (15)
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2 L1. DEDIC, M. MATIC AND J. PECARIC

where 1 < p < oo, 1/p+1/p’ =1, B is the beta function, and

(n— 1)1

K(l’l, 17)() = m

max {(x —a)", (b —x)"}. (1.6)

Further generalization of this result is given in [10].
For n =1 relation (1.6) becomes

K(l,l,x):b;max{x—a,b—x}. (1.7)
—da

This result was recently obtained by S. S. Dragomir and S. Wang [5] in equivalent form

1 1
K(1,1,x) = = +

st (1.8)

2

aer’

To simplify some expressions, in the rest of this paper we shall use the notation

A(x) := max{x —a,b — x} = , X € [a,b].

b—a+ a+b
x—
2 2

Of course, since max {(x — a)", (b — x)"} = A"(x), one can write (1.6) in equivalent

form
(n— 1)1

n!n(b — a)

Dragomir and Wang [6] have also obtained (1.5) for n = 1 that is

K(n,1,x) = A"(x). (1.9)

(6= @) o (b — )
(b= + )7

and gave various applications of this result.

In this paper we shall give some generalizations of previous results and prove some
similar inequalities for Lipschitz functions and functions of bounded variation. Such
results are generalization of results from [7], [8] and [9].

K(1,p,x) =

(1.10)

2. Some identities

Let (P,) be a harmonic sequence of polynomials, thatis P, = P,_y, n > 1,
and Py = 1. Furthermore, let I C R be a segment and f : I — R such that f 1
is Lipschitz function or is a continuous function of bounded variation on 7, for some
n > 1. Consider

(=1 [3Paca (00
= (1 P (00| (1) Pl O ()
= (=1 [Paca (0 V) = Paa 0 V)]
()" fiPaa(0f ) (0t
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for x,y € 1. By applying the same procedure to the last integral we successively get the
relation

(=) /xPn—l(f)df<'H>(t)
n—1

=3V [P ) = PO O0) | £ £ ) 2

=1

>~

for x,y € I. If weset x =a, y=>5b, n=m+ 1 and replace f (¢) byff )du in
(2.1) we get

b m
[ rwdi= Y1 [P V@) - P 0]

k=1
e [ " Pt (1 22)

By integration with respect to y, (2.1) becomes

/f Ydy = (b —a)

—Z / ) ® ()dy + (—1)" / /xPn_l(t)dﬂ"‘”(t)dy. (2.3)

Using (2.2) we have

that is
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Using notation

Fi= == |Pi(a)f “ V(@) = Peb)f “(0)

and

| t—a, t€]a,x]
k{1, %) '_{ t—b, te(xb] ’

relation (2.4) becomes

1 n—1

n

k=1
_1\n—1 b
= y(l(bl) a) / Pn_l(t)k(t7 X)df("*l)(t)_

The sums above are defined to be zero for n = 1.

For the harmonic sequence of polynomials

(r—x)*
k!

Pk(t): ,k>0

relation (2.5) becomes

n—1 b
f<x>+ZFk<x>] S L
k=1 a

b

1
n

1 n— n—1
- m/ (x — )" k(z, x)df "V (1)

where Fi(x) is defined by (1.3).
For the harmonic sequence of polynomials

1 p\*
Pk(t)—y(t%) k>0

relation (2.5) becomes

n—1 1\ a k
FW+Y ( kl') (x_ -ZFb) ()
k!

1

1
n

n—1 _a k—1 n—
" (b )kzzk( k) [f(k—l)(a) B (_l)kf(k—l)(b)ﬂ _

= n!(blf ) /ab (a T ’)H Kot

For y € [a, b] and the harmonic sequence of polynomials

1
Pilt) = 7 (=) k>0

n—1 b
@)+ S )P W) + ka] - [ rtar
k=1 a

)

1

b—a

(2.6)

/a ’ f(t)dt

(2.7)
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relation (2.5) gives

LIRS SR
k=1
n—1
(n—k) _
+klm[(y—a)"f“‘ V(@)= (v =b)f* ] /f

b B 1
e A A} 28)

These identities are important in the context of the present paper and will be used to
prove many inequalities.

3. Inequalities for Lipschitz functions

THEOREM 1. Let (Py) be a harmonic sequence of polynomials and f : [a,b] — R
such that "=V is L-Lipschitz function for some n > 1 i.e.

V‘(n—l)(x) _f(n—l)(y)‘ < L- |)C_y‘> X,y € [a7b]

where L > 0 is a constant. Then

n—1
x) + (1) Pf W) + Z F
k=1

L
/ |Pu—1(2)k(2,x)| dt

where Fy and k(z, x) are from relation (2.5).

Proof. For integrable function F : [a,b] — R we have

b b
/ F()df " V(1) <L / |F(1)| dt

since f*~1 is L-Lipschitz function.
Let us apply this estimation to the relation (2.5). We get

n—1 n—1 b
L@+ S0 0 + SR - —— [ rar
k=1 k=1 a

n—1 b
= ,(1(_171) al) / P"_l([)k(t>x)df(”_1)(t)

L b
< g [ 1P k(e

which proves our assertion. O
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COROLLARY 1. Let f be defined as in the theorem above. Then

n—l b n+1 n+l
1 1 (x—a)"™t + (b —x)"*
- F, - t)dt| < L
nf@%+g;dﬂ] e G e i
where Fy(x) is given by (1.3).
Proof. Put Py(r) = (t — x)¥, k > 0, in the theorem above. O

REMARK 1. For n =1 the inequality of the corollary above becomes

b x—a)? —x)?
wala/f@m S 0oy

2(b—a)
It was proved by J. Pecari¢ and B. Savi¢ in [8, Teorema 8, p. 190] and rediscovered
recently by S. S. Dragomir, P. Cerone, J. Roumeliotis and S. Wang in [9]. This inequality
is a special case of a result proved in [8] for Holder functions.

SL(

COROLLARY 2. Let f be defined as in the theorem above and n > 1. Then

n—1 . k
LIRS SR e
k=1 ’
n—1 . b
0 TR, I
k=1 ¢
L
< mh(%)’)
forevery x,y € [a,b], where
-t -yttt 2 w1
I, y)= nin+1) Jrn—&-l =yl
2 a+b n—1
T ) T

Proof. Put Py(t) = %(t — y)*, k > 0, in the theorem above and use the formula

b
/ it —y" k(t,x)| dt = L,(x,y), n>1.

COROLLARY 3. Let f be defined as in the theorem above and n > 1. Then

n—1 1\ a k
k=1 )

1
n

n—1 —
Py (b—a)"'(n—k) [f(k—U(a)— (—1)"f“‘“>(b)” - bla/bf(t)dt

k12k
k=1
n+l1
b—a)"

nzﬂ

. L
S (n41)!

2

a+b
X —
b—a

2
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Proof. Put y = /2 in Corollary 2. O

COROLLARY 4. Let ' be an L-Lipschitz on [a,b]. Then

! gL Gaf@ - -bre)] 1 [
3 70+ 6=+ )L |- 55 [rwa
L
< Z(b )12(x>y)
forevery x,y € [a, D).
Proof. Put n =2 in Corollary 2. ]

COROLLARY 5. Let f be defined as in the theorem above and n > 1. Then

n—1

a — a k 1
+ ’ + Z k'Zk k) {f(k_l)(a) - (_l)kf(k_l)(b)ﬂ
k=1

n
1 b
e AL
(b—a)
S (4 D)0
Proof. Put x = # in Corollary 3. ]

COROLLARY 6. Let f be defined as in the theorem above. Then

and

Proof. Put x = a and x = b in Corollary 1. (]
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COROLLARY 7. Let f be defined as in the theorem above. Then

f(a) erf(b) n i (’;*k/f) (b—a)! [f(k—l)(a) B (l)kf(k—l)(b)n

1
n

k=1

1 b
fb_a/f(t)dt

(b—a)
ST+ Din’
Proof. Add the inequalities of Corollary 6 using the triangle inequality. ]

COROLLARY 8. Let ' be L-Lipschitz function on |a,b]. Then

—a)— X — b
3 oo+ HA= ) TORZDN L [ ar

L

< m [(xfa)3 + (b fx)3]

forevery x € [a,b]. Further

a a b —a)?
%{f( ;b)+f( );f(b)} *bia/af(t)dt <L(b48)
and .
a —a)?
ORI S S

Proof. Put n = 2 in Corollary 1 to get the first relation and x = # in the first
relation to get the second. Further, put n = 2 in corollary 7 to get the last relation. [

4. Inequalities for functions of bounded variation

THEOREM 2. Let (Py) be a harmonic sequence of polynomials and f : [a,b] — R
such that £ "=V is a continuous function of bounded variation for some n > 1. Then

n—1 n—1 b
HICES YA +Zﬁk] - [ rar
k=1 k=1 a

1

< -
= n(b—a) ungizaéb

[Pu 1 ()k(2,x)] - Ve (1)

where Fy and k(t,x) are from relation (2.5), and V?(f "~ is the total variation of
£V on [a,b].
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Proof. If F : [a,b] — R is bounded on [a, b] and the Riemann-Stieltjes integral

/¢ﬂow“*K0

exists, then

< sup [F()] - Va(rY).

a<i<b

/¢ﬂow“*K0

Let us apply this estimation to the relation (2.5). We have

n—1 n—1

1
- 1)*Py(x F,
. [+ kzz;( )" Pr(x )+ Z k
(=~ /b (n—1)
= P, k ) "
preal IRCRIGLUS A0
- . vh(r(n=1)
= l’l(b . a) angl?éb ‘P"—l(t)k(trx)‘ Va(f )
which proves our assertion. |

COROLLARY 9. Let f be defined as in the theorem above. Then

n—1
x)+ ) Flx)| - f

where Fy(x) is defined by (1.3) and K(n,1,x) by (1.9).

K(n, l,x)Vb(f("_l))

Proof. Put Py(t) = %(t — x)*, k > 0, in the theorem above. O

REMARK 2. For n =1 the inequality of the corollary above becomes

b
P@)bia/f@m<

h [§+b—a o

This inequality was proved recently by S. S. Dragomir [7].

] v

COROLLARY 10. Let f be defined as in the theorem above. Then for n > 2 we
have

n—1 k
% fx)+ (v ;'x) 10 (x)
k=1 ’
n—1
+§Z;2_”)k V4@ — =) 40 ] 7a/f
k=1

forevery x,y € [a, D).
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Proof. Put Pi(1) = ;(t — y)¥, k = 0, in the theorem above and use the formula

_ — 1y
t—y[" ! k(t,x)| = (=D
mas 151" k(e9] = max { U= - a

(n—1)"!

n}’l

= max { ) s a0}

(b—y) b=y (=), ey x>}

which can be easily proved. (]

COROLLARY 11. Let f be defined as in the theorem above. Then for n > 2 we
have

-1 1\ a k
P !

n—1 —a)n— b
n Z (b );21;(( k) {f(k—l)(a) _ (—l)kf(k_l>(b)” . 1 / f(t)dl

b—a
< | max (n—1)""1 (b—a\" -
x X ™
n!(b—a) n 2

Proof. Put y = “f2_in Corollary 10. O

A(X)} Vo).

COROLLARY 12. Let f be defined as in the theorem above. Then for n > 2 we
have

L[ atb, - =k [ e let)
AR Py @) = (DY Do)
1 b
— b—a/a f()dt
O (=™ V),
Proof. Put x = # in Corollary 11. ]

COROLLARY 13. If f’ has bounded variation on |a,b] then

—da a) — - b
i+ o+ D@00 L,

b—a b—a

< iy mox{ 800 e ol Aw | V2

forevery x,y € [a, D).
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Proof. Put n =2 in Corollary 10. (]

COROLLARY 14. Let f be defined as in the theorem above. Then
n—1 1 b
—a) (- 1)"‘7“““@)1 5 [ s
—a ),

+
g&(bf a)"~ !t vh(rimh)

k=1

n'n"
and
L) 4 SR gty f
n k! —a
k=1
(n 1)” ! n n
(b —a)y V)
Proof. Put x = a and x = b in Corollary 9. ]

COROLLARY 15. Let f be defined as in the theorem above. Then

Lf@+fh) Sn =k i pn)
P P it F470a@) = (1)
1 b
— d
o [ fod
(n—1)! U ubyg(n—1)
< N 7 b _ n— V
(b= V)
Proof. Add the inequalities of Corollary 14 using the triangle inequality. (]

COROLLARY 16. Let ' has bounded variation on |a,b|. Then

1 fla)x—a) —f(b)(x — D)
2 {f(x)Jr b—a } —a/ f@
< 8(b{a)A2<x>-v2<f’>

forevery x € [a,b]. Further

b

|f(a) SO ral <!

Proof. Put n = 2 in Corollary 9 to get the first relation and x = # in the first
relation to get the second. To get the last relation put n» = 2 in corollary 15. ]

b—a
S—'Vb !
32 a(f)

and
—a

VA,




12 LJ. DEDIC, M. MATIC AND J. PECARIC

5. Convergence rate for generalized Taylor formula

Now we shall give some further results about generalized Taylor formula. For
some related results see [11].
THEOREM 3. Let (Pi) be a harmonic sequence of polynomials and f : [a,b] — R
such that "=V is L-Lipschitz function for some n > 2 i.e.
PO VOIS L=yl 2y € [a,0]

where L > 0 is a constant. Then
n—1
S DH [P ) = PO O )] 45 @) - £ )

k=1

< L/ |P,—1(2)| dt
y

forevery x,y € [a,b], y < x.

Proof. For integrable function F : [a,b] — R we have

b b
/ F()df " V(1) <L / |F(1)| dt

since f =1 is L-Lipschitz function.
Let us apply this estimation to the relation (2.1). We get

n—1
S DH [P ) = POV O] £ @)~ £ )

k=1

~|rt [ et

< L/ Py (1)) d
y

which proves our assertion.
COROLLARY 17. Let f be defined as in the theorem above. Then
n—1
(x—y)* (x—y)"
Z ! f(k)(Y) —f()+f)| < LT
k=1 ) ’
forevery x,y € [a,b], y < x.
Proof. Put Pi(1) = ;(t — x)*, k > 0 in the theorem above. O

COROLLARY 18. Let f be defined as in the theorem above. Then

A
> [ @O - =@ 0] 0 £ )
k=1 )

(x—a)"—(y—a)
n!

L

N

forevery x,y € [a,b], y < x.
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Proof. Put Pi(t) = ;(t — a)¥, k >0 in the theorem above. O
THEOREM 4. Let (Py) be a harmonic sequence of polynomials and f : [a,b] — R

such that £ "=V is a function of bounded variation for some n > 2. Then

n—1

> [Peelf D) = POY O O)| 1 () = )

k=1

< B Cyx(f(n—1)
\yrg%\Pn 1O vy )

forevery x,y € [a,b], y < x.
Proof. If F : [a,b] — R is bounded on [a, b] and the Riemann-Stieltjes integral

/ " Fdr )

exists, then

< sup [F(0)|- V(D).
a<i<b

/ " FarI )

Let us apply this estimation to the relation (2.1). We have

n—1

S DH [P ) = POV O] £ @)~ £ )

k=1

~|rt [ et

< max [P, ()] Vi(F"Y)

YISy

which proves our assertion.
COROLLARY 19. Let f be defined as in the theorem above. Then
(x =y

T W

(= )*
> O0) ) £ 0)| <

k=1

forevery x,y € [a,b], y < x.
Proof. Put Py(t) = £(t — x)*, k > 0 in the theorem above.

COROLLARY 20. Let f be defined as in the theorem above. Then

w (—1F kg (k) kg (k)
> (6= Y - - a0 ) —f )

< E i)

forevery x,y € [a,b], y < x.
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Proof. Put Pi(t) = ;(t — a)¥, k >0 in the theorem above. O
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