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SHARP INEQUALITIES FOR SOLUTIONS OF
MULTIPOINT BOUNDARY VALUE PROBLEMS

PATRICIA J. Y. WONG

(communicated by R. P. Agarwal)

Abstract. This paper considers the following continuous and discrete multipoint boundary value
problems: x™ (1) >0, 0 <7< 1, x¥ (1) = 0 and A"y(k) >0, k=0,--- ,m, Ny(k;) = 0,
where j =0, ,nj— 1, i=1-,rn > mp=n 0=1 <t < <t =1
and 0 = k) < k1 +n < ky <ky+m < -+ <kr <kr+n—1=m+n. We offer
lower bounds for solutions of these boundary value problems in terms of supy< < |*(¢)| and
MaXpe €0 .. min} [y(k)|. These bounds further lead to inequalities for related Green’s functions
which are very useful in the study of positive solutions of boundary value problems.

1. Introduction

Let ¢,d (d > c¢) be integers. We shall define the discrete interval Z[c,d] =
{c,c+1,---,d}. For a nonnegative integer ¢, the factorial expression k) is defined
as kO =[] (k — i) with K© = 1. Let Ay(k) = y(k + 1) — y(k) and for j > 2,
Ny(k) = AN~ Ty(k)).

We consider the following continuous and discrete multipoint boundary value
problems:

() >0, 1€ [0,1] (1)
-x('])(tl):o> .]:07 , 1 1>l_17 , (2)
and
Ay(k) >0, k € Z[0,m] 3)
Ny(ki) =0, j=0,---,m;—1,i=1,---,r 4)

where r 22, n; € Z[l,n—1], 1 <i<r, Y. m=n 0= <t <- <tr:1,
and k;, 1 <i < rareintegers with 0 =k; <kj+n <ky <hkpy+ny <--- <k,
kr+n,—1 = m+n. The primary aim of this paper is to derive lower bounds for solutlons
of (1), (2) and (3). (4) in terms of [lx|] = sup,c oy bx(1)| and |[y]] = maxee o, [y(K)|
respectively.

Mathematics subject classification (1991): 34A40, 39A10.

Key words and phrases: Continuous and discrete multipoint boundary value problems, differential and
difference inequalities, Green’s function.
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Next, let g be the Green’s function of the boundary value problem

xX"(1) =0, 1e0,1] (5)
and (2); and G be the Green’s function of the boundary value problem
Ay(k) = 0, k € Z[0, m] (6)

and (4). Using the lower bounds obtained earlier, we shall provide analogous in-
equalities for g and G. We remark that these inequalities are crucial in the study of
positive solutions of boundary value problems as well as in eigenvalue problems, e.g.,
see [4,7,10,12-15,17].

By using a different technique, namely, the concept of concavity, Eloe and Hen-
derson [9] have recently obtained the following lower bound for a solution of (1),

(2):
(l)max{”_"h"_”r} c 3t +tir1 4+ 3t

(=1)%x(1) > || ( e |FAEL AT e

yt

where a = minjez(i 1) (tiy1 — ;) and o; = Z;:iﬂ nj, 1 <i<r— 1. Inaddition to
extending their results to discrete case, our bound in the continuous case is sharper than
(7). Our work further generalizes related investigation done on two-point boundary
value problems [6,8,16].

2. Preliminaries
Foreach i=1,---,r — 1, we shall denote o; = Z;:Hl n;
LEMMA 1. [1,2,5,11] The Green’s functions g and G satisfy the following:
(71)aig(t7s) > Ov ([7S) € (ti7ti+l) X (07 1)a i= 17 e, — 1 (8)

r

g([,S) H(ti ti)ni 2 07 (ta S) € [thti’] X [thti’] (9)

i=1
(71)aiG(ka€) > 07 (k7€) € Z[kl +ni7ki+l - ” X Z[07m}7 i= 17' L, — 1 (10)
G(k, 0) ﬁ(k — k)" >0, (k,€) € Z[0,m + n] x Z[0,m]. (11)

i=1

3. Boundary value problem (1), (2)

THEOREM 1. Suppose that x(t) € C™[0,1] satisfies (1), (2). Then, for t €
[Bti + ti41) /4, (i + 3ti01) 4], i =1, r — 1,

(—1)%x(t) > ||x|min{min {f (3ti+ti+l> S (t’ +3tl“>}/ max f (1),
4 t€[0,1]
min{h (3”“’“) h (t’+3t’“>}/ max h(i } (12)
4 t€0,1]
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where f(t) = H;;ll |t =g (1 — 1)~ and h(t) = "~ [T, |t — gl
Proof. First, we shall prove (12) in the case that x(¢) satisfies (2) and

x(">(t) >0, 1€ (0,1). (13)
Noting that x(z fo s)ds, we employ (13) and (8) to get
(71) ix(t) >07 te(ti7ti+l)7 l:17 aril' (14)

Therefore, there exists 7. € (t,141) for some ¢ € Z[l,r — 1] such that |x|| =
(—1)%x(t.), or equivalently,

x(t) = (=1)%]|x]- (15)
We shall consider four cases.
Casel 2 < n <n— 1. Obviously, x(¢) fulfills (15) and
) =0,j=0,--- ,m—1,i=1,---,r—1, xV(1)=0,j=0,--- ,n,—2. (16)
Following [1,3], x(7) has the following expression

x(1) = Hj (=) HJF[H(O £ (1 — gy
Tl (e = ) T (5 — ) (1 = 1)

1
+/0 g1(t,)x" (s)ds, 1 € [0,1] (17)

(= D)%l

where gi(t,s) is the Green’s function of the boundary value problem (5), x(t,) = 0
and (16). By (9) we have sgn g;(,s) = sgn []._, 1(t — )it — 1)t — t,).

If ¢ € [t;,t.], then sgn g;(t,s) = (—1)*. Also,if ¢ € [t;,t;11], i=1,--- £ — 1,
then sgn g, (¢,s) = (—1)%. Using these together with (13), it follows from (17) that

Y s r—1 " Hr—
[ (=) T (5 — 0" (1 =0

(=1)%x(1) > (e =) T as = (1=t x|
:Jf((t*)) Il 1 € fre, ] (18)
and
(-1)x(r) > leli L ;))S[fl‘((;;))%?)l (-1
— f(( )) Il r€ bl i=1, - 0~ 1. (19)
Case2 2 <n <n— L. Inthiscase, x(r) satisfies (15) and

x0>(0)=o,j:0,---,n1—2, ) =0, j=0,--- nj—1,i=2,---,r. (20)
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Asin [1,3], x(z) can be written as

_ l . .
x([) B M 1 H ([ _ tj)n] H;:[Jrl (tj o [)nf
P ot = ) T (5 = 1)

I
1
+/0 @1, 5)x" (s)ds, 1 € [0, 1] (21)

where g»(t, s) is the Green’s function of the boundary value problem (5), x(¢.) = 0 and
(20). Once again it follows from (9) that sgn g»(¢,s) = sgn "~ 7, (t— ;)" (1 — 1..).

If ¢t € [ty,2r41], then sgn gy(f,s) = (—1)%. Also, if t € [f,t;1], i = £+
1,---,r — 1, then sgn gx(t,s) = (—1)%. Employing all these and (13) in (21), we
obtain

(= D)%l

" M L= ) Tl =0Y b |
(71) 4x(t) > - 1Hf:2(t* _tj)nj er ﬁ+1(l l*) ” H ( ) Hx”a re [t*vté'Jrl]
(22)
and
np—1 l W TT AT
(1) 3 o 2O el 7O s RO

e~ i w 7R
! 1Hj:2(f* = )" [Tjma (5 — 22)" h(t.)
tE€[titiy], i=£L+1,---,r—1. (23)
Case 3 n, = 1. Clearly, x(¢) fulfills (15) and

D()y=0, j=0,--- ,mj—1,i=1,---,r—1. (24)

It is noted that (24) = (16)|,,—1. We have the following representation

¢ .
[ (=) 12 4+1(t1 1)"

xr) = Hle(t* — )" 1= S (G — 1)

max{ts,t—; }
(— 1) ] + / g3(t,5)2") (s)ds,
0

t € [0, max{t.,t.—1}] (25)

where gs(t,s) is the Green’s function of the boundary value problem (5), x(¢,) = 0
and (24). Further, with sgn g3(7,s) = sgn [[._, "t — 1;)"(t — t.), we observe that
sgn g3(t,5) = sgn g1(t,s) for t € Ui, £;41] U [ts, 2.]. Using all these together with
(13) in (25) readily leads to (18)],,—=1 and (19)|n,—:.

Case4 n; = 1. Here, x(¢) satisfies (15) and
) =0, j=0,---nj—1,i=2---,r. (26)
We note that (26) = (20)|,,—1. Clearly, x(z) can be expressed as

¢ nj r nj

[l =) T (G — 1) (= 1)|Jx] + /1
! n: T n:

szz(t* — )" Hj:€+1(tj — 1,)" m

x(r) = ga(t,)x™ (s)ds,

in{ts 0}

t € [minf{t, 1}, 1] (27)
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where g4(t,s) is the Green’s function of the boundary value problem (5), x(z,) = 0
and (26). We find that sgn g4(7,s) = sgn [[_,(z — #;)"(r — t,.) has the same values as
sgn g2(t,5) for t € UZ, [t tis1] Ulte, 2e41]. Subsequently, we employ these and (13)
in (27) to get (22)],,=1 and (23)|,,=1-

From Cases 1-4, we conclude that inequalities (18), (19), (22) and (23) hold for
1 < ny,n, <n—1. Now, we couple (18) and (22), and also (19) and (23) to get

. @) h(@)
—1)%x(t) > ||x mln{—,
(=1)%x(0) > | min T2, 25
Hence, for ¢ € I; = [(3t; + ti41)/4, (t; + 3t:11)/4], i = 1,--- ,r — 1, it follows from
(28) that

}, tettip], i=1,---,r—1 (28)

. . f@) . h(1)
_1\% >
0t > admin {min £ i 140
_ ||XH min mintelif(t) mintelih(t)
maxy, cjo.1]f (t) " max,, o h(ts) |

Since min,ey, f (¢) and min,ey, h(7) occur at end points, the above inequality is exactly
the same as (12). Thus, we have shown that (12) holds if x(¢) satisfies (13), (2).
Now, let x(7) be a solution of (1), (2). For ¢ > 0, we define

r

xe (1) = x(t) + e [ J (e = ;).

j=1

Clearly, x.(¢) fulfills (13) and (2). Therefore, (12) holds for each ¢ > 0 and by
continuity, (12) holds for ¢ = 0. The proof of the theorem is complete.

REMARK 1. We shall deduce the inequality (7) of Eloe and Henderson [9] from
the proof of Theorem 1. To begin, since

r—1 n; ny—
Hj:e‘ﬂ(tj —1)i(1 =)t

r—1 n; ny—
Hj:l+1(tj — )1 =)t

>1,1€]0,t]

and ,
t”171 szz(t _ tj)nf
2 (e — 4"

it follows from (18), (19), (22) and (23) respectively that

> 1, t € [te, 1]

RN
(1) > T v 29)
j=1 B = 4)Y

Y "

C =

(—1)%x(r) > M IIxll, € [ti,tira], i=1,---,£—1 (30)
[ (=)
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H;:ul(t‘ — )"
[l (4 — 1)

(=1)%x(1) > [Ixll; 2 € [t 2e14] (31)

and

[l It — 2|

(=1)%x(t) > =T

Note that (29)-(32) hold for the cases n, = 1 and n; = 1 as well. Hence, for
tel; =3+ ti41)/4, (t;+3ti41) /4], i =1,--- ,r— 1, we combine (29)—(32) to get

! n; r n:

L | — 1)

(—1)%x(¢) > ||x|| min { min Hfl| i min HfJH i |n,
TP TR S | (I CETA T

_ HxH min { mianIi Hjlzl |[ — tj‘”j min,eli H;:€+1 ‘tj _ [‘”f }

max,, cfo,1] Hle(t* - fj)nj7 maxy, efo,1] H;=[+l(tj — )"

w57 (5}

which is exactly the same as (7).

Ixll, r€titipa], i=C+1,--- ,r—1. (32)

REMARK 2. It is clear from the proof of Theorem 1 and Remark 1 that inequality
(12) is sharper than (7).
As in [9] Theorem 1 leads to the following corollary.

COROLLARY 1. For each s € (0, 1) let llg(-, )|| = supte[o’l] |g(z,5)|. Then, for
(t,8) € [(3t; + tiy1) /4, (t; + 3ti11) /4] ¥ ), i=1,- -1,

. 3 i i i 3 i
(~1)%6(0.5) > g€-5)] min { min {1 ( d ““) (t EB ] a0,
4 1€[0,1]
min {h (%) <t’ 301 > }/maxte 0,1] h(t)} where the functions f

and h are defined in Theorem 1.

4. Boundary value problem (3), (4)
THEOREM 2. Suppose that y(k) defined on Z[0,m + n] satisfies (3), (4). Then,
for k€ Zki+ni,kiyn— 1), i=1,--- ,r—1,

(_l)lxiy(k)>“y|| min{mm {p(ki+ni)7 ( i+1— )}7 min {Q(k +n) (ki+l_1)}}
maXgez[0,m+n] [J(k) maXgez[0,m+n] q(k)

(33)

where p(k ‘ 1= (k — k)" | (m4n—k) =Y and q(k) = km="1 ‘H]rzz(k — k) ()

Proof. We shall employ arguments analogous to that used in Theorem 1. To begin,
we shall prove (33) when y(k) satisfies (4) and

A"y(k) > 0, k € Z[0, m]. (34)
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Since y(k) = Y., G(k,£)A"y(¢), in view of (34) and (10) we have
(—1)%y(k) >0, k€ Zlki+nikiy — 1], i=1,-- ,r— 1. (35)
Hence, there exists k. € Zlk; + ng, ko1 — 1] for some ¢ € Z[1,r — 1] such that
Iyl = (—1)%y(k.), or equivalently,
y(ke) = (=D |lyl (36)
Case 1l 2 < n, <n— 1. Clearly, y(k) satisfies (36) and

Ajy(kl) =Y ]:07 >ni_1> i= 1> 7r_17 Ajy(kr) :07.]:O> 7nr_2~
(37)

Following [2,4], y(k) can be represented as

¢ nj r—1 nj nyp—

L (k- ki) ) Ik +n—1— k)" (m 4+ n — k)=

y(k) = -
T ke = ) T2 (g +my = 1= k) ®™) (m = ko)D)

(=Dl

+> Gk, O)A"Y(0), k € Z[0,m+n] (38)
=0
where G| (k, ) is the Green’s function of the boundary value problem (6), y(ks) =0

and (37). From (11) we find that sgn G (k, ) = sgn [[._ 11 (k— ;)" (k — k) =1 (k —
If k € Zlke+ny, k], then sgn Gy (k,£) = (—1)%; andif k € Zlki+n;, ki —1], i =
.o+, —1, then sgn G, (k, ) = (—1)%. Applying these and (34) in (38), we get

[0 (k=) TLA (4= L= K (m 4= )

1

(1)) > Iyl
Hj:l(k* — k)™ H] é+1(k +nj = 1= k)" (m 4 n = k)=
k
= B Il ke bt k] (39)

and
(—1)%y(k) > H Lk — k) ) HJ £+1(k +np— 1= k)" (m 4 n — k)=

X
[0 (ke = k)™ T G+ = L= ) - — k) )

J J=
x (=D ly|
p(k) .
= PO ke zZlk F ki — 1], i=1,--- 6~ 1. 40
p(k*) Hy||7 € [ +n +1 ] l ( )

Case2 2 < nj; <n— 1. Here, y(k) fulfills (36) and
Ny(0)=0,j=0,--- ,n;—2, Ny(k)=0,j=0,--- ,mi—1,i=2,---,r (41)
and can be written as
L R 0 A R e
Yy = n—1 14 n; r n;
KO T e = k)™ Ty (g +my = 1= k) )

(=D ]yl

T Zm: Go(k, O)A"y(£), k € Z[0,m+n] (42)
=0
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where G, (k, ) is the Green’s function of the boundary value problem (6), y(k.) =0
and (41). By (11) we have sgn Gy (k, £) = sgn k" =V [T7_, (k — k)" (k — k).

If k € Zky, key1 — 1], then sgn Go(k,0) = (—1)%; and if k € Z[k; + nj, kiv1 —
1, i=£+1,---,r—1, then sgn Gy(k,£) = (—1)%. Using these and (34), it follows
from (42) that

n— 4 n; r n;
k= Hj:2(k - kj)( /) Hj:[Jrl(kj +nj—1— ) )

(D) > . Iyl
KT (e — )™ TI oy (hy 4y — 1 — k)
q(k
—a%%wukezmmeu (43)

n— l n: r n;
KO T (k= k)" T (k= 1 = k)™ pyacta

(
np—1 0 n; r nj

(=1)%y(k) = Iyl

k
B :((k)) Il &k € Z[ki + niykiyy — 1], i=L+ 1, r = 1. (44)

Case3 n, = 1. Here, y(k) satisfies (36) and (37)|,,—1, Viz.
Ny(k) =0, j=0,---,nj—1,i=1,--- ,r—1. (45)

Further, y(k) can be expressed as

[T (k= k)" T2 (K — 1= B

yk) = = — — (=)™l
[T (ke = k)" Ty (k4 1y = 1= k) )
max{ks k,—+n,_ —1}—n
+ > G3(k, O)A"y(0), k € Z[0, max{k., k1 +n,_; —1}] (46)

where G3(k, E)l ios the Green’s function of the boundary value problem (6), y(k.) =0
and (45). We find that sgn G3(k, ¢) = sgn [[._ 11 (k—k;)") (k—k,) has the same values
as sgn Gy (k, £) for k € U Z[k; + nj, kiyy — 1] U Z[ky + ng, k.]. Hence, (46) implies
(39)[n,—1 and (40)|n,1.

Case4 n; = 1. Clearly, y(k) fulfills (36) and (41)],,=1, viz.

Ny(k)=0, j=0,-- ,mi—1,i=2,--,r (47)
and has the following representation

Hj:z(k - kj)(nj> H;:e‘ﬂ(kj +ny—1— k)(nj>
T o (ke — k) [Ty (ki — 1 — k)@

+ > Galk OA'(0), k € Z[min{k., kp},m + n] (48)
(=min{kx k> }

y(k) = (=Dl
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where Gy (k,¢) is the Green’s function of the boundary value problem (6), y(k.) =0
and (47). Tt is noted that sgn Ga(k,£) = sgn [[,_,(k — k)" (k — k) = sgn Ga(k, £)
for k € U\ | Z[ki+n;, ki1 — 1]UZ[k,, ke — 1]. Consequently, (48) leads to (43)],,—1
and (44)|,,-1.

It is clear from Cases 1-4 that inequalities (39), (40), (43) and (44) hold for
1 < ny,n, < n— 1. Subsequently, for k € I; = Zlk; + ni,kivy — 1], i=1,--- ,r— 1,
we combine (39), (43), (40) and (44) to get
p(k)  qk) }

(—=1)%y(k) > ||y|| min {m’ q(k.)

k k
> ||y|| min < min pk) , min 9(k)
e M g)
i p(k i q(k
— ||yH min { mlnkelzp( ) , mingey; CI( ) } )
maXg, €z[0,m+n] P(k*) maXg, €z[0,m+n] Q(k*)

Since mingey, p(k) and mingey; g(k) occur at end points, the above inequality is exactly
the same as (33). So we have verified that (33) holds if y(k) fulfills (34), (4).
Now, suppose that y(k) satisfies (3), (4). For € > 0, we define

r

velk) = y(k) + e [ J (k — k)™

J=1

which obviously fulfills (34) and (4). Hence, (33) holds for each ¢ > 0 and by
continuity, (33) holds for e = 0. This completes the proof of the theorem.

As in [6] Theorem 2 gives rise to the following corollary.

COROLLARY 2. For each { € Z[0,m], let ||G(-,€)|| = maxXycz(omin |Gk, L)].
Then, for (k,0) € Z[k; + ni, kiy1 — 1] x Z[0,m], i=1,--- ,;r— 1,
min {p(ki + n:),p(kis1 — 1)}
maXgez(0,m+n p(k)
min {q (ki + 1), q(ki1 — 1)} }
mMaXgez(0,m-+n) q(k)

<—n%cw¢>>ncnw|mm{

where the functions p and q are defined in Theorem 2.
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