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INEQUALITIES FOR THE INCOMPLETE GAMMA FUNCTION

PIERPAOLO NATALINI AND BIAGIO PALUMBO

(communicated by A. Laforgia)

Abstract. We prove some monotonicity results for the incomplete gamma function,

oo

I'(a,x) = / e,

X

from which some inequalities for I'(a,x) follow.

1. Introduction

Let I'(a,x) denote the incomplete gamma function, i.e.

o0

[(a,x) = /efttafldt,

X

where both a and ¢ are positive. Itis well-known that I'(a,0) = I'(a) ,and lim I'(a,x)

For positive integer @, say a = n, I'(n,x) is an elementary function, since I'(1,x) =
n—1

e and T'(n,x) = (n— 1)!e_"z o for n = 2,3,.... For this reason, we suppose

k=0
in the sequel that a is not a positive integer.

Also, the complementary error function erfc(x

ﬂ\

o0
2 . .
/ ~dt is a particular

case of the incomplete gamma function, since /7 erfc(x) = x?).

Many authors (see [2],[3],[4]) found inequalities for F(a,x) and for the related
integral fg e~"dt. In this paper we prove some inequalities which follow from mono-
tonicity properties.
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2. Main result

THEOREM. Let a be a positive parameter, and let q(x) be a function, differentiable
on (0,400), such that lim x“e"*q(x) = 0. If we put
T(x) = 1+ (a—x)q(x) +xq'(x), (2.1)
then we have the following inequalities:

e if T(x) >0 for x> 0, then I'(a,x) > x"e *q(x);
o if T(x) <O for x>0, then I'(a,x) < x*e *q(x).

Proof. Define j(x) as follows:
Jj(x) =T(a,x) —x‘e "q(x).
By hypotesis, lim j(x) = 0. Taking the derivative, we find

J(x) = —x"le™ —ax* e q(x) + x%e*q(x) — x%e ¢ (x)

= —x" e[l + (a — x)q(x) +x¢'(x)] = —e " x* ' T(x).
If T(x) >0 on R", then j(x) decreases on R, therefore j(x) > 0,ie. ['(a,x) >

xe™*q(x); while, if T(x) < 0 on R*, then j increases, and we have I'(a,x) <
xe *q(x).

REMARK. If T(x) > 0 for x > h (h > 0), then j(x) decreases on (h,+00); in
this case we may say that the inequality I'(a,x) > x%e *g(x) holds at least for x > h;
similarly for the case T(x) < 0 on (h, +00).

3. Some particular cases

In this section we find some inequalities for the incomplete gamma function, using
the theorem proved in sec. 2 for particular choices of g(x).

3.1. g(x) = c, a positive constant.
1
In this case we have T(x) = 1 + ac — cx, which is negative for x > a + —. Then
c
we have the inequality

[(a,x) < cxe™,

1
which is valid at least for x > a + —.
C

3.2. g(x) = B/x,with B> 0.
B(a—1
Since T(x) =1—-B+ Bla-1) , we must distinguish three subcases:
X
321. 0<B<1.Ifa>1,then T(x) >0 Vx >0, whileif 0 < a < 1, then

B(1—
T(x) > 0 for x > %. So we have
['(a,x) > Bx""'e™, (3.1)
. . B(l —a) .
which holds forevery x >0 if a > 1,andforx > ———= if 0 <a < 1.

1-B
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B(a—1)

322. B>1.If a>1,then T(x) <O for x >
then T(x) < 0 for x > 0. So we have

,whileif 0 <a< 1,

['(a,x) < Bx*'e™, (3.2)

Bla—1)
B—1
that if @ > 1 formula (3.2) cannot hold for every x > 0, because the right-hand side

of (3.2) vanishes for x = 0.

which holds for every x > 0 if 0 < a < 1, and for x > if a > 1. Note

-1
3.2.3. B=1. Now we have T(x) = a— , which is positive or negative in R,
X
according to the fact that @ > 1 or 0 < a < 1. Then we have:

if a>1=T(ax)>x""'e™ for x>0, (3.3)
if 0<a<1=T(ax)<x'e™ for x>0,

As a consequence of (3.2) and (3.3), we have for a > 1
¥ le™ < I'(a,x) < Bx*"'e™, (3.5)

forany B > 1;informula (3.5) lower bound holds for x > 0, while upper bound holds
only from a certain value on. For example, if we put B = 11/10, then we have

¥ le™ < T'(a,x) < %x“_le_",
where upper bound is valid for x > 11(a — 1).
In a similar way, from (3.1) and (3.4) we have for 0 < a < 1
Bx"le™ < T(a,x) < x*'e™, (3.6)
forany B € (0,1);in fo)rmula (3.6) upper bound holds for x > 0, while lower bound
—a

is valid for x > . For example, if we put B = 19/20, we have

1-B
19
%x“_le_x <T(a,x) <x*'e™™,
where lower bound is valid for x > 19(1 — a).
1 C
3.3. =-4+ .
qlx) =~ +

(a—C—1)x+ (a—2)C
2
different subcases, let us note that T(x) becomes very simple when C = a — 1,
(a—1)(a—2)
2

X

In this case we find T(x) =

. Instead of considering

precisely T(x) =
for x > 0:

, whose sign is independent of x. Therefore we have

for 0<a<1lora>2 = D(ax)>x""+@—1)x?e™, (3.7
for l<a<2 = T(a,x) <P '+ (a—1)x"?e™
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From (3.4) and (3.7) we have in the case 0 < a < 1

4 (@ — Dx* e ™ < T(a,x) < x*le™. (3.9)
From (3.3) and (3.8) we have in the case 1 < a < 2

X le™ < Ta,x) < '+ (a— 1)x*2]e™. (3.10)

Inequalities (3.9) and (3.10) are not useful for x near to zero, but they are stringent
for high values of x. Besides, inequality (3.7) improves inequality (3.3) in the case
a>?2.

1 a-1 a—1)D
3.4.q(x):;—|- 5 +( 3) .

X X

In this case we find T'(x) = (a-Dla-2- D)xx3+ (a=a=3)D . Proceeding
as above, we note that with the choice D=a—2 we have T(x)= (a—l)(a);2)(a—3) .
Thereforefor 0 <a <1l or2<a<3:
D(a,x) < ¥ '+ (@— D2+ (@a—1)(a—2)x" e, (3.11)
while for 1 <a <2 ora>3:
C(a,x) > '+ (@a— Dx* 2+ (a— 1)(a— 2)x* e (3.12)

Comparing (3.11) and (3.12) with (3.7) and (3.8) respectively, we have for
O<a<lor2<a<3:

4 (a— D" le™ < T(a,x) < '+ (@a— Dx* 2+ (a— 1)(a — 2)x* e ™,

while for 1 <a < 2:

K (a— D2+ (a— D(a—2)x"3le™ < T(a,x) < '+ (@ — Dx"?e™
Also, for a > 3 inequalities (3.12) improves inequality (3.7).

C
Dealing with case 3.3 we noted that, if g(x) = — + — » best results are obtained

for C = a— 1, while for other values of C we obtained inequalities valid only from an
Xo on. In a similar way, in case 3.4 we obtained simple results for D = a — 2. But now
we note that [x*~! + (a — 1)x*"2 + (a — 1)(a — 2)x*~3]e™™ are the first three terms of
the asymptotic expansion of I'(a,x) ([1, p. 263, (6.5.32)])

T(a,x) ~ 2l |1 + (a; O G 1));“*2) +] (3.13)

This suggests to compare I'(a,x) with the right-hand side of (3.13), truncated to
(a=1)(a=2)...(a—n+1)

the term
xn— 1

1 a—1 (afl)(a72)+”.+(a71)...(afnJrl): . I['(a)

33 q(x):;Jr x2 * x3 x=l [(a—k+1)xk "
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n
kT (a)

Since q/(x) = — Z m , We have:
k=1

=1+ ; FEZ - i)i(ft))xk - kz_; T(a— Z(i)l)xkl

R

e S ()
thats T(x):F((i_Z)I gC)l»)c == w ) inee F(aci_k]ikl) B r(alfk) =0

Therefore, if n is even we have for every x > 0:
efor0<a<lV2<a<3V..Vn-2<a<n—-1Va>n=

D(a,x) > '+ (a—1Dx" 2+, 4+ (a—1)...(a—n+1Dx"""e™; (3.14)
eforl<a<2Vi3<a<4V..Vn—-1l<a<n=
D(a,x) < ¥ '+ (@a—Dx"2+.. . +(a—1)...(a—n+1)x""e™; (3.15)

Instead, if n is odd we have for every x > 0:
eforl<a<2Vi3i<a<4V...Vn—-2<a<n—1Va>n =

D(a,x) > ¥ '+ (a—1Dx"2 4. .+ (@a—1)...(a—n+1)x""e™; (3.16)
efor0<a<1lV2<a<3V..Vn—l<a<n=
D(a,x) < ¥ '+ (a—1Dx"?+.. .+ (@a—1)...(a—n+1)x*""e™. (3.17)

In the case n even, (3.16) and (3.17) with n — 1 in place of n give respectively:
eforl<a<2Vi3i<a<4V..Vn-3<a<n—-2Va>n-1=

C(a,x) > '+ (a—1D)x 2 4. +(a—1)...(a—n+2)x " e™; (3.18)
efor0<a<lV2<a<3V..Vn-2<a<n-—-1=
D(a,x) < ¥ ' a—1D)x"2+.. +(a—1)...(a—n+2)x""e™. (3.19)

Inequalities (3.14) and (3.19) together givefor 0 <a <1V 2<a <3V ... V
n—2<a<n-—1

T (a—Dx* P+ (a—1)...(a—n+1)x"]e™ < T(a,x)
<P @1 (a— 1) (@ -+ 2t e
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Inequalities (3.15) and (3.18) together givefor 1 <a <2V 3<a<4V ...V
n—1l<a<n
' a—Dx"2 4. .+ (a—1)...(a—n+2)x"e™ < I'(a,x)
<4 la—1Dx"P 44 (a—1).. . (a—n+ Dx""e .

Also, for even n inequality (3.16) improves inequality (3.18).

In a similar way, in the case n odd, formulas (3.14) and (3.15) with n— 1 in place
of n give respectively:

efor0<a<lV2<a<3V..Vn-3<a<n—-2Va>n—-1=

C(a,x) > '+ (a—1D)x2+. . .+ (a—1)...(a—n+2)x " e™; (3.20)
eforl1<a<2Vi3<a<4V..Vn-2<a<n-1=
D(a,x) < X ' Ha—1D)x" 4. +(a—1)...(a—n+2)x" " e (3.21)

Inequalities (3.17) and (3.20) together givefor 0 <a <1V 2<a <3V ...V
n—1<a<n

b (a— D24+ (a— 1) (a—n+2)x " e < T(a,x)
<P @=L @ 1) (e e

Inequalities (3.16) and (3.21) together givefor | <a <2 V 3<a<4 V ...V
n—2<a<n-—1

Wt @—1Dx" 2+ 4 (@—1)...(a—n+ 1x""e™ < [(a,x)
< @-Dx 7+ (@— 1) (a—n+ 2T e

Finally, for a > n inequality (3.16) improves inequality (3.20).

3.6. g(x) =

, k>0.
x+k
k -1 k(k
We have T(x) = (k+a ))2+ (k+a)
=
3.6.1. if 0 < a < 1, we already know that (see formula (3.6)):

. Then we consider the following cases:

Bx"le™ < T(a,x) < x*'e™,

B(1 —
where 0 < B < 1, and the lower bound is valid for x > % . Now let us consider
the three subcases k > 1 —a, k<1l—aand k=1 —a.
1—
3.6.1.a) For k = 1 — a, T(x) becomes 4 , which is positive for every
(x+1—a)?
x > 0. So we have
xte™
IN'a,x) > ——. 3.22
(3) > = — (322)
Inequality (3.22), which holds for x > 0, improves the lower bound in (3.6): in fact it
B(1 — x4
is easy to check that for x > M itis Bx*"! <

1-B x+1—a’
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1 X
REMARK. (3.22)with a = 1/2 and x? in place of x becomes F(E,x2> > xizx_i 12

that is

oo

/ e dt > 2)’:7“ (3.23)

X

Inequality (3.23) is better than

_p (1 1
dt —— =
/e >e <2x xz),

X

1 1
(see [2, p. 32, (44)]), since Z)C%H > 5T for every x > 0.
. . k(k + a)
3.6.1.b) For 0 < k < 1 —a, T(x) is negative for x > xo = 1-%—a ; therefore
—k—a
we have for x > xg
xle ™™
r . 3.24
() <25 (324)
< xa L

Inequality (3.24) improves the upper bound in (3.6) for x > x,, because Tk
X

3.6.1.c) The subcase k > 1 — a is unuseful, because we have I'(a,x) > P
X

which is worse than (3.22).
3.6.2. If a > 1, we have T(x) = (
xle ™
+k

k+a—1)x+k(k+a)

et k2 >0 Vx > 0; hence

, which is worse than (3.3).

1 a—1
3.7. q(x):)—c+m,k>0.
(2k +a —2)x* + (3k* + ak)x + K

x(x + k)3

Hereis T(x) = (a— 1)

2(a—6)x— (a—2)*
8x(x+1+4a/2)3

Fork=1-— g (0 <a<2)wehave T(x) = (a—1)(a —2)

the fraction is negative for every x > 0. So we have:

4 (1 a—1

for 0 <a<1=T(a,x)<x% (x + (x+1a/2)2)’ (3.25)
o —xf1 a—1

for 1 <a<2=T(a,x)>x% (x + (x+1a/2)2)’ (3.20)

In the case 0 < a < 1 inequalities (3.25) and (3.7) give

xle " l_'_a—l <T(a,x) < x%e™* 1+L ;
x x? ’ x  (x+1—a/2)2)’
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while in the case 1 < a < 2 inequalities (3.26) and (3.8) give

a,—x 1+ a—1 <F( )<a—x 1+Cl—1
X e - —— a, x X e - .
x  (x+1—a/2)? ’ x x?
For k> 1 — g no new better inequalities are obtained; indeed, the polynomial

(2k + a — 2)x* + (3k* + ak)x + k° is positive for every x > 0, and the sign of T (x)
only depends on the sign of @ — 1. Therefore:

1 -1
o for0<a<1 = I(a,x) <%=+ ————), whichis worse than (3.25).
x  (x+k)?
1 -1
o for 1 <a<2 = I(a,x) > % -+ ———— ), which is worse than (3.26).
x  (x+k)?
1 -1
e for a > 2 we have I'(a,x) > x”e)‘()—c + ()ca—&—7k)2> again, but now k may be
any positive number. This inequality does not improve (3.26).

ForO<k<1-— g , which implies 0 < a < 2, the polynomial (2k +a — 2)x* +

_Sktat V(a+k)?+ 8k

(3k* + ak)x + k> is negative for x > xo 3 % ; now let us
—a_
consider, for x > xp, the following subcases:
if 0<a<l1l = T(ax)>x%" T, a1y, (3.27)
’ x  (x+k)32) '
if l<a<2 = Dlax) <xte(Ly 221 (3.28)
a a, x x‘e -+ — | .
’ x  (x+k)?

Inequalities (3.25) and (3.27) give for 0 < a < 1:

1 a—1 1 a—1
.xa —X - F a _—Xx _ .
e (x+7(x—|—k)2> < I(a,x) < x% <x+7(x+l+a/2)2>’

where 0 < k< 1— g and the lower bound holds for x > x.
Inequalities (3.26) and (3.28) give for 1 < a < 2:

xte™* 1 + L < F(d .X) < xte™* 1 + Q .
x  (x+1+a/2)? ’ x  (x+k)?2)

where 0 < k <1 — g and the upper bound holds for x > x .
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