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REMARKS, QUESTIONS AND CONJECTURES ON
LANDAU-KOLMOGOROV-TYPE INEQUALITIES

Z.. DITZIAN

(communicated by M. K. Kwong)

Abstract. Results on Landau-Kolmogorov-type inequalities are surveyed with some new results
given and some open questions raised. A multivariate analogue and analogues using different
operators than the derivative are particularly emphasized. Equivalence between the periodic and
nonperiodic case is shown. Failure of Kolmogorov’s inequality for L, spaces when 0 < p <1
is demonstrated.

1. The classic Landau-Kolmogorov inequality

The Landau-Kolmogorov inequality is given by

n)|k/n 17%
IF©lls < K(n,k, B)F OIS I l5 7, 0 <k <n, (1.1)

where B is a Banach space of functionson R (the reals) or a subsetof R, and K(n, k, B)
are the best constants for the given n, k and B. The inequality (1.1) has been the subject
of numerous articles. Without achieving the best constants (or a good estimate of them),
the inequality follows by induction from the case k = 1 and n = 2. The best constants
for B = Lo (R) were given by Kolmogorov [Ko] who used the Euler splines (before
that name was coined) for the extremal functions. The case k = 1 and n = 2 is
attributed to Landau and to Hadamard.

It is known that, for 1 < p < oo,

1 =K(n,k,L>(R)) < K(n,k, Ly(R))

< K(n,k,Los(R)) = K(n,k,Li(R)). (1.2)

The first identity and second inequality of (1.2) (from left to right) are easy, the
third inequality follows E. Stein [St], and the fourth equality can be found in [Di,I].

It should be noted that while many articles estimating K (n, k,L, (R)) were written,
K(n,k,L,(R)) are known only for p = 1,2 and oo (see [Kol, [St], [Di.I] and [Kw-Ze]).

The constants K (n7 k,L, (R)) are closely related to K (n7 k, L,,(T)) , and I enclose
a statement and proof of that fact as I could not find a reference. (Recall T = [—m, 7]
and L,(T) is the collection of 27 periodic functions satisfying [|f ||z, r) < oc.)
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16 Z. DITZIAN

THEOREM 1.1. For 1 < p < 00, one has

K(n,k,L,(T)) = K(n,k,L,(R)). (1.3)

Proof. For p = oo,
K(n,k,Loo(T)) < K (n,k, Loo(R)),

as that is valid for any norm for which translation is a weakly* continuous isometry
[DiII], and L (T) certainly is such a norm. The construction by Kolmogorov of the
extremal functions is periodic and hence will fit Lo, (7), and this yields the converse
inequality. For 1 < p < oo, we assume that f (f # 0) is near extremal for
K(n,k,L,(R)). Assuming f satisfies f # 0, we have f ) 0, as the only polynomial
in L,(R) (p < oo) is zero. We can now find a constant A, A > 1 such that, for
Dy = {x; |x| > A},
Hf(é)HLp(DA) <S for KZO,...J’L

We now define g4 such that g4 =1 for |x| <A, ga(x) =0 for |x| >A+1 and
Hg/(f)HLp(DA> < M for £ =0,1,...,n. We note that the construction can be such that M
does not depend on A. Clearly, for € sufficiently small, F = f - g is also near extremal
for K (n, k,L, (R)) . A change of variable would not change the constant, and hence we
may assume that A+ 1 < m. F being a functionin L, with supportin (—m, ), it can
be extended periodically (with period 27). Hence, we have

K(n,k,L,(R)) < K(n,k,L,(T)).

Assume now that f € L,(T) is near extremal for K(n,k,L,(T)). We con-
struct the function g = 1 for |x| < mm and g(x) = 0 for |x| > (m + 1)m with

Hg([)(-x)||L,,(|x|>mn) < M.
Clearly, F =g - f isin L,(R) and

HF([) ||Lp[—mn:,mn:] = m“f([) HLp(T)~
Choosing m big enough, F satisfies

n)k/n 1—%
||F<k)||Lp(R> < (K(n,p,Lp(T)) + &) IF )”L,/)(R)”F”LP(R)’

and hence
K(n,p,L,(T)) < K(n,p,Ly(R)).

For B = L,[0,00) = L,(R;), one has
K(n,k,L,(R;)) < K(n,k,Loo(Ry)). (1.4)

A method of calculating K (n, k, Loo (R+)) was described by Schonberg and Cavaretta
[Sc-Ca]. For these constants (K (n,k, Loo(R+)), which are computable, one does not
have a formulaasin the case of K (n, k, Lo (R)). It was also shown that K (n, k, L; (R.)) #
K(n,k Loo(Ry)).
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In fact, for a strongly continuous semi-group of operators, 7(¢), on a Banach
space, B, and an infinitesimal generator A, one has (see remark in [Di,L, p. 150])

n k/n 1*%
1A% |15 < K (n, &, T(2), B)[|A"F 115" If || 5 (1.5)

and
K(n,k,T(t),B) < K(n,k, Lo (Ry)). (1.6)

If, in addition, T(¢) is a group of isometries,
K(n,k,T(t),B) < K(n,k, Lo (R)). (1.7)

While T believe that to calculate exactly K (n,k7 L,,(R)) or K (n,k, LP(R+)) is
almost hopeless except for p = 1,2, and oo, one could perhaps hope to show that
K(n,k,L,(R)) = K(n,k,Ly(R)), +-=1 (A)

We cannot replace R by R, in (A), as in this case (A) would not be valid.

2. Multivariate Landau-Kolmogorov inequality

There are several generalizations of (1.1) to the multivariate situation, and for
obvious reasons I am partial to the following:

nyp1k/2n 17%
Lp(Rd) < C(n>k7p) HAfHLp(Rd) HfHLp(Rd) (21)

| 522
0 ...0&
where 0 < k < 2n, 1 < p < oo, A" is the n-th iterate of the Laplacian and & are
directions in R? [Di,III]. It was shown also that

C(n,k,p) < C(n,k,00) (2.2)

and Timofeev (see [Ti]) proved that

C(1,1,00) = V2. (2.3)
Using a result of Chen and Ditzian [Ch-D4i,I], one can replace the left hand of (2.1) by
s
15 L, ey

I conjecture that
C(n,k,00) = K(2n,k, Loo(R)). (B)

(A counter example if (B) is not valid would be of interest as well.)
For 1 < p < oo, (2.1) is valid for 0 < k& < 2n, and the proof follows by

combining
aﬂf

58 95 |l SAlaT Iy, 1<p<oo, 2.4
| 5555 [, <4l 1<p 04
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which can be found in E. Stein’s book [StII, p. 77;

8 1/2 1/2
| 527 [, < V2WI Iy 1<p<oe, (2:5)
which followed from [Ti]; and
m Fepm/r -
IA"F N1, < K(rom, o) AF 2 - IIf I, 7, 1<p<oo, m<r,  (26)

which follows as A is the infinitesimal generator of the Gauss-Weierstrass operator.
However, this method will yield very big constants (as p tends to oo or 1), and I
believe that, following (2.2), C(n,k,p) for 1 < p < oo and k < 2n is bounded by a
constant independent of k,n,d and p.

REMARK 2.1. For k < n, 1 < p < o0, (2.1) follows from (2.5) and (2.6) by
induction.

The inequality (2.1) is with the norm L,(R?), and it is shown below to be valid
with the same constants for L,(7T¢) where T¢ is the d-dimensional torus.

THEOREM 2.2. For f, a 27 periodic function in d (orthogonal) directions, one
has for k < 2n

N,y < ok PITIE Ir1 27)
H OEF L, (1)

and the best possible constant Cr(n,k,p) satisfies

Cr(n,k,p) = C(n,k,p), 1<p<oc. (2.8)

REMARK 2.3. We did not mention differentiability as a condition in this and other
theorems. The situation is that as a distribution a function f in L, has derivatives, and
if A’f (obtained as a distribution) is in L, so is the k-th derivative, and it satisfies the

,k rk
91 rather than T 0E dg (see

appropriate inequality. Note also that for brevity we use 7 :

also [Ch-Di,J)).

Proof. For 1 < p < oo, the proof is actually a repetition of the proof of Theo-
rem 1.1 with minor modifications. The same can be said on the inequality

Cr(n, k,0) < C(n, k, 00)

as in Loo(T9) translation is a weak* continuous isometry. For the other direction, in
case p = 0o, we cannot use the construction of the extremal function for the given n
and k as the problem of extremal functions for C(n, k, c0) is still open for general n
and k. Assume that f € C?"(R) such that for some &

H (%)kf“b@(m) > (C(n,k,00) —¢€) ||A”f‘|k/2n1ed Hf”Loo

(It is clear that, if (2.1) is satisfied for p = oo, there exists f € Cz"(R" f
-

Z0
satisfying the above.) We can find a cube S(A) = [—A;A] X [-A,A] X --- x [-A

Al
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- k n
such that the norms of ||(%) f||Loo(Rd>7 A" ||, (ray and [|f ||, (ra) are almost
achieved in S(A).
We define a function g satisfying ¢ = 1 for max |x;] < A and g = 0 when
max |x;| > A+m. We can construct g choosing m big enough to have || % g|LOo (R <

gfor{=1,...,nandall &.
The function F = f - g is of compact support and satisfies

)

n o k/2n —k
| o Pl ey > (€0 00) = &) Iy 1y

We note that change of variable y; = x;/(A+m+ 1) will not change the inequality,
but then the new function is supported by a set in the interior of T¢, and its periodic
extension will satisfy the above. This implies

Cr(n,k,00) = C(n, k,00) — &

which concludes the proof.
]

REMARK 2.4. In the above, we showed that a near extremal periodic solution for
(2.1) in Lo (R?Y) exists. I believe that an extremal solution for L..(RY) exists and is
periodic. For L,(R?), p < oo, only near extremal solutions exist. For Cr(n,k,p),
1 < p < o0, I believe that extremal solutions exist. (Not just near extremal.)

THEOREM 2.5. For 0 < k < 2n,
akf A" k/2n 1*%
| 552 [y < 107 G 1 (2.9)
Proof. For 0 < k < n, (2.9) follows from

0
| eI, < lewd I, < 1(ars) I <ol Wl (210)

IAFIIZ, = (A% ) | < N8 Nl I s (2.11)

and mathematical induction. For n < k < 2n, it is somewhat more convenient to show
that Cr(n,k,2) = 1 and obtain (2.9) via Theorem 2.2. We will show that

”aéanfﬂ <8 (2.12)

for any two directions & and 7. Using (2.12), commutativity of % with % and with
A, (2.11) for Ly(T¢) and mathematical induction, we complete the proof for even k.
For odd k, we need (2.10) for L,(T?) as well as the above. To prove (2.12), we recall
that the functions (27r)*d/ 2¢ x € T¢, k € Z¢, constitute a complete orthonormal
system. For f, Af € Ly(T9),
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[~ )Y ae™,

kezd
Hf”iz(rd) = Z a%,
kezd
HAinz(Td) = Z \kl“af
kezd

We also have

0 0 0 0
%—Zaia—xj, a—n—ZBza_XI’ k—(kla"'akd)a

0

9 8af 2m) =23 " (o, k) (B, k)™

kezd
and, as |a| = |B| =1,
(o, k)| < [k and |(B, k)] < |K].

Hence we have % %f € L»(T?) and (2.12).

3. Kolmogorov-type inequality for different operators

We already mentioned that the Kolmogorov-type inequality is valid for operators
that are infinitesimal generators of strongly continuous semi-groups of operators. Re-
cently in [Di,IV], I showed that self-adjoint operators with a sequence of eigenvalues and
eigenfunctions, for which a certain order of Cesdro summability of the eigenfunctions
converges to f in B, also satisfy a Kolmogorov-type inequality with respect to that
space B. That s, for such P(D) and B, one has

npenk/n 1*%
IP(DYF 1y -nm) < Clr,k, P(D),p) IPDYF I Wl g (B1)

I will not get into details here. I note that Py (D)f =f (the derivative of the harmonic
conjugate) does satisfy the conditions, and hence (3.1) is valid with P,(D) = P(D).

I conjecture that, for Py(D)f = fN’7
C(n’k7P1(D)7OO) = K(l’l,k) (C)

where K(n,k) are Kolmogorov’s constants. (For n and k even, (C) reduces to the
classic Kolmogorov-type inequality.)

The inequality (3.1) is valid for operators like 4 (1 —x?) £ in L,[—1, 1] and for
Jacobi operators in appropriately weighted L, spaces (see [Ch-Di,II] and [Dl IV]). The
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best constants are not known except for the simple case of L;[—1, 1] or weighted L,
for Jacobi weights where the best constant are all equal to 1. The identity

(P(D)f,P(D)f) = (P(D)f.f),

the Cauchy-Schwartz inequality and mathematical induction together will imply that
the best constants in L, are all equal to 1 in the cases mentioned above.

4. Local supremum for the k-th derivative

When dealing with Ly, (R?) or Loo(T?), (2.1) can clearly be replaced by
ak npenk/2n 1-£
[sue| gger ] [, < con ke a1 (4.1)

We will show below that (4.1) is valid also for L,(RY) or L,(T%), 1 < p < o
(with a bigger constant). The statement and proof will pertain to L,(7¢), however the
inequality is valid for L,(R?) as well.

THEOREM 4.1. Suppose [ € Lp(Td), 1 < p < oo, and A'f defined in the
distributional sense satisfies N'f € Lp(Td). Then, for 0 < k < 2n,

sup| 5 ] | gy < CINFIL R W 42)
Jsue] 557 0] ., it

where C is independent of f .
REMARKS 4.2. (a) It was shown earlier that (%)kf (x) isin L,(T?). The present

result shows that sup |(%)"f (x)| is finite a.e. and is in L,(77).
¢

(b) For p=2, k=1 and n = 1, the constant C is equal to 1, using |gradf (x)|
for sup |f (x)].
¢

(c) The proof below yields constants that are bigger for p < oo and we do not
automatically get C(n,k,c0) as an upper bound. It would be interesting to find out if
they are, in fact, bigger than C(n, k, 00) for some p < oco. (I suspect not.) It would be
interesting to find out if, for p = 2 and other n and k (see (b)), the constants are still
all equal to one. (For k < n itis so.)

Proof. If f € C*(T?), we can write, using [Di-Iv],

8k
Amax | S 43
max ’aékf 0 <A max 5/ @ (43)
where § is a finite set of & independent of x and f (consisting of (Hd 1) vectors

& which are (k,d) independent in the terminology of [Di-Iv]), and A can be chosen
independently of f,& and x. As (2.1) is valid, we just increase the constant by the
multiplicative factor A. To prove the general case, we have to take a little more care and
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it can be done in the following manner (for instance). Let T, be the best approximant

to f in L, by a trigonometric polynomial in 7,, given by

, d 12
T, = span {e’k‘x : k| = (Z \ki\z) < m}
i=1

(4.4)

It was shown in [Ch-Di] that if A"f € L,(T¢) (with A" defined as a distribution), then

En(f)p = If = Tullp, ey < Cm™ " |AF ||, -

We can now write

o0
f = TZ( + Z (T2ﬂ+j - Tzﬂ+j71)

j=1
which, using (4.5), converges nicely for any ¢, and we will choose ¢ later.
We now have
orf

k
|5 2G|

|, < | e 70

o3 mex e (11000 |

P

where ||+l oy = 1| -
We now use (4.3) to obtain

Jsue | e 91 ], < oy [ 5 700,

&es

5 (o]
j=1 ’

(and using the Bernstein inequality)

<AB[2* Hng

32 |
roD P
(and using (4.5))

< AB [2”‘“ Ty

+2C 2(Z+j>k27(€+j71)2n A" :|
, Zl: 1A 1l

(and using Ty, < 2||f ||, and geometric series)

< G250 Nl + 2710 |Ar )

(4.5)

(4.6)
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We now choose £. If [|[A"f ||, /|If |, = 1, we choose ¢ such that

Y (IIA”fH )1/2" <ot
I 1l

and hence
[sup |- r @] || < cullarr 152 1 11=* (1 4+29).
c | 9Ek » P
For the case [|A"f||,/|[f ||, < 1, we write f =M +f — M where
I =M, = inf [If —Cl,.
Following [Di,IV] and the above,

If = Mll, < G| A7,

but o
f

L = _(f-M

85" 85" (f )a
and hence if ||A"f||, < ||f]|, we use the above (recall k < 2n) to obtain

Jsue gt 1, = o e =30
¢ 10 ¢ 10&k P
< GlAT

1—k

< GIAF > NF 1,
O

We note that this proof does not use [Di,III] or earlier sections. It follows the
technique (but not exactly the proof) in [Di,IV]. The present proof has the advantage
that it facilitates generalizations with greater ease.

5. Kolmogorov-type inequality does not hold for L,, 0 <p <1

I am sure that some were wondering if Kolmogorov inequality holds for L,(T) or
L,(R), 0 < p < 1. After all, the Bernstein inequality and the Jackson inequality hold
for L,(T) when 0 < p < 1. We will show here that, even for k = 1 and n = 2, there
is no constant C,, 0 < p < 1, for which

1/2 1/2
W ey < GollF " 15y WF U2 -

Recall that the quasinorm |[|f'||,,(r) is given by

Wl = ([ trepas)”.
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Define f by £(0) =0, f'(x) = —f'(=x), f(5 +¥) =f(5 —y) and
/ J_Tl for %j_léxézﬂ—%
fix) =

=1 _m oy 1 o1 .
N+N(x 2N+N2) for 55— Sx< g

for 1 < j < N. Clearly, we have a periodic function which satisfies, for some 0 < A,
B < o0, |[f’||Lp ~ A and Hf||L,, ~ B, as N> 1.
However,
Hf//HLp — O(N(p—1>/p)

which tends to zero as N — oo. Similar examples can be produced to show that a
Kolmogorov-type inequality does not hold for L,(T), 0 < p < 1, for any k and n
(0 <k <n).
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