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ON THE EQUIVALENCE OF CLASSES OF FOURIER COEFFICIENTS

LÁSZLÓ LEINDLER

(communicated by J. Pečarić)

Abstract. It is shown that the classes of Fourier coefficients defined by Fomin, furthermore by
C. V. Stanojevič and V. B. Stanojevič are identical.

1. Introduction

Several authors have studied the question of L1 -convergence of the following
cosine series

a0

2
+

∞∑
n=1

an cos nx. (1.1)

Before recalling sample results we define some known classes of Fourier coeffi-
cients.

1. A sequence a := {an} belongs to S if there exists a monotonically decreasing
sequence {An} such that

∑∞
n=1 An < ∞ and |Δan| � An for all n .

2. Let BV denote the class of all null-sequences a of bounded variation.
3. A null-sequence a belongs to the class C if for every ε > 0 there exists a

δ > 0 such that ∫ δ

0

∣∣∣
∞∑
k=n

(Δak)Dk(x)
∣∣∣dx < ε,

for all n , where Dk(x) is the Dirichlet kernel.
4. A null-sequence a belongs to the class Fp if for some p > 1

∞∑
n=1

n−1/p
( ∞∑

k=n

|Δak|p
)1/p

< ∞. (1.2)

It is easy to see that the class Fp is wider when p is closer to 1.
The definition 1 is due to Telyakovskiı̆ [5], the definitions 3 and 4 were given by

Garrett-Stanojevič [2] and Fomin [1], respectively.
Telyakovskiı̆ proved that if a ∈ S then (1.1) is a Fourier series of some f ∈

L1(0, π) and that
‖sn − f ‖ = o(1), n → ∞, (1.3)
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if and only if
an log n = o(1), n → ∞, (1.4)

where sn are the partial sums of (1.1) and ‖ · ‖ is the L1(0, π) -norm.
Garrett and Stanojevič verified that if a ∈ C ∩ BV then (1.1) is a Fourier series of

some f ∈ L1(0, π) and (1.3) ⇐⇒ (1.4).
Fomin proved that if 1 < p � 2 and a ∈ Fp then (1.1) is also a Foiurier series of

some f ∈ L1(0, π) and (1.3) ⇐⇒ (1.4).
It is easy to see that the following embedding relations

S ⊆ Fp ⊆ BV (1.5)

uphold. Hence it follows that Fomin’s result is stronger than that of Telyakovskiĭ.
Stanojevič [3] verified that if 1 < p � 2 then

Fp ⊂ C ∩ BV, (1.6)

consequently the result by Garrett and Stanojevič is sharper than that of Fomin.
5. A sequence a belongs to the class Sp if an → 0 and there exists amonotoncially

decreasing sequence {An} such that

∞∑
n=1

An < ∞ and
1
n

n∑
k=1

|Δak|p
Ap

k

= O(1). (1.7)

The relation
S ⊆ Sp

clearly holds.
Very recently Tomovski [6] also proved that if 1 < p � 2 then

Sp ⊆ C ∩ BV. (1.8)

Reading the proof of (1.8) we noticed that the assumption

∞∑
m=1

2(1− 1
p )

{ 2m+1∑
n=2m+1

|Δan|p
}1/p

< ∞, (1.9)

which claims less or at least not more than the two conditions in (1.7) jointly, is also a
sufficient condition to the embedding statement (1.8).

This note gave the thought to consider a further class F∗
p .

6. A sequence a belongs to the class F∗
p if an → 0 and for some p > 1 the

inequality (1.9) holds.
We have also shown that

Fp ⊆ Sp ⊆ F∗
p . (1.10)

Having (1.10) it was a natural to set the following question: Does the embedding
relation

F∗
p ⊆ C ∩ BV (1.11)

maintain if 1 < p � 2 ?
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We succeeded to confirm (1.11), too.
Unfortunately, only from this time on, we observed that

F∗
p ⊆ Fp (1.12)

can also be verified. Thus however, by (1.10) and (1.12), it follows that the classes Fp ,
Sp and F∗

p are identical.
Consequently the statements (1.11) and also (1.8) are already proved by Stano-

jevič’s theorem.
To prove our last assertion we have only to verify the embedding relations (1.10)

and (1.12) for p > 1 .

Addendum. We are indebted to the referee of this paper who called our attention to
the following facts: the class Sp was defined byC. V. Stanojevič andV. B. Stanojevič [4],
furthermore already G. A. Fomin [1] proved that the classes Fp and F∗

p are equivalent.
According to the latter information it would be sufficient to verify only the embe-

ding relations (1.10) but since our proof for (1.12) is very short and different from that
of Fomin, we present it, too, in the original form of our manuscript.

2. Result

Our only task is to prove the following declaration.

THEOREM. If p > 1 then

Fp ⊆ Sp ⊆ F∗
p ⊆ Fp.

At the end of this note we shall present an example showing that the embedding

S ⊂ Fp

is a strict embedding relation. Maybe this fact is well known, but our proof is very short
and utilize our new theorem.

ADDITION. There exists a null-sequence a such that a ∈ Fp but a /∈ S .

3. Proofs

Proof of Theorem. First we prove the relation Fp ⊆ Sp . If a ∈ Fp then setting

Rn := n−1/p
( ∞∑

k=n

|Δak|p
)1/p

,

by (1.2), we get that
∞∑

n=1

Rn < ∞. (3.1)



48 LÁSZLÓ LEINDLER

Next we construct a monotone decreasing sequence {An} such that for any n � 1

Rn � An, (3.2)

An � KA2n, (3.3)

and ∞∑
k=1

Ak < ∞ (3.4)

hold. In (3.3) and later in the sequal K denotes a positive constant, not necessarily the
same on any two occurrences.

Let A1 := R1 and for m � 1 let

A2m := max(R2m ,
1
4
A2m−1). (3.5)

For 2m < n < 2m+1 let
An := A2m . (3.6)

Since the sequence {Rn} is monotone decreasing, thus, by (3.5) and (3.6), the sequence
{An} is also monotone decreasing.

According to the definition of {An} the inequalities (3.2) are clearly satisfied.
It is also plain that

A2m � max(4R2m+1 , A2m) = 4A2m+1 ,

whence, by (3.6), the validity of the inequality (3.3) obviously follows.
To verify (3.4) we define a sequence {νi} of the natural numbers. Let νi denote

those natural numbers when
A2νi = R2νi . (3.7)

It can be occured that the number of νi satisfying (3.7) is finite. In this case, if i0 is
the largest with property (3.7), then we define νi0+1 := ∞ . Then

∞∑
m=ν1

2mA2m =
∑
i�1

νi+1−1∑
m=νi

2mA2m =
∑
i�1

2νiA2ν1 +
∑
i�1

νi+1−1∑
m=νi+1

2mA2m . (3.8)

In the second sum merely those i appear which satisfy the inequality νi+1 > νi + 1 .
In this case

νi+1−1∑
m=νi+1

2mA2m =
νi+1−νi−1∑

k=1

2νi+kA2νi+k = 2νi

νi+1−νi−1∑
k=1

2k A2νi

4k

� 2νiR2νi

∞∑
k=1

2−k = 2νiR2νi . (3.9)

Summing up the assertions (3.1), (3.8) and (3.9) we get that

∞∑
m=ν1

2mA2m � 2
∑
i�1

2νiR2νi � 2
∞∑

m=1

2mR2m < ∞.
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Herewith we have proved (3.4), too.
Now we turn back to the proof of Fp ⊆ Sp . As we have verified, if a ∈ Fp then

there exists a monotone decreasing sequence {An} with the properties (3.2), (3.3) and
(3.4). Using these inequalities we get that if 2i � n < 2i+1 then

n∑
k=1

|Δak|p
Ap

k

=
n∑

k=1

kRp
k − (k + 1)Rp

k+1

Ap
k

�
i∑

m=0

2m+1−1∑
k=2m

(kRp
k − (k + 1)Rp

k+1)A
−p
k

�
i∑

m=0

2mRp
2mA−p

2m+1 � K
i∑

m=0

2mAp
2mA−p

2m � Kn,

and this proves that a ∈ Sp holds, that is, Fp ⊆ Sp .
Next we prove the relation Sp ⊆ F∗

p . In order to show this embedding we estimate
the following sum assuming that a ∈ Sp :

∞∑
m=1

2m(1− 1
p )

{ 2m+1∑
n=2m+1

|Δan|p
}1/p

�
∞∑

m=1

2mA2m

{
2−m

2m+1∑
n=2m+1

|Δan|p
Ap

n

}1/p
< ∞.

(3.10)

Here the last sum is finite because the sum in the curly bracket is O(1) by a ∈ Sp ,
see (1.7), furthermore

∑
2mA2m < ∞ since

∑
An < ∞.

The estimation (3.10) verifies the embedding Sp ⊆ F∗
p .

Finally we confirm the embedding statement F∗
p ⊆ Fp .

In the following calculations we shall use the well-known inequality
(∑

bn

)α
�

∑
bαn , bn � 0, 0 < α � 1,

with α = 1
p and an Abel-rearrangement.

∞∑
n=2

n−1/p
( ∞∑

k=n

|Δak|p
)1/p

�
∞∑

m=0

2−m/p
2m+1∑

n=2m+1

( ∞∑
k=n

|Δak|p
)1/p

�
∞∑

m=0

2m(1− 1
p )

∞∑
i=m

( 2i+1∑
k=2i+1

|Δak|p
)1/p

=
∞∑
i=0

( 2i+1∑
k=2i+1

|Δak|p
)1/p i∑

m=0

2m(1− 1
p )

� K
∞∑
i=0

2i(1− 1
p )

( 2i+1∑
k=2i+1

|Δak|p
)1/p

.

(3.11)
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If a ∈ F∗
p then the last sum in (3.11) is finite, thus the first one is also finite, and this

means that a ∈ Fp . This shows that F∗
p ⊆ Fp holds.

The proof of over Theorem is complete.

Proof of Addition. Let us define a sequence a as follows: Let

a1 := 1 and an := 2−m if 2m−1 < n � 2m, m � 1. (3.12)

Then

∞∑
m=1

2m(1− 1
p )

{ 2m+1∑
n=2m+1

|Δak|p
}1/p

�
∞∑

m=1

2m(1− 1
p )2−m < ∞,

thus, by our Theorem, a belongs to Fp .
On the other hand, if a ∈ S , then the suitable sequence {An} appearing in the

definition of the class S , would have the properties:

An � An+1, |Δan| � An and
∞∑

m=1

2mA2m < ∞. (3.13)

But in the case of the sequence a given in (3.12)

|Δa2m | = 2−m−1,

therefore, for this sequence a , no sequence {An} satisfying the three conditions of
(3.13) jointly, can be given.

This proves that there exists such a sequence a which belongs to Fp but does not
to S , that is, the S ⊂ Fp is a strict embedding, indeed.
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