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GENERALIZATIONS OF SOME INEQUALITIES

OF OSTROWSKI–GRÜSS TYPE

C. E. M. PEARCE, J. PEČARIĆ, N. UJEVIĆ AND S. VAROŠANEC

(communicated by D. Hinton)

Abstract. We provide generalizations and improvements of a variety of recent results for the
Ostrowski and Simpson inequalities.

1. Introduction

Ostrowski [4, p. 468] proved the following integral inequality which is central to
numerical analysis.

THEOREM A. Suppose I ⊆ R is an interval with a, b ∈ int(I) ( a < b ). If
f : I → R is differentiable on int( I ) and |f ′(x)| � M for all x ∈ [a, b] , then∣∣∣∣∣f (x) − 1

b − a

∫ b

a
f (t)dt

∣∣∣∣∣ �
(

1
4

+
(x − a+b

2 )2

(b − a)2

)
(b − a)M, ∀x ∈ [a, b].

There have been several extensions of this result. It has been shown in [3] that if f
is differentiable on (a, b) and f ′ is integrable and satisfies

γ � f ′(t) � Γ for all t ∈ [a, b],

then∣∣∣∣∣f (x) − f (b) − f (a)
b − a

(
x − a + b

2

)
− 1

b − a

∫ b

a
f (t)dt

∣∣∣∣∣ � 1

4
√

3
(b − a)(Γ− γ ) (1)

for all x ∈ [a, b] . A version of this estimate occurs in [1], but without the
√

3 on the
right. A more general left-hand side is treated in [2]. Fedotov and Dragomir have shown
that if f has a first derivative on (a, b) and γ � f ′(t) � Γ for all t ∈ (a, b) , then∣∣∣∣∣(C − A)f (a) + (b − a − B + A)f (x) + (B − C)f (b) −

∫ b

a
f (t)dt

∣∣∣∣∣
� 1

4
(Γ− γ )(Mx − mx)(b − a). (2)
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Here A, B ∈ R , Mx = sup{px(t) : t ∈ (a, b)} , mx = inf{px(t) : t ∈ (a, b)} ,

C =
1

2(b − a)
[(x − a)(x − a + 2A) − (x − b)(x − b + 2B)]

and px is defined by

px(t) =
{

t − a + A, t ∈ [a, x]
t − b + B, t ∈ (x, b] .

Here we give generalizations of these results using sequences of harmonic poly-
nomials. We apply our results to some numerical integration rules and derive bounds
better than those currently known.

In Section 2 we give a basic identity and inequalities that are used in the sequel.
Section 3 treats functions possessing an n -th derivative. In Section 4 we calculate
bounds for the error in some numerical integration rules for the case n = 1 . It is shown
that our generalization gives better bounds than some results derived recently in [2]. We
conclude with a discussion of Simpson’s rule.

2. Preliminaries

Let {Pn} and {Qn} be sequences of harmonic polynomials, that is, polynomials
satisfying

P′
n(x) = Pn−1(x), Q′

n(x) = Qn−1(x), with P0(x) = Q0(x) = 1.

If f has a derivative of order n , then setting

Sn(t, x) =
{

Pn(t), t ∈ [a, x]
Qn(t), t ∈ (x, b]

and using integration by parts we obtain the identity

(−1)n
∫ b

a
Sn(t, x)f (n)(t)dt = In(x),

where

In(x) :=
∫ b

a
f (t)dt

+
n∑

k=1

(−1)k
[
Qk(b)f (k−1)(b) + (Pk(x) − Qk(x))f (k−1)(x) − Pk(a)f (k−1)(a)

]
.

Various generalizations of TheoremA have been obtained in [5] using such polynomials.
The following inequality of Grüss type, established in [3], plays a key role in this

paper.

THEOREM B. Let f , g : [a, b] → R be integrable functions such that f g is also
integrable. If γ � g(x) � Γ for all x ∈ [a, b] , then

|T(f , g)| � 1
2

√
T(f , f )(Γ − γ ),
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where

T(f , g) =
1

b − a

∫ b

a
f (x)g(x)dx − 1

(b − a)2

∫ b

a
f (x)dx

∫ b

a
g(x)dx.

This theorem was proved via the following helpful inequality.
If f is integrable on [a, b] and ϕ � f (x) � φ ∀x ∈ [a, b] , then

T(f , f ) � 1
4
(φ − ϕ)2. (3)

3. Functions with n -th derivative

THEOREM 1. Suppose f : [a, b] → R is such that f (n) is integrable with

γn � f (n)(t) � Γn for all t ∈ [a, b].

Put
Un(x) := [Qn+1(b) − Qn+1(x) + Pn+1(x) − Pn+1(a)] /(b − a).

Then for any x ∈ [a, b] ,

∣∣∣In(x) − (−1)nUn(x)
[
f (n−1)(b) − f (n−1)(a)

]∣∣∣ � 1
2
K(Γn − γn)(b − a),

where

K :=

{
1

b − a

[∫ x

a
P2

n(t)dt +
∫ b

x
Q2

n(t)dt

]
− [Un(x)]

2

} 1
2

.

Proof. From the definition of Sn we have∣∣∣In(x) − (−1)nUn(x)
[
f (n−1)(b) − f (n−1)(a)

]∣∣∣
= (b − a)

∣∣∣∣∣ 1
b − a

∫ b

a
Sn(t, x)f (n)(t)dt − 1

(b − a)2

∫ b

a
Sn(t, x)dt

∫ b

a
f (n)(t)dt

∣∣∣∣∣
= (b − a)|T(Sn, f

(n))|
� 1

2

√
T(Sn, Sn)(b − a)(Γn − γn).

The desired result follows, since K =
√

T(Sn, Sn) . �

By using particular harmonic polynomials we can obtain a variety of results which
generalize known approximations.
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COROLLARY 1. Under the assumptions of Theorem 1,∣∣∣∣∣ 1
b − a

∫ b

a
f (t)dt

+
n∑

k=1

(−1)k

k!(b−a)

[
(b−B)kf (k−1)(b)+((x−A)k−(x−B)k)f (k−1)(x)−(a−A)kf (k−1)(a)

]

− (−1)n(f (n−1)(b)−f (n−1)(a))
(n+1)!(b−a)2

[
(b−B)n+1−(x−B)n+1+(x−A)n+1−(a−A)n+1

]∣∣∣∣
� 1

2
(Γn − γn)K1

for all x ∈ [a, b] and A, B ∈ R , where

K1 :=
1
n!

(
(x − A)2n+1 − (a − A)2n+1 + (b − B)2n+1 − (x − B)2n+1

(2n + 1)(b − a)

−
(

(b − B)n+1 − (x − B)n+1 + (x − A)n+1 − (a − A)n+1

(n + 1)(b − a)

)2
)1/2

.

Proof. This is just the result of Theorem 1 with the polynomial choices Pn(x) =
(x − A)n/n! and Qn(x) = (x − B)n/n! �

COROLLARY 2. Under the assumptions of Theorem 1,∣∣∣∣∣ 1
b − a

∫ b

a
f (t)dt +

n∑
k=1

(−1)k(b − a)k−1

k!(p + q)k
×

×
[
qk(f (k−1)(b) − (−1)kf (k−1)(a)) +

(
p − q

2

)k

[1 − (−1)k]f (k−1)
(

a + b
2

)]

− (−1)n(b − a)n−1(1 + (−1)n)
(n + 1)!(p + q)n+1

[
qn+1 +

(
p − q

2

)n+1
] [

f (n−1)(b) − f (n−1)(a)
]∣∣∣∣∣

1
2
K2(Γn − γn) (4)

for p, q ∈ R ( p + q > 0 ), where

K2 :=
(b − a)n

n!(p + q)n

(
2(q2n+1 + ( p−q

2 )2n+1)
(p + q)(2n + 1)

− 2[1 + (−1)n]
(qn+1 + ( p−q

2 )n+1)2

(n + 1)2(p + q)2

)1/2

.

Proof. This is Corollary 1 with A =
pa + qb
p + q

, x =
a + b

2
and B =

qa + pb
p + q

,

where p, q ∈ R and p + q > 0 . �
For x = b , Theorem 1 gives the following.
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THEOREM 2. If f satisfies assumptions of Theorem 1, then∣∣∣∣∣ 1
b − a

∫ b

a
f (t)dt +

n∑
k=1

(−1)k

b − a

[
Pk(b)f (k−1)(b) − Pk(a)f (k−1)(a)

]

− (−1)n

(b − a)2
(Pn+1(b) − Pn+1(a)

)
(f (n−1)(b) − f (n−1)(a))

∣∣∣∣
� 1

2
K3(Γn − γn),

where

K3 :=

(
1

b − a

∫ b

a
P2

n(t)dt −
(

Pn+1(b) − Pn+1(a)
b − a

)2
)1/2

.

The choice Pn(x) = [x − (a + b)/2]n /n! provides the following corollary.

COROLLARY 3. Under the assumptions of Theorem 1,∣∣∣∣∣ 1
b − a

∫ b

a
f (t)dt +

n∑
k=1

(−1)k

2kk!
(b − a)k−1

(
f (k−1)(b) − (−1)kf (k−1)(a)

)

− (−1)n

2n+1(n + 1)!
(b − a)n−1(1 + (−1)n)(f (n−1)(b) − f (n−1)(a))

∣∣∣∣
� 1

2
(Γn − γn)K4,

where

K4 :=
(b − a)n

n!2n

(
1

2n + 1
− (1 + (−1)n)2

(n + 1)2

)1/2

.

4. Functions with first derivatives

In this section we consider the case n = 1 and compare our results with those
given in [2].

On putting n = 1 in Corollary 1, we obtain the following result.

THEOREM 3. Let f be differentiable on [a, b] and such that f ′ ∈ L∞[a, b] with

γ � f ′(t) � Γ for all t ∈ [a, b].

Set
Vn(x) := (b − B)n − (x − B)n + (x − A)n − (a − A)n.

Then for any x ∈ [a, b] ,∣∣∣∣∣
∫ b

a
f (t)dt − [(b − B)f (b) + (B − A)f (x) − (a − A)f (a)] +

f (b) − f (a)
2(b − a)

V2(x)

∣∣∣∣∣
� 1

2
(Γ − γ )(b − a)K5, (5)
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where

K5 :=

(
V3(x)

3(b − a)
−

(
V2(x)

2(b − a)

)2
)1/2

.

It is interesting to compare this result with (2), which was derived in [2]. In [2]
Mx − mx is expressed in terms of a, b and x and has the following complicated form.

1. If B − A � 0 , then Mx − mx = (b − a) − (B − A) .
2. If B − A > 0 there are three subcases.

a) If 0 � B − A � (b − a)/2 , then

Mx − mx =

⎧⎨
⎩

−x + b for a � x � a + (B − A)
(b − a) − (B − A) for a + (B − A) < x � b − (B − A)

x − a for b − (B − A) < x � b.

b) If (b − a)/2 < B − A � b − a , then

Mx − mx =

⎧⎨
⎩

−x + b for a � x < b − (B − A)
B − A for b − (B − A) � x < a + (B − A)
x − a for a + (B − A) � x � b.

c) If B − A > b − a , then Mx − mx = (B − A) − (b − a) .

If we replace A by a − A and B by b − B in (5), then the left-hand sides of (5)
and (2) coincide. The constant K5 in (5) becomes(

B3−(x−b+B)3+(x−a+A)3−A3

3(b−a)
−

(
B2−(x−b+B)2+(x−a+A)2−A2

2(b−a)

)2
)1/2

or(
1

b − a

(∫ x

a
(t − a + A)2dt +

∫ b

x
(t − b + B)2dt

)

−
(

1
b − a

(∫ x

a
(t − a + A)dt +

∫ b

x
(t − b + B)dt

))2
⎞
⎠

1/2

=

⎛
⎝ 1

b − a

∫ b

a
p2

x(t)dt −
(

1
b − a

∫ b

a
px(t)dt

)2
⎞
⎠

1/2

=
√

T(px, px),

where px is as in the Introduction. By (3) this is less or equal to (Mx − mx)/2 , the
constant on the right-hand side in (2). Hence our result provides an improved and
simpler error estimate of the left-hand side of (2).

It is interesting to see the form of these results when x = (a+b)/2 . Setting n = 1
and x = (a + b)/2 in Corollary 1 and replacing A by a−A and B by b−B yield the
following result.
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THEOREM 4. Suppose f : [a, b] → R is differentiable and such that γ � f ′(t) �
Γ for all t ∈ [a, b] . Then for any real numbers A and B ,∣∣∣∣∣ 1
b − a

∫ b

a
f (t)dt − 1

b − a

[
B − A

2
f (a) + (b − a − B + A)f

(
a + b

2

)
+

B − A
2

f (b)
]∣∣∣∣∣

� 1
2
(Γ− γ )

√
(b − a)2

12
− (b − a)(B − A)

4
+

(B − A)2

4
. (6)

The left-hand side of this inequality occurs in [2], but with the upper bound

1
2
(Γ − γ )(b − a − (B − A)), (7)

where 0 � B − A � (b − a)/2 .
A simple calculation yields that if 0 � B − A � (b − a)/2 , then the right-hand

side of (6) is smaller than the constant (7). Our result is valid without any conditions
on A and B .

In all the following formulæ we suppose that f satisfies the assumptions of Theo-
rem 3.

Putting n = 1 , p = 1 , q = 0 in (4) or A = B in (6) provides an error estimate∣∣∣∣∣
∫ b

a
f (t)dt − (b − a)f

(
a + b

2

)∣∣∣∣∣ � 1

4
√

3
(Γ− γ )(b − a)2

for the error in the simple midpoint rule.

Putting in (4) n = 1 , p = 3 , q = 1 or B − A = (b − a)/2 in (6) supplies the
estimate∣∣∣∣∣

∫ b

a
f (t)dt − b − a

4

[
f (a) + 2f

(
a + b

2

)
+ f (b)

]∣∣∣∣∣ � 1

8
√

3
(Γ− γ )(b − a)2

for the error in the simple quadrature rule.
The estimates for the errors for those rules with the formulæ in [2] give the larger

constants (Γ− γ )(b − a)2/4 and (Γ − γ )(b − a)2/8 respectively.

5. Simpson’s rule

One of the best-known results in numerical integration is Simpson’s inequality,
which states that if f (4) exists and is bounded on (a, b) , then∣∣∣∣∣

∫ b

a
f (t)dt − b − a

6

[
f (a) + 4f

(
a + b

2

)
+ f (b)

]∣∣∣∣∣ � 1
2880

(b − a)5||f (4)||∞. (8)

We now give some new estimates for the error in Simpson’s rule for calculating∫ b
a f (t)dt , which is given by the left-hand side of (8). Our estimates use lower-order

derivatives of f .
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Consider the two sequences of harmonic polynomials

P0(x) = 1, Q0(x) = 1,

P1(x) = x − 5a + b
6

, Q1(x) = x − 5b + a
6

,

P2(x) =
1
2!

(x − a)
(

x − 2a + b
3

)
, Q2(x) =

1
2!

(x − b)
(

x − 2b + a
3

)
,

P3(x) =
1
3!

(x − a)2

(
x − a + b

2

)
, Q3(x) =

1
3!

(x − b)2

(
x − b + a

2

)
,

P4(x) =
1
4!

(x − a)3

(
x − a + 2b

3

)
, Q4(x) =

1
4!

(x − b)3

(
x − b + 2a

3

)
,

P5(x) =
1
5!

(x − a)4

(
x − a + 5b

6

)
, Q5(x) =

1
5!

(x − b)4

(
x − b + 5a

6

)
.

Application of Theorem 1 with these polynomials provides the next result.

THEOREM 5. Suppose f is a function such that f (n) is integrable with γn �
f (n)(t) � Γn for all t ∈ [a, b] ( n ∈ {1, 2, 3} ). Then for n = 1, 2, 3 we have∣∣∣∣∣

∫ b

a
f (t)dt − b − a

6

[
f (a) + 4f

(
a + b

2

)
+ f (b)

]∣∣∣∣∣ � Cn(Γn − γn)(b − a)n+1,

where

C1 =
1
12

, C2 =
1

24
√

30
, C3 =

1

96
√

105
.

For n = 4 we have∣∣∣∣∣
∫ b

a
f (t)dt − b − a

6

[
f (a) + 4f

(
a + b

2

)
+ f (b)

]
+

(b − a)4(f (3)(b) − f (3)(a))
2880

∣∣∣∣∣
� 1

5760

√
11
14

(Γ4 − γ4)(b − a)5.

REMARK 1. The case n = 1 can also be treated by putting n = 1 , p = 5 , q = 1
in (4) or B − A = (b − a)/3 in (6).

REMARK 2. An estimate for Simpson’s rule for n = 1 is also provided by [2],
but the constant on the right-hand side is (Γ1 − γ1)(b − a)2/6 , that is, twice the value
derived here.

REMARK 3. Fedotov and Dragomir applied their estimates of the error bound in the
Simpson rule to some special functions to obtain inequalities involving various means
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of positive real numbers. Our corresponding bounds are tighter by at least a factor of 2.
For example, in [2] the inequality∣∣∣∣23HL +

1
3
AL − AH

∣∣∣∣ � 1
3
(b − a)2 A2HL

G4

is derived, where A , G , H and L are respectively the arithmetic, geometric, harmonic
and logarithmic means of positive real numbers a and b . Application of Theorem 5
and (8) to f (x) = 1/x on the interval (a, b) , (a, b > 0 ) reduces the bound on the
right-hand side to the demonstrably tighter

min

{
(b−a)2

6
A2HL
G4

,
(b−a)3

12
√

30

AHL(4A2−G2)
G6

,
(b−a)4

4
√

105

A2HL(2A2−G2)
G8

,
(b−a)4

120a5
AHL

}
.

As the consequence of the estimates for n = 1, 2, 3 we have the following result.

COROLLARY 4. Suppose f satisfies the assumptions of Theorem 5. Then for
n ∈ {1, 2, 3} , ∫ b

a
f (t)dt = T(π, f ) + Rn(π, f ),

where π represents the subdivision {a = x0 < x1, < . . . < xm = b} of the interval
[a, b] , hi = xi+1 − xi and

T(π, f ) =
1
6

m−1∑
i=0

hi

[
f (xi) + 4f

(
xi+1 + xi

2

)
+ f (xi+1)

]
.

The error Rn satisfies

|Rn(π, f )| � Cn(Γn − γn)
m−1∑
i=0

hn+1
i ,

where Cn ( n = 1, 2, 3 ) is as in Theorem 5.

Proof. Apply Theorem 5 to the intervals [xi, xi+1] and sum. �

Finally we have the corresponding result for n = 4 .

COROLLARY 5. Suppose f : [a, b] → R is such that f (4) is integrable. Then∣∣∣∣∣
∫ b

a
f (t)dt−b−a

m

m−1∑
i=0

[
f (xi)+4f

(
xi+1+xi

2

)
+f (xi+1)

]
+

(b−a)4

2880m4
(f (3)(b)−f (3)(a))

∣∣∣∣∣
� 1

5760

√
11
14

(Γ4−γ4) (b−a)5

m4
,

where {a = x0 < x1 < . . . < xm = b} is a uniform subdivision of [a, b] .
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Bijenička 30

10000 Zagreb
Croatia

e-mail: varosans@math.hr

Mathematical Inequalities & Applications
www.ele-math.com
mia@ele-math.com


