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REMARKS, QUESTIONS AND CONJECTURES ON

LANDAU–KOLMOGOROV–TYPE INEQUALITIES

Z. DITZIAN

(communicated by M. K. Kwong)

Abstract. Results on Landau-Kolmogorov-type inequalities are surveyed with some new results
given and some open questions raised. A multivariate analogue and analogues using different
operators than the derivative are particularly emphasized. Equivalence between the periodic and
nonperiodic case is shown. Failure of Kolmogorov’s inequality for Lp spaces when 0 < p < 1
is demonstrated.

1. The classic Landau-Kolmogorov inequality

The Landau-Kolmogorov inequality is given by

‖f (k)‖B � K(n, k, B)‖f (n)‖k/n
B ‖f ‖1− k

n
B , 0 < k < n, (1.1)

where B is a Banach space of functions on R (the reals) or a subset of R, and K(n, k, B)
are the best constants for the given n, k and B. The inequality (1.1) has been the subject
of numerous articles. Without achieving the best constants (or a good estimate of them),
the inequality follows by induction from the case k = 1 and n = 2. The best constants
for B = L∞(R) were given by Kolmogorov [Ko] who used the Euler splines (before
that name was coined) for the extremal functions. The case k = 1 and n = 2 is
attributed to Landau and to Hadamard.

It is known that, for 1 � p � ∞,

1 = K
(
n, k, L2(R)

)
� K

(
n, k, Lp(R)

)
� K

(
n, k, L∞(R)

)
= K

(
n, k, L1(R)

)
. (1.2)

The first identity and second inequality of (1.2) (from left to right) are easy, the
third inequality follows E. Stein [St], and the fourth equality can be found in [Di,I].

It should be noted that while many articles estimating K
(
n, k, Lp(R)

)
were written,

K
(
n, k, Lp(R)

)
are known only for p = 1, 2 and ∞ (see [Ko], [St], [Di,I] and [Kw-Ze]).

The constants K
(
n, k, Lp(R)

)
are closely related to K

(
n, k, Lp(T)

)
, and I enclose

a statement and proof of that fact as I could not find a reference. (Recall T = [−π, π]
and Lp(T) is the collection of 2π periodic functions satisfying ‖f ‖Lp(T) < ∞.)
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16 Z. DITZIAN

THEOREM 1.1. For 1 � p � ∞, one has

K
(
n, k, Lp(T)

)
= K

(
n, k, Lp(R)

)
. (1.3)

Proof. For p = ∞,

K
(
n, k, L∞(T)

)
� K

(
n, k, L∞(R)

)
,

as that is valid for any norm for which translation is a weakly∗ continuous isometry
[Di,II], and L∞(T) certainly is such a norm. The construction by Kolmogorov of the
extremal functions is periodic and hence will fit L∞(T), and this yields the converse
inequality. For 1 � p < ∞, we assume that f (f �≡ 0) is near extremal for
K

(
n, k, Lp(R)

)
. Assuming f satisfies f �≡ 0, we have f (�) �≡ 0, as the only polynomial

in Lp(R) (p < ∞) is zero. We can now find a constant A, A � 1 such that, for
DA ≡ {x; |x| > A},

‖f (�)‖Lp(DA) � ε for � = 0, . . . , n.

We now define gA such that gA = 1 for |x| � A, gA(x) = 0 for |x| � A + 1 and
‖g(�)

A ‖Lp(DA) � M for � = 0, 1, . . . , n. We note that the construction can be such that M
does not depend on A. Clearly, for ε sufficiently small, F = f ·g is also near extremal
for K

(
n, k, Lp(R)

)
. A change of variable would not change the constant, and hence we

may assume that A + 1 < π. F being a function in Lp with support in (−π, π), it can
be extended periodically (with period 2π). Hence, we have

K
(
n, k, Lp(R)

)
� K

(
n, k, Lp(T)

)
.

Assume now that f ∈ Lp(T) is near extremal for K
(
n, k, Lp(T)

)
. We con-

struct the function g = 1 for |x| � mπ and g(x) = 0 for |x| � (m + 1)π with
‖g(�)(x)‖Lp(|x|�mπ) � M.

Clearly, F = g · f is in Lp(R) and

‖F(�)‖Lp[−mπ,mπ] = m‖f (�)‖Lp(T).

Choosing m big enough, F satisfies

‖F(k)‖Lp(R) �
(
K

(
n, p, Lp(T)

)
+ ε1

) ‖F(n)‖k/n
Lp(R)‖F‖

1− k
n

Lp(R),

and hence
K

(
n, p, Lp(T)

)
� K

(
n, p, Lp(R)

)
.

�
For B = Lp[0,∞) ≡ Lp(R+), one has

K
(
n, k, Lp(R+)

)
� K

(
n, k, L∞(R+)

)
. (1.4)

A method of calculating K
(
n, k, L∞(R+)

)
was described by Schönberg and Cavaretta

[Sc-Ca]. For these constants (K
(
n, k, L∞(R+)

)
, which are computable, one does not

have a formula as in the case of K
(
n, k, L∞(R)

)
. Itwas also shown that K

(
n, k, L1(R+)

) �=
K

(
n, k, L∞(R+)

)
.
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In fact, for a strongly continuous semi-group of operators, T(t), on a Banach
space, B, and an infinitesimal generator A, one has (see remark in [Di,I, p. 150])

‖Akf ‖B � K
(
n, k, T(t), B

)‖Anf ‖k/n
B ‖f ‖1− k

n
B (1.5)

and
K

(
n, k, T(t), B

)
� K

(
n, k, L∞(R+)

)
. (1.6)

If, in addition, T(t) is a group of isometries,

K
(
n, k, T(t), B

)
� K

(
n, k, L∞(R)

)
. (1.7)

While I believe that to calculate exactly K
(
n, k, Lp(R)

)
or K

(
n, k, Lp(R+)

)
is

almost hopeless except for p = 1, 2, and ∞, one could perhaps hope to show that

K
(
n, k, Lp(R)

)
= K

(
n, k, Lq(R)

)
,

1
p

+
1
q

= 1. (A)

We cannot replace R by R+ in (A), as in this case (A) would not be valid.

2. Multivariate Landau-Kolmogorov inequality

There are several generalizations of (1.1) to the multivariate situation, and for
obvious reasons I am partial to the following:

∥∥∥ ∂kf
∂ξ1 . . . ∂ξk

∥∥∥
Lp(Rd)

� C(n, k, p) ‖Δnf ‖k/2n
Lp(Rd) ‖f ‖

1− k
2n

Lp(Rd) (2.1)

where 0 < k < 2n, 1 � p � ∞, Δn is the n-th iterate of the Laplacian and ξi are
directions in Rd [Di,III]. It was shown also that

C(n, k, p) � C(n, k,∞) (2.2)

and Timofeev (see [Ti]) proved that

C(1, 1,∞) =
√

2 . (2.3)

Using a result of Chen and Ditzian [Ch-Di,I], one can replace the left hand of (2.1) by∥∥ ∂k f
∂ξk

∥∥
Lp(Rd).

I conjecture that
C(n, k,∞) = K

(
2n, k, L∞(R)

)
. (B)

(A counter example if (B) is not valid would be of interest as well.)
For 1 < p < ∞, (2.1) is valid for 0 � k � 2n, and the proof follows by

combining ∥∥∥ ∂2�f
∂ξ1, . . . , ∂ξ2�

∥∥∥
Lp

� Ap‖Δ�f ‖Lp , 1 < p < ∞, (2.4)
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which can be found in E. Stein’s book [StII, p. 77];∥∥∥ ∂

∂ξ
f

∥∥∥
Lp

�
√

2 ‖f ‖1/2
Lp

‖Δf ‖1/2
Lp

, 1 � p � ∞, (2.5)

which followed from [Ti]; and

‖Δmf ‖Lp � K(r, m,∞)‖Δrf ‖m/r
Lp

· ‖f ‖1−m
r

Lp
, 1 � p � ∞, m < r, (2.6)

which follows as Δ is the infinitesimal generator of the Gauss-Weierstrass operator.
However, this method will yield very big constants (as p tends to ∞ or 1), and I
believe that, following (2.2), C(n, k, p) for 1 � p � ∞ and k < 2n is bounded by a
constant independent of k, n, d and p.

REMARK 2.1. For k � n, 1 � p � ∞, (2.1) follows from (2.5) and (2.6) by
induction.

The inequality (2.1) is with the norm Lp(Rd), and it is shown below to be valid
with the same constants for Lp(Td) where Td is the d-dimensional torus.

THEOREM 2.2. For f , a 2π periodic function in d (orthogonal) directions, one
has for k < 2n ∥∥∥ ∂kf

∂ξ k

∥∥∥
Lp(Td)

� CT(n, k, p)‖Δnf ‖k/2n
Lp(Td)

‖f ‖1− k
2n

Lp(Td)
, (2.7)

and the best possible constant CT(n, k, p) satisfies

CT(n, k, p) = C(n, k, p), 1 � p � ∞. (2.8)

REMARK 2.3. We did not mention differentiability as a condition in this and other
theorems. The situation is that as a distribution a function f in Lp has derivatives, and
if Δnf (obtained as a distribution) is in Lp so is the k-th derivative, and it satisfies the

appropriate inequality. Note also that for brevity we use ∂k f
∂ξk rather than ∂kf

∂ξ1...∂ξk
(see

also [Ch-Di,I]).

Proof. For 1 � p < ∞, the proof is actually a repetition of the proof of Theo-
rem 1.1 with minor modifications. The same can be said on the inequality

CT(n, k,∞) � C(n, k,∞)

as in L∞(Td) translation is a weak∗ continuous isometry. For the other direction, in
case p = ∞, we cannot use the construction of the extremal function for the given n
and k as the problem of extremal functions for C(n, k,∞) is still open for general n
and k. Assume that f ∈ C2n(Rd) such that for some ξ∥∥∥ ( ∂

∂ξ

)k
f
∥∥∥

L∞(Rd)
�

(
C(n, k,∞) − ε

) ‖Δnf ‖k/2n
L∞(Rd) ‖f ‖

1− k
2n

L∞(Rd).

(It is clear that, if (2.1) is satisfied for p = ∞, there exists f ∈ C2n(Rd) f �≡ 0
satisfying the above.) We can find a cube S(A) = [−A; A] × [−A, A] × · · · × [−A, A]
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such that the norms of
∥∥(

∂
∂ξ

)k
f
∥∥

L∞(Rd), ‖Δnf ‖L∞(Rd) and ‖f ‖L∞(Rd) are almost

achieved in S(A).
We define a function g satisfying g = 1 for max |xi| < A and g = 0 when

max |xi| � A+m. We can construct g choosing m big enough to have
∥∥ ∂�

∂ξ � g
∣∣
L∞(Rd) �

ε for � = 1, . . . , n and all ξ .
The function F = f · g is of compact support and satisfies

∥∥∥ ∂k

∂ξ k
F
∥∥∥

L∞(S(A+m))
�

(
C(n, k,∞) − ε1

) ‖ΔnF‖k/2n
L∞(S(A+m)) ‖f ‖

1− k
n

L∞(S(A+m)).

We note that change of variable yi = xi/(A+m+1) will not change the inequality,
but then the new function is supported by a set in the interior of Td, and its periodic
extension will satisfy the above. This implies

CT(n, k,∞) � C(n, k,∞) − ε1

which concludes the proof.
�

REMARK 2.4. In the above, we showed that a near extremal periodic solution for
(2.1) in L∞(Rd) exists. I believe that an extremal solution for L∞(Rd) exists and is
periodic. For Lp(Rd), p < ∞, only near extremal solutions exist. For CT(n, k, p),
1 � p � ∞, I believe that extremal solutions exist. (Not just near extremal.)

THEOREM 2.5. For 0 � k � 2n,∥∥∥ ∂kf
∂ξ1 . . . ∂ξk

∥∥∥
L2(Rd)

� ‖Δnf ‖k/2n
L2(Rd) ‖f ‖

1− k
2n

L2(Rd). (2.9)

Proof. For 0 < k � n, (2.9) follows from

∥∥∥ ∂

∂ξ
f
∥∥2

L2
� ‖grad f ‖2

L2
� | 〈Δf , f 〉 | � ‖Δf ‖L2 · ‖f ‖L2 , (2.10)

‖Δf ‖2
L2

= | 〈Δ2f , f 〉 | � ‖Δ2f ‖L2 · ‖f ‖L2 , (2.11)

and mathematical induction. For n � k � 2n, it is somewhat more convenient to show
that CT(n, k, 2) = 1 and obtain (2.9) via Theorem 2.2. We will show that

∥∥∥ ∂2

∂ξ∂η
f
∥∥∥

L2(Td)
� ‖Δf ‖L2(Td) (2.12)

for any two directions ξ and η. Using (2.12), commutativity of ∂
∂ξ with ∂

∂η and with

Δ, (2.11) for L2(Td) and mathematical induction, we complete the proof for even k.
For odd k, we need (2.10) for L2(Td) as well as the above. To prove (2.12), we recall
that the functions (2π)−d/2eikx, x ∈ Td, k ∈ Zd, constitute a complete orthonormal
system. For f , Δf ∈ L2(Td),
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f ∼ (2π)−d/2
∑
k∈Zd

ake
ikx,

‖f ‖2
L2(Td) =

∑
k∈Zd

a2
k ,

‖Δf ‖2
L2(Td) =

∑
k∈Zd

|k|4a2
k .

We also have

∂

∂ξ
=

∑
αi

∂

∂xi
,

∂

∂η
=

∑
βi

∂

∂xi
, k = (k1, . . . , kd),

∂

∂ξ
∂

∂η
f ∼ (2π)−d/2

∑
k∈Zd

(α, k)(β , k)eikx

and, as |α| = |β | = 1,

|(α, k)| � |k| and |(β , k)| � |k|.
Hence we have ∂

∂ξ
∂
∂η f ∈ L2(Td) and (2.12).

�

3. Kolmogorov-type inequality for different operators

We already mentioned that the Kolmogorov-type inequality is valid for operators
that are infinitesimal generators of strongly continuous semi-groups of operators. Re-
cently in [Di,IV], I showed that self-adjoint operatorswith a sequence of eigenvalues and
eigenfunctions, for which a certain order of Cesáro summability of the eigenfunctions
converges to f in B, also satisfy a Kolmogorov-type inequality with respect to that
space B. That is, for such P(D) and B, one has

‖P(D)kf ‖Lp [−π,π] � C
(
n, k, P(D), p

) ‖P(D)nf ‖k/n
Lp[−π,π] ‖f ‖

1− k
n

Lp[−π,π]. (3.1)

I will not get into details here. I note that P1(D)f = f̃ ′ (the derivative of the harmonic
conjugate) does satisfy the conditions, and hence (3.1) is valid with P1(D) = P(D).

I conjecture that, for P1(D)f = f̃ ′,

C
(
n, k, P1(D),∞)

= K(n, k) (C)

where K(n, k) are Kolmogorov’s constants. (For n and k even, (C) reduces to the
classic Kolmogorov-type inequality.)

The inequality (3.1) is valid for operators like d
dx (1− x2) d

dx in Lp[−1, 1] and for
Jacobi operators in appropriately weighted Lp spaces (see [Ch-Di,II] and [Di,IV]). The
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best constants are not known except for the simple case of L2[−1, 1] or weighted L2

for Jacobi weights where the best constant are all equal to 1. The identity

〈P(D)f , P(D)f 〉 = 〈P(D)2f , f 〉 ,

the Cauchy-Schwartz inequality and mathematical induction together will imply that
the best constants in L2 are all equal to 1 in the cases mentioned above.

4. Local supremum for the kkk-th derivative

When dealing with L∞(Rd) or L∞(Td), (2.1) can clearly be replaced by

∥∥∥ sup
ξ

∣∣∣ ∂k

∂ξ k
f (x)

∣∣∣ ∥∥∥
L∞

� C(n, k,∞) ‖Δnf ‖k/2n
L∞ ‖f ‖1− k

2n
L∞ . (4.1)

We will show below that (4.1) is valid also for Lp(Rd) or Lp(Td), 1 � p < ∞
(with a bigger constant). The statement and proof will pertain to Lp(Td), however the
inequality is valid for Lp(Rd) as well.

THEOREM 4.1. Suppose f ∈ Lp(Td), 1 � p � ∞, and Δnf defined in the
distributional sense satisfies Δnf ∈ Lp(Td). Then, for 0 < k < 2n,

∥∥∥ sup
ξ

∣∣∣ ∂k

∂ξ k
f (x)

∣∣∣ ∥∥∥
Lp(Td)

� C‖Δnf ‖k/2n
Lp(Td) ‖f ‖

1− k
2n

Lp(Td) (4.2)

where C is independent of f .

REMARKS 4.2. (a) It was shown earlier that ( ∂
∂ξ )kf (x) is in Lp(Td). The present

result shows that sup
ξ

|( ∂
∂ξ )kf (x)| is finite a.e. and is in Lp(Td).

(b) For p = 2, k = 1 and n = 1, the constant C is equal to 1, using |grad f (x)|
for sup

ξ
|f (x)|.

(c) The proof below yields constants that are bigger for p < ∞ and we do not
automatically get C(n, k,∞) as an upper bound. It would be interesting to find out if
they are, in fact, bigger than C(n, k,∞) for some p < ∞. (I suspect not.) It would be
interesting to find out if, for p = 2 and other n and k (see (b)), the constants are still
all equal to one. (For k � n it is so.)

Proof. If f ∈ C2n(Td), we can write, using [Di-Iv],

max
ξ

∣∣∣ ∂k

∂ξ k
f (x)

∣∣∣ � A max
ξi∈S

∣∣∣ ∂k

∂ξ k
i

f (x)
∣∣∣, (4.3)

where S is a finite set of ξi independent of x and f (consisting of
(k+d−1

k

)
vectors

ξi which are (k, d) independent in the terminology of [Di-Iv]), and A can be chosen
independently of f , ξ and x. As (2.1) is valid, we just increase the constant by the
multiplicative factor A. To prove the general case, we have to take a little more care and
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it can be done in the following manner (for instance). Let Tm be the best approximant
to f in Lp by a trigonometric polynomial in τm given by

τm = span
{

eik·x : |k| ≡
( d∑

i=1

|ki|2
)1/2

� m
}
. (4.4)

It was shown in [Ch-Di] that if Δnf ∈ Lp(Td) (with Δn defined as a distribution), then

Em(f )p = ‖f − Tm‖Lp(Td) � Cm−2n‖Δnf ‖Lp(Td). (4.5)

We can now write

f = T2� +
∞∑
j=1

(
T2�+j − T2�+j−1

)
(4.6)

which, using (4.5), converges nicely for any �, and we will choose � later.
We now have∥∥∥ sup

ξ

∣∣∣∂kf
∂ξ k

(x)
∣∣∣ ∥∥∥

p
�

∥∥∥ max
ξ

∣∣∣ ∂k

∂ξ k
T2�(x)

∣∣∣ ∥∥∥
p

+
∞∑
j=1

∥∥∥ max
ξ

∣∣∣ ∂k

∂ξ k

(
T2�+j − T2�+j−1

)
(x)

∣∣∣ ∥∥∥
p

where ‖ · ‖Lp(Td) ≡ ‖ ‖p.

We now use (4.3) to obtain

∥∥∥ sup
ξ

∣∣∣ ∂k

∂ξ k
f (x)

∣∣∣ ∥∥∥
p

� A max
ξi∈S

[ ∥∥∥ ∂k

∂ξ k
i

T2�(x)
∥∥∥

p

+
∞∑
j=1

∥∥∥ ∂k

∂ξ k
i

(
T2�+j − T2�+j−1

)
(x)

∥∥∥
p

]

(and using the Bernstein inequality)

� AB
[
2�k

∥∥∥T2�

∥∥∥
p
+

∞∑
j=1

2(�+j)k
∥∥∥T2�+j − T2�+j−1

∥∥∥
p

]

(and using (4.5))

� AB
[
2�k

∥∥∥T2�

∥∥∥
p
+ 2C

∞∑
j=1

2(�+j)k2−(�+j−1)2n ‖Δnf ‖p

]

(and using ‖T2�‖p � 2‖f ‖p and geometric series)

� C1
[
2�k‖f ‖p + 2−�(2n−k) ‖Δnf ‖p

]
.
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We now choose �. If ‖Δnf ‖p
/‖f ‖p � 1, we choose � such that

2� �
(‖Δnf ‖p

‖f ‖p

)1/2n
� 2�+1,

and hence ∥∥∥ sup
ξ

∣∣∣ ∂k

∂ξ k
f (x)

∣∣∣ ∥∥∥
p

� C1‖Δnf ‖k/2n
p ‖f ‖1− k

n
(
1 + 2(2n−k)).

For the case ‖Δnf ‖p

/‖f ‖p < 1, we write f = M + f − M where

‖f − M‖p = inf
C

‖f − C‖p.

Following [Di,IV] and the above,

‖f − M‖p � C2‖Δnf ‖p

but
∂kf
∂ξ k

=
∂k

∂ξ k
(f − M),

and hence if ‖Δnf ‖p � ‖f ‖p we use the above (recall k < 2n) to obtain∥∥∥ sup
ξ

∣∣∣ ∂k

∂ξ k
f
∣∣∣ ∥∥∥

p
=

∥∥∥ sup
ξ

∣∣∣ ∂k

∂ξ k
(f − M)

∣∣∣ ∥∥∥
p

� C3‖Δnf ‖p

� C3‖Δnf ‖k/2n
p ‖f ‖1− k

2n
p .

�
We note that this proof does not use [Di,III] or earlier sections. It follows the

technique (but not exactly the proof) in [Di,IV]. The present proof has the advantage
that it facilitates generalizations with greater ease.

5. Kolmogorov-type inequality does not hold for LpLpLp , 0 < p < 10 < p < 10 < p < 1

I am sure that some were wondering if Kolmogorov inequality holds for Lp(T) or
Lp(R), 0 < p < 1. After all, the Bernstein inequality and the Jackson inequality hold
for Lp(T) when 0 < p < 1. We will show here that, even for k = 1 and n = 2, there
is no constant Cp, 0 < p < 1, for which

‖f ′‖Lp(T) � Cp‖f ′′‖1/2
Lp(T) ‖f ‖1/2

Lp(T).

Recall that the quasinorm ‖f ‖Lp(T) is given by

‖f ‖Lp(T) =
( ∫ π

−π
|f (x)|pdx

)1/p
.
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Define f by f (0) = 0, f ′(x) = −f ′(−x), f
( π

2 + y
)

= f
( π

2 − y
)

and

f ′(x) =

⎧⎨
⎩

j−1
N for π

2
j−1
N � x � πj

2N − 1
N2

j−1
N + N

(
x − πj

2N + 1
N2

)
for πj

2N − 1
N2 � x � πj

2N

for 1 � j � N. Clearly, we have a periodic function which satisfies, for some 0 < A,
B < ∞, ‖f ′‖Lp ∼ A and ‖f ‖Lp ∼ B, as N � 1.

However,
‖f ′′‖Lp = O

(
N(p−1)/p

)
which tends to zero as N → ∞. Similar examples can be produced to show that a
Kolmogorov-type inequality does not hold for Lp(T), 0 < p < 1, for any k and n
(0 < k < n).
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