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SHARP INTEGRAL INEQUALITIES FOR C–MONOTONE

FUNCTIONS OF SEVERAL VARIABLES

IVAN PERIĆ, LARS-ERIK PERSSON AND ANNA WEDESTIG

(communicated by C. E. M. Pearce)

Abstract. Some sharp integral inequalities for C-monotone functions of several variables are
proved. All cases of equality are found and some related results are pointed out and discussed.

1. Introduction

Let −∞ < a < b � ∞ and let f be a positive and integrable function on [a, b] .
First we recall the inequality

⎛
⎝ b∫

a

f q(x)(x − a)q−1dx

⎞
⎠

p
q

� pq
−p
q

b∫
a

f p(x)(x − a)p−1dx, 0 < p � q < ∞, (1.1)

which holds for every decreasing function f . Here and in the sequel decreasing means
non-increasing and increasing means non-decreasing.

The inequality (1.1) is sharp and equality occurs for every function of the type
f (x) = Aχ[a,t](x), a � t � b (χ denotes the characteristic function and A any positive
constant) and (1.1) holds in the reversed direction if f is increasing. The inequality
( 1.1) was probably first discovered by Lorentz [9, p.39] c.f. also [7, p.100]. Various
proofs and extensions can be found in [2], [3], [4], [9], [11], [13], [14], [15], and [17].
Moreover, also the analogous inequality

⎛
⎝ b∫

a

f q(x)(b − x)q−1dx

⎞
⎠

p
q

� pq
−p
q

b∫
a

f p(x)(b − x)p−1dx, 0 < p � q < ∞, b < ∞,

(1.2)
holds for every increasing function f . Also (1.2) is sharp and equality occurs for
f (x) = Cχ[t,b](x), a � t � b, and (1.2) holds in the reversed direction if f is decreasing.
See e.g. [5], [6], [9], [13], [14], [15] and [18] for some different proofs and extensions.
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Of course, (1.1) and/or (1.2) can not hold in general (because they are a type of
reversed Hölder inequalities). However, some variants of (1.1) and (1.2) do hold for
more general functions. In particular, some generalizations of this type were derived
in [15] for C-monotone functions and the sharpness of these inequalities were proved
and analyzed in [16].

We recall from [16] that a function f is said to be C-decreasing [C-increasing],
C > 0 , if f (t) � Cf (s) [f (s) � Cf (t)] whenever s � t, s, t ∈ (a, b). Moreover, f is
said to be C-decreasing in mean relatively to g, where g is increasing, g(a) = 0 [g is
decreasing and g(b) = 0 ] if, for all x ∈ (a, b) ,

f (x)g(x) � C

x∫
a

f (t)dg(t)

⎡
⎣Cf (x)g(x) �

b∫
x

f (t)d [−g(t)]

⎤
⎦ .

f is C-increasing in mean relatively to g , where g is increasing and g(a) = 0 [g is
decreasing and g(b) = 0 ] if, for all x ∈ (a, b) ,

Cf (x)g(x) �
x∫

a

f (t)dg(t)

⎡
⎣f (x)g(x) � C

b∫
x

f (t)d [−g(t)]

⎤
⎦ .

Some examples and illustrations concerning these classes of functions were pre-
sented in [15]-[16]. In particular, we note that if f is C-increasing [C-decreasing], then
f is C-increasing [C-decreasing] in mean with respect to any g of the type considered.

Moreover, in [1], and [14] some multidimensional versions of (1.1) and (1.2) have
recently been proved and applied. In this paper we generalize and unify some of the
results from [14]-[16] by proving some sharp multidimensional integral inequalities of
the type (1.1)-(1.2) and the cases of equality are pointed out. The main results in this
paper are stated and proved in Section 2. Some complementary results, examples and
concluding remarks can be found in Section 3. In order not to disturb our discussions
later on we finish this Section by stating some necessary notations and conventions:

Let m ∈ N, a = (a1, a2, . . . , am), b = (b1, b2, . . . , bm) and x = (x1, x2, . . . , xm) ∈
R

m. We assume that −∞ < a � b � ∞. The notation a < b, (a � b) means that
ai < bi, (ai � bi) for i = 1, 2, . . . , m. We also use the (simplex) notation: if
a = (a1, a2, . . . , am) , then ai = (a1, . . . , ai−1, ai+1, . . . , am), i = 1, 2, . . . , m − 1 and
am = (a1, a2, . . . , am−1) . Moreover (a, b) = {x : ai < xi < bi, i = 1, 2, . . . , m} and
dx = dx1dx2 . . . . . . .dxm.

The functions f considered in this paper are assumed to be measurable and
nonnegative. We also consider g = (g1, g2, . . . , gm), where gi = gi(xi) are nonnegative
and differentiable for i = 1, 2, . . . , m. Also put dg(x) = dg1(x1) . . . dgm(xm) and
d [gp(x)] = d

[
gp

1(x1)
]
. . . d

[
gp

m(xm)
]
, p > 0. Moreover, we say that g is increasing

[decreasing ] if gi, i = 1, 2, . . . , m , are increasing [decreasing].

DEFINITION 1.1. Let C = (C1, C2, . . . , Cm), Ci > 0, i = 1, 2, . . . , m. We say that
f (x) is C−decreasing inmean [C - increasing inmean] relatively to g =(g1, g2, . . . , gm) ,
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where g(a) = 0 and g is increasing, if, for all x ∈ (a, b) and i = 1, 2, . . . , m,

gi (xi) f (x) � Ci

xi∫
ai

f (x1, . . . , xi−1, ti,xi+1,...,xm)dgi(ti)

⎡
⎣Cigi (xi) f (x) �

xi∫
ai

f (x1, . . . , xi−1, ti,xi+1,...,xm)dgi(ti)

⎤
⎦ .

DEFINITION 1.2. Let C = (C1, C2, . . . , Cm), Ci > 0, i = 1, 2, . . . , m. We say
that f (x) is C−decreasing in mean [C− increasing in mean] relatively to g =
(g1, g2, . . . , gm), where g(b) = 0 and gi is decreasing if, for all x ∈ (a, b) and
i = 1, 2, . . . , m,

Cigi (xi) f (x) �
bi∫

xi

f (x1, . . . , xi−1, ti,xi+1,...,xm)d [−gi(ti)]

⎡
⎣gi (xi) f (x) � Ci

bi∫
xi

f (x1, . . . , xi−1, ti,xi+1,...,xm)d [−gi(ti)]

⎤
⎦ .

2. The main results

We first generalize (1.1) in the following way:

THEOREM 2.1. Let m ∈ N and C = (C1, C2, . . . , Cm) ∈ R
m
+ .

(a) Suppose that f is C -decreasing in mean relatively to g, where g is increasing
and g(a) = 0 . Then, for any p ∈ (0, 1] ,

b∫
a

f(x)dg(x) �
(

m∏
i=1

C(1−p)/p
i

)⎛⎝ b∫
a

fp(x)d [gp(x)]

⎞
⎠

1
p

. (2.1)

(b) The inequality (2.1) is sharp and it reduces to an equality for every function
of the type

f (x1, x2, . . . , xm) = K
m∏

i=1

(gi(xi))Ci−1. (2.2)

where K � 0. If, in addition, f > 0, and g is strictly increasing, then equality holds
in (2.1) if and only if f is of the type (2.2).

REMARK 2.1. Our proof of Theorem 2.1 shows that if p � 1 , then (2.1) holds in
the reversed direction.

Proof. (2.1) is trivial for p = 1 so we assume that p ∈ (0, 1).
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(a) We prove (2.1) by using induction in the dimension m . Let m = 1 , x ∈ (a, b)
and consider

h(x) =

⎛
⎝ x∫

a

f (t)dg(t)

⎞
⎠

p

− C1−p
1

x∫
a

f p(t)d [gp(t)] .

Then

h
′
(x) = pf (x)g

′
(x)

⎛
⎜⎝
⎛
⎝ x∫

a

f (t)dg(t)

⎞
⎠

p−1

− C1−p
1 (f (x)g(x))p−1

⎞
⎟⎠ .

Moreover, since f is C1−decreasing in mean relatively to g and p ∈ (0, 1) we have

⎛
⎝ x∫

a

f (t)dg(t)

⎞
⎠

p−1

� C1−p
1 (f (x)g(x))p−1 .

Thus h
′
(x) � 0, i.e., h(x) is decreasing so that h(b) � h(a) = 0, which means that

the inequality (2.1) is true for m = 1 . We now assume that (2.1) is true for n = m− 1
and prove that holds for n = m . Consider the function

F(x) =

⎛
⎝ x∫

a

f(t)dg(t)

⎞
⎠

p

−
(

m∏
i=1

C1−p
i

)⎛⎝ x∫
a

fp(t)d [ gp(t)]

⎞
⎠ .

We will prove that ∂F
∂xi

� 0 for i = 1, 2, . . . , m. In view of symmetry we see that it is

sufficient to prove that ∂F
∂xi

� 0 for any i and we choose to prove that ∂F(xm,xm)
∂xm

� 0
when am < xm < bm. Since f is C m -decreasing inmean relatively to gm and p ∈ (0, 1)
we have ⎛

⎝ x∫
a

f (t)dg(t)

⎞
⎠

p−1

�

⎛
⎝ 1

Cm
gm(xm)

xm∫
am

f (tm, xm)dgm(tm)

⎞
⎠

p−1

. (2.3)

By differentiating with respect to xm we find that

∂F(xm, xm)
∂xm

= p

⎛
⎝ x∫

a

f (t)dg(t)

⎞
⎠

p−1 xm∫
am

f (tm, xm)dgm(tm)g
′
m(xm)

−
(

m∏
i=1

C1−p
i

) xm∫
am

f p(tm, xm)d [gp
m(tm)] p(gm(xm))p−1g

′
m(xm).

Therefore, according to (2.3) and the induction assumption,

∂F(xm, xm)
∂xm

� pC1−p
m g

′
m(xm)(gm(xm))p−1

⎧⎨
⎩
⎛
⎝ xm∫

am

f (tm, xm)dgm(tm)

⎞
⎠

p
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−
(

m−1∏
i=1

C1−p
i

) xm∫
am

f p(tm, xm)d [gp
m(tm)]

⎫⎬
⎭ � 0.

We conclude that F(b) � F(a) = 0, which means that (2.1) holds for n = m and,
thus, in view of the induction axiom , that (2.1 ) holds for all m ∈ N.

(b) First we note that by inserting

f (x1, x2, . . . , xm) = Kg1(x1)C1−1g2(x2)C2−1 . . . gm(xm)Cm−1

into (2.1) an elementary calculation shows that (2.1) reduces to an equality (i.e. F(x) ≡
0 ).We will now prove that this is the only possibility to have equality in (2.1). We
consider the function F(x) defined in (a) . In (a) we proved that ∂F

∂xi
� 0 for

i = 1, 2, . . . , m, and we can have equality if and only if ∂F
∂xi

≡ 0 for i = 1, 2, . . . , m.

Now we note that ∂F
∂x1

= 0 if and only if

g1(x1)p−1

(
m∏

i=1

C1−p
i

) x1∫
a1

f p(x1,t1)dgp
1(t1) =

⎛
⎝ x∫

a

f (t)dg(t)

⎞
⎠

p−1 x1∫
a1

f (x1,t1)dg1(t1).

(2.4)
Moreover, since f is C 1−decreasing in mean relatively to g1(x1) we have

g1(x1)

x1∫
a1

f (x1,t1)dg1(t1) � C1

x∫
a

f (t)dg(t) (2.5)

and a m − 1−dimensional version of (2.1) reads⎛
⎝ x1∫

a1

f (x1,t1)dg1(t1)

⎞
⎠

p

�
(

m∏
i=2

C1−p
i

) x1∫
a1

f p(x1,t1)dgp
1(t1). (2.6)

By comparing (2.4)-(2.6) we see that (2.4) can hold if and only if we have equality
in both (2.5) and (2.6).Therefore we now assume that we have equality in (2.6) and
differentiate (2.6 ) with respect to x2 , i.e.,

g2(x2)p−1

(
m∏

i=2

C1−p
i

) x3∫
a3

· · ·
xm∫

am

f p(x1, x2, t3, . . . , tm)dgp
3(t3) . . . dgp

m(tm)

=

⎛
⎝ x1∫

a1

f (x1,t1)dg1(t1)

⎞
⎠

p−1 x3∫
a3

· · ·
xm∫

am

f (x1, x2, t3, . . . , tm)dg3(t3) . . . dgm(tm). (2.7)

Furthermore, since f is C2−decreasing in mean relatively g2(x2) ,

g2(x2)

x3∫
a3

. . . .

xm∫
am

f (x1, x2, t3, . . . , tm)dg3(t3) . . . dgm(tm) � C2

x1∫
a1

f (x1, t1)dg1(t1)

(2.8)
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and the following (m − 2)− dimensional equality version of (2.1) holds:⎛
⎝ x3∫

a3

. . . .

xm∫
am

f (x1, x2, t3, . . . , tm)dg3(t3) . . . dgm(tm)

⎞
⎠

p

�
(

m∏
i=3

C1−p
i

) x3∫
a3

. . . .

xm∫
am

f p(x1, x2, t3, . . . , tm)dgp
3(t3) . . . dgp

m(tm). (2.9)

We proceed in the same way and by induction we finally find that⎛
⎝ xm∫

am

f (x1, x2, . . . , xm−1, tm)dgm(tm)

⎞
⎠

p

= C1−p
m

xm∫
am

f p(x1, x2, . . . , xm−1, tm)dgp
m(tm).

(2.10)
By differentiating (2.10) with respect to xm we obtain that⎛

⎝ xm∫
am

f (x1, x2, . . . , xm−1, tm)dgm(tm)

⎞
⎠

p−1

f (x1, x2, . . . , xm−1, xm)

= c1−p
m f p(x1, x2, . . . , xm−1, xm)gm(xm)p−1

so that
xm∫

am

f (x1, x2, . . . , xm−1, tm)dgm(tm) =
1

Cm
f (x1, x2, . . . , xm−1, xm)gm(xm).

By differentiating again with respect to xm we end up with the following differential
equation:

(Cm − 1) f (x1, x2, . . . , xm−1, xm)g
′
m(xm) = f

′
m(x1, x2, . . . , xm−1, xm)gm(xm). (2.11)

The solution of (2.11) is f (x1, x2, . . . , xm−1, xm) = Kogm(xm)cm−1, where Ko may
depend on x1, x2, . . . , xm−1, i.e., Ko is of the type Ko = hm−1(x1, x2, . . . , xm−1). By
plugging this extremal function into the equality version of (2.1) we find that(

m−1∏
i=1

C1−p
i

) xm∫
am

hp
m−1(t1, . . . , tm−1)dgp

m(tm)
gm(xm)pCm

Cp
m

=

⎛
⎝ xm∫

am

hm−1(t1, . . . , tm−1)dgm(tm)

⎞
⎠

p

gm(xm)pCm

Cp
m

.

By now repeating our procedure we successively obtain that

hm−1(x1, . . . , xm−1) = hm−2(x1, . . . , xm−2)gm−1(xm−1)Cm−1−1,

...

h1(x1) = Kg1(x1)C1−1.
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We conclude that

f (x1, . . . , xm) = hm−1(x1, . . . , xm−1)gm(xm)Cm−1

= hm−2(x1, . . . , xm−2)gm−1(xm−1)Cm−1−1gm(xm)Cm−1

= Kg1(x1)C1−1 . . . gm−1(xm−1)Cm−1−1gm(xm)Cm−1.

The proof is complete. �

We also state the corresponding generalization of (1.2):

THEOREM 2.2. Let m ∈ N and C = (C1, C2, . . . , Cm) ∈ R
m
+.

(a) Assume that f is C− increasing in mean relatively to g where g is decreasing
and g(b) = 0 . Then, for any p ∈ (0, 1],

b∫
a

f (x)d [−g(x)] �
(

m∏
i=1

C(1−p)/p
i

)⎛⎝ b∫
a

f p(x)d [−gp(x)]

⎞
⎠

1
p

. (2.12)

(b) The inequality (2.12) is sharp and it reduces to an equality for every function
f of the type

f (x1, x2, . . . , xm) = K
m∏

i=1

(gi(xi))Ci−1.

where K � 0. If, in addition, f > 0 and g is strictly decreasing, then equality holds
in (2.12) if and only if f is of this type.

Proof. The proof of Theorem 2.2 is similar to that of Theorem 2.1 so we leave out
the details. Moreover, we note that for the case when all bi < ∞ Theorems 2.1 and 2.2
can obviously be directly deduced from each other by making an obvious transformation
(xi → ai + bi − xi, i = 1, 2, . . . , m) . �

REMARK 2.2. If p � 1 , then (2.12) holds in the reversed direction.

3. Further results and remarks

The concept of C - monotone in mean can be generalized to the multidimensional
case in variousways. Instead of making the (”local”) versionwe have done in Definition
1.1 the following (”global”) one can be a reasonable alternative:

DEFINITION 3.1. Let C > 0 . We say that f (x) is C-decreasing in mean [C-
increasing in mean] relatively to g , where g(a) = 0 and g is differentiable and
increasing, if, for all x ∈ (a, b),

(
m∏

i=1

gi(xi)

)
f (x) � C

x∫
a

f (t)dg(t)

⎡
⎣C

(
m∏

i=1

gi(xi)

)
f (x) �

x∫
a

f (t)dg(t)

⎤
⎦ .
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REMARK 3.1. We note that f (x) is C-decreasing or (C,C, . . . ,C)-decreasing in
mean [C-increasing or (C,C, . . . ,C)-increasing in mean] relatively to any g e.g. if f (x)
is C-decreasing [C-increasing] in the usual sense, i.e. , if

f (x) � Cf (t) [f (t) � Cf (x)]

for all t � x. (Of course 1-decreasing or 1 -decreasing [1-increasing or 1-increasing]
means decreasing [increasing] in the usual sense.)

REMARK 3.2. We see that if f is C-decreasing in mean relatively to g (C =

(C1, C2, . . . , Cm) ), then f is C-decreasing in mean relatively to g , where C=
m∏

i=1
Ci .

We also complement Remarks 3.1 and 3.2 with the following examples:

EXAMPLE 3.1. Let f 1(x1, x2) = K1x
C−1
1 + K2x

C−1
2 , g1(x1) = x1 and g2(x2) =

x2, 0 � x1, x2 � 1 and C � 1. An elementary calculation shows that f 1(x1, x2) is
C-decreasing (even C-constant) with respect to (g1, g2). Moreover f 1(x1, x2) is also
(C, C) -decreasing with respect to (g1, g2) .

EXAMPLE 3.2. Let f 2(x1, x2) = xC1−1
1 xC2−1

2 , g1(x1) = x1 and g2(x2) = x2, 0 �
x1, x2 � 1 and C1, C2 � 1. Then obviously f 2(x1, x2) is both C1C2− decreasing (even
C1C2− constant) and (C1, C2) -decreasing (even (C1, C2) -constant) with respect to
(g1, g2) .

It seems not to be easy to prove an inequality similar to that in Theorem 2.1 for
C-decreasing functions. However, if we add the condition that f is increasing this
result follows even from our Theorem 2.1.

PROPOSITION 3.1. Let m ∈ N, C > 1, and g is differentiable and increasing and
g(a) = 0. If f is increasing and C - decreasing in mean relatively to g , then, for any
p ∈ (0, 1], ⎛

⎝ b∫
a

f (x)dg( x)

⎞
⎠

p

� Cm(1−p)

b∫
a

f p(x)d [gp(x)] . (3.1)

REMARK 3.3. We have assumed that f is both increasing and C -decreasing in
mean. For the one-dimensional case similar classes of functions have previously been
considered in other contexts e.g. by Muckenhoupt ([12], p. 213) and Gehring ([7],
p.266).

Proof. The proposition is a consequence of Theorem 2.1 (a) , if we prove that
the function f is C− decreasing in mean in each variable. Because of symmetry it is
enough to prove this for the first variable and we shall give two proofs of this.
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I. By using Definition 3.1, Fubini’s theorem and integration by parts we have

f (x1, . . ., xm)
m∏

I=1

gi(xi) � C

x∫
a

f (t1, . . ., tm)dg1(t1). . .dgm(tm)

= C

xm∫
am

⎡
⎣ xm∫

am

f (t1, . . ., tm)dgm(tm)

⎤
⎦ dg1(t1). . .dgm−1(tm−1)

= C

xm∫
am

[f (t1, . . ., tm−1, xm)gm(xm)

−
xm∫

am

gm(tm)dmf (t1, . . ., tm)

⎤
⎦ dg1(t1). . .dgm−1(tm−1)

� Cgm(xm)

xm∫
am

f (t1, . . ., tm−1, xm)gm(xm)dg1(t1). . .dgm−1(tm−1).

Here dmf (t1, .., tm) is theBorelmeasure generatedwith the function tm �−→ f (t1, .., tm) .
Proceeding in this way will give us the claim.

II. We have from Definition 3.1 and Fubini’s theorem that

f (x1, .., xm)g1(x1)

� C

x1∫
a1

⎡
⎣ 1

g2(x2), .., gm(xm)

x2∫
a2

· · ·
xm∫

am

f (t1, .., tm)dg2(t2) . . . dgm(tm)

⎤
⎦ dg1(t1)

� C

x1∫
a1

f (t1, x2, .., xm)dg1(t1).

where the last inequality is a consequence of increasing property of the function f .
�

REMARK 3.4. It is obvious from the second proof that the condition that f is
increasing can be weakened to the following (mean -increasing) condition:

xi∫
ai

f (t1, ..ti−1, xi, ti+1, . . . , tm)dgi(ti) � f (x1, . . . , xm)
∏
j�=i

gj(xj).

Finally we’ll discuss Theorem 2.1 (b) , just supposing that f � 0. It is easy
to see that functions of the type f (x1, x2, . . . xm) = f 1(x1) . . . f m(xm) are solutions
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of the equality problem in (2.1), where f i, i = 1, . . . , m, are the solutions of the
one-dimensional equality problems

Ci

xi∫
ai

f i(ti)dgi(ti) = f i(xi)gi(xi), xi ∈ Ui ⊆ (ai, bi)

and f i(xi) = 0, xi ∈ Uc
i

(see [18] for details). Note that f is positive on
m∏

i=1
Ui, and 0 on

(
m∏

i=1
Ui

)c

.

We shall also sketch the proof of the reversed implication. Of course if we have
equality in (2.1), then the function f , has to be locally of the form (2.2). What we
want to prove is that the support of f is of product type. Notice first that now we have
to be more careful in proceeding from equalities as in (2.4) to (2.5) or (2.7) to (2.9 ),
because for example if

x1∫
a1

f (x1, t1)dg1(t1) = 0

we cannot conclude equality in (2.6). Take (x1, x2, . . . xm) ∈ IntN (topological
interior) and assume that

xm∫
am

f (xm, tm)dgm(tm) > 0.

Then (since f −1(0, +∞) is an open set) it is obvious that all the integrals of the type

xi∫
ai

· · ·
xm∫

am

f (x1, x2, . . . , xi−1, ti, . . . tm)dgi(ti) . . . dgm(tm)

are strictly positive, so we can proceed from equality in (2.5) to equality in (2.6) etc.,
so with equality in (2.6), (2.10) and lower dimensional analogues we obtain

g1(x1) . . . gm−1(xm−1)

xm∫
am

f (x1, . . . , xm−1, tm)dgm(tm) = C1 . . . Cm−1

x∫
a

f (t)dg(t).

Bydifferentiating this equalitywith respect to the variable xm (notice that the function on
the left side doesn’t change with small changes in the variable xm since (x1, . . . , xm) ∈
IntN ), we obtain

x1∫
a1

x2∫
a2

· · ·
xm−1∫

am−1

f (t1, t2, . . . tm−1, xm)dg1(t1)dg2(t2) . . . dgm−1(tm−1) = 0

which obviously gives the product structure of (IntN )c.
In particular, this investigation shows the following:
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REMARK 3.6. A version of Theorem 2.1 (b) can be formulated also for the case
f � 0 , but the formulation of this result will be more complicated and all cases of
equality can still be described.

The same can be done for Theorem 2.2.
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Luleå Univerisity, S-971 87 Luleå
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