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SOME MATRIX TECHNIQUES IN GAME THEORY

CHI-KWONG LI AND SITA NATARAJ

(communicated by G. Styan)

Abstract. A short proof is given to the known result that equilibrium pairs of a two-person
general-sum game can be found by solving certain systems of linear inequalities. The technique
is then extended to study equilibrium pairs of evolutionary games and auction games. In the
former case, evolutionary stable strategies are also determined. Furthermore, it is shown that the
computation procedures can be implemented in standard linear programming packages such as
LINDO or Maple, and used as education or research tools to handle examples of moderate sizes.

1. Introduction

Many real-life situations in economics, business, politics, and even evolutionary
biology can be modeled as games, in which players with conflicting interests interact
and try to maximize their payoffs, say, in terms of money, prestige, or satisfaction. We
refer the readers to [2,4,5,7] for the general background of game theory.

In this note, we focus on (finite) two-player general-sum games, in which the two
players’ interests need not be directly opposed; that is, the payoffs to both players do not
necessarily sum to zero. For example, in the auction game that we study in section 4,
each of the two players has a choice of finitely many pure strategies, which correspond
to the different dollar amounts that they may bid. Suppose a player can choose to bid 2
dollars or 3 dollars. He or she can also choose the mixed strategy of bidding 2 dollars
with probability p , and 3 dollars with probability (1 − p) , where 0 � p � 1 . Both
players would try to get the object with the lowest price relative to their evaluations of
it.

Mathematically, if the two players, I and II, have m and n pure strategies respec-
tively, I’s mixed strategies are given by a nonnegative column vector x = (x1, . . . , xm)t

where xi is the probability of playing the i -th pure strategy; II’s mixed strategies are
given by a nonnegative column vector y = (y1, . . . , yn)t where yj is the probability of
playing the j -th pure strategy. Obviously,

∑m
i=1 xi =

∑n
j=1 yj = 1 . Of course, a vector

x (respectively, y ) with only one non-zero entry, which equals to 1, corresponds to a
pure strategy of player I (respectively, player II).
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Suppose the payoffs of player I and II are given by the pair (aij, bij) when they
use pure strategies i and j , respectively, for 1 � i � m and 1 � j � n . Then the two
m × n matrices A = (aij) and B = (bij) are called the payoff matrices of the game. If
x and y are the mixed strategies chosen by I and II, then their payoffs will be computed
by A (x, y) = xtAy and B(x, y) = xtBy , respectively. Because of this representation,
a two-player general-sum game is also called a bimatrix game.

A pair of mixed strategies (x∗, y∗) is an equilibrium pair if

A (x, y∗) � A (x∗, y∗) and B(x∗, y) � B(x∗, y∗),

for any choices of mixed strategies x and y . Intuitively, an equilibrium pair is a set of
strategies from which neither player will deviate unilaterally; that is, given the strategy
chosen by player I, player II does not wish to change his strategy, and vice versa. It is
one of the broadest non-cooperative solution concepts for a bimatrix game.

Although every bimatrix game is guaranteed to have at least one equilibrium pair
by a theorem of Nash (e.g., see [5, p.57]), computing all the equilibrium pairs is rather
difficult. In [6], the author showed that the problem can be reduced to solving a certain
system of linear inequalities, and the idea was refined in [3]. Both authors concluded
that the computation of equilibrium pairs can be done effectively once it is reduced to
finite matrix manipulations. This comment is not entirely accurate from the modern
perspective. As a matter of fact, the complexity of the computation is very high (see
Section 2), and finding efficient algorithms is a challenging problem (e.g., [8]). Since the
computation is very involved even for problems of small sizes, most standard references
only consider examples for m, n � 3 , and the results and ideas in [6] and [3] are not
discussed.

In the next section, we give a short proof of the result in [6]. The technique is
then extended to study equilibrium pairs of evolutionary games and auction games in
sections 3 and 4. In the former case, evolutionary stable strategies (see section 3 for the
precise definitions) are also determined. Furthermore, it is shown that the computation
procedures can be implemented using standard linear programming packages such as
LINDO or Maple. Although the algorithms cannot be used to solve practical problems
due to the high complexity in computation, they can be used as education or research
tools to handle examples of moderate sizes.

For k = m or n , we shall use Pk to denote the set of vectors in IRk corresponding
to all possible probability vectors of mixed strategies, i.e., vectors with nonnegative
entries that sum to one. For k = m or n , we let {e(k)

1 , . . . , e(k)
k } be the standard basis

of IRk , and let e(k) ∈ IRk be the vector with all entries equal to one. We shall simply
write ei instead of e(k)

i if the size of ei is clear from the context. Define the set of
equilibrium pairs as

E(A, B) =

⎧⎨
⎩(x, y) ∈ Pm × Pn :

xtAy � x̃tAy for any x̃ ∈ Pm

xtBy � xtBỹ for any ỹ ∈ Pn

⎫⎬
⎭ .

If a matrix X has k columns and 1 � i1 < · · · < it � k , we denote by X(i1, · · · , it)
the submatrix of X formed by its i1, . . . , it columns.
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2. Computation of equilibrium pairs

Let (A, B) be a pair of m×n payoffmatrices for player I and player II in a bimatrix
game. We have the following result (see [6] and [3]).

THEOREM 2.1. Let x = xi1ei1 + · · · + xipeip ∈ Pm, with xik > 0 for all k , and
y = yj1ej1 + · · ·+ yjqejq ∈ Pn , with yjl > 0 for all l . Then (x, y) ∈ E(A, B) if and only
if

[
1
p
e(m)(ei1 + · · · + eip)

t − Im

]
A(j1, · · · , jq)

⎛
⎜⎝

yj1
...

yjq

⎞
⎟⎠ �

⎛
⎝ 0

...
0

⎞
⎠ , (1a)

and [
1
q
e(n)(ej1 + · · · + ejq)

t − In

]
Bt(i1, · · · , ip)

⎛
⎜⎝

xi1
...

xip

⎞
⎟⎠ �

⎛
⎝ 0

...
0

⎞
⎠ . (1b)

Proof. Let x = xi1ei1 + · · · + xipeip ∈ Pm, with xik > 0 for all k , and y =
yj1ej1 + · · · + yjqejq ∈ Pn , with yjl > 0 for all l . Suppose Ay = (c1, . . . , cm)t and
xtB = (d1, . . . , dn). Then (x, y) ∈ E(A, B) if and only if

ci1 = · · · = cip � ci for all i = 1, . . . , m, (2a)

and
dj1 = · · · = djq � dj for all j = 1, . . . , n. (2b)

Note that (2a) and (2b) hold if and only if

1
p
(ci1 + · · · + cip)e

(m) −
⎛
⎝

c1
...

cm

⎞
⎠ �

⎛
⎝ 0

...
0

⎞
⎠ (3a)

and

1
q
(dj1 + · · · + djq)e

(n) −
⎛
⎝

d1
...
dn

⎞
⎠ �

⎛
⎝

0
...
0

⎞
⎠ (3b)

One easily checks that the left hand side of (3a) is the same as the left hand side of
(1a) , and that the left hand side of (3b) is the same as the left hand side of (1b) . The
result follows. �

In application of Theorem 2.1, one may permute the rows and columns of A and
B , i.e., replacing (A, B) by (RAS, RBS) for some suitable permutation matrices R and
S , so that (i1, . . . , ip) = (1, . . . , p) and (j1, . . . , jq) = (1, . . . , q) .

Theorem 2.1 can be used for any of the following:
(a) Determine whether a given (x, y) ∈ Pm × Pn is indeed an equilibrium pair by

checking whether it falls within the feasible set of the system (1) .
(b) Determine whether there exists a pair (x, y) ∈ E(A, B) with prescribed supports,

i.e., positions of positive entries in the vectors x and y , respectively.
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(c) In principle, one can find all (x, y) ∈ E(A, B) by the following algorithm.
For any non-empty P = {i1, . . . , ip} ⊆ {1, . . . , m} and Q = {j1, . . . , jq} ⊆
{1, . . . , n} , determine the feasible set of the system (1a) and (1b) with the
additional constraints:

xi1 , . . . , xip > 0, xi1 + · · · + xip = 1, yj1 , . . . , yiq > 0, yj1 + · · · + yjq = 1.

So, one has to solve (2m − 1)(2n − 1) so many systems. Clearly, the computation
becomes very involved when each player has a large number of pure strategies. One
may improve the efficiency of the algorithm slightly as follows.

For each nonempty subset P = {i1, . . . , ip} ⊆ {1, . . . , m} , determine those y ∈ Pn

that satisfy (1a) with (j1, . . . , jq) = (1, . . . , n) . One can then focus on those y
and the subsets Q = {j1, . . . , jq} of {1, . . . , n} containing indices corresponding
to the positive entries of y to solve (1b) . As a result, for each non-empty subset
P ⊆ {1, . . . , m} , one may not need to consider all the subsets of {1, . . . , n} in the
computation.
Even with the “improved” algorithm mentioned above, it is still rather difficult to

determine all equilibrium pairs. Most linear programming packages such as LINDO
and Maple can only check the feasibility for a given set of constraints instead of
finding the entire feasible set. Nonetheless, one may use the modified algorithm as
an education or research tool to handle examples of moderate sizes. For example,
assume (m, n) = (3, 4) . One can first identify those equilibrium pairs for which P is
a singleton. For P = {1, 2, 3} , one only need to focus on those y ∈ P4 for which
Ay = (c, c, c)t for some c ∈ IR . So, one is left with the cases when P = {i1, i2} has
two elements. In each of these cases, one can solve (1a) to identify those y so that
Ay = (c1, c2, c3)t so that ci1 = ci2 are the largest entries in the vector, and then proceed
to solve the system (1b) .

3. Evolutionary games

An interesting application of game theory is to model animal behavior as it evolves
from generation to generation (see e.g. [4] and [7]). In such a model, one may assume
that a certain species of animal can have n types of behavior, say, type 1 to type n .
When a type i animal encounters a type j animal, it will get a reward (payoff) of aij

units (in terms of food, territory, etc.). One would consider such a model as a bimatrix
game with payoff matrices A and At , and call it an evolutionary game. A mixed
strategy x ∈ Pn can be viewed as the proportion of these various types of animals in the
population, i.e., xi � 0 is the fraction of type i animals in the system. One may also
regard x ∈ Pn as a genotype of the animal, i.e., there is a probability of xi for a newly
born animal to have type i behavior. Then the expected payoff of x ∈ Pn is computed
by xtAx . We say that x is an evolutionary stable strategy (abbreviate to ESS) if for any
y ∈ Pn there exists δ > 0 such that

xtA(ry + (1 − r)x) > ytA(ry + (1 − r)x)
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for any 0 < r < δ . Roughly speaking, this condition ensures that if a small proportion
(no more than δ ) of a differentmutant genotype y ∈ Pn enters the system, the expected
payoff of the existing genotype x will be higher than that of the mutant genotype y .
Thus the system will have a tendency to return to the original state.

It is known (e.g., see [4] and [7]) that a genotype x ∈ Pn is ESS if and only if the
following two conditions hold:

(i) xtAx � ytAx for any y ∈ Pn ,
(ii) if y ∈ Pn is such that y �= x and xtAx = ytAx , then xtAy > ytAy .

One easily sees that an x ∈ Pn satisfies condition (i) if and only if (x, x) is an
equilibrium pair of the bimatrix game (A, At) . Such an x is called an equilibrium
genotype of the evolutionary game. We shall use Theorem 2.1 and some additional
matrix techniques to derive some effective schemes for checking conditions (i) and
(ii) .

In the following, we shall use {e1, . . . , en} to denote the standard basis of IRn ,
and let e ∈ IRn be the vector with all entries equal to one. If a matrix X has k columns
and 1 � i1 < · · · < it � k , we shall continue to denote by X(i1, · · · , it) the submatrix
of X formed by its i1, . . . , it columns.

By Theorem 2.1, we have the following result.

THEOREM 3.1. A mixed strategy x = xi1ei1 + · · ·+ xipeip ∈ Pn with xik > 0 for all
1 � k � p is an equilibrium genotype of the evolutionary game (A, At) if and only if

[
1
p
e(ei1 + · · · + eip)

t − In

]
A(i1, · · · , ip)

⎛
⎜⎝

xi1
...

xip

⎞
⎟⎠ �

⎛
⎝ 0

...
0

⎞
⎠ . (4)

In comparison to a general bimatrix game, it is relatively easy to determine all
the equilibrium genotypes in an evolutionary game. In particular, one needs only to
solve the system (4) for each non-empty subset P = {i1, . . . , ip} of {1, . . . , n} with
the additional constraints that xi1 , . . . , xip > 0 and xi1 + · · · + xip = 1 . However, for
large n , the computation is still very involved. In any event, the study of condition (i)
is useful in reducing the number of cases needed to be checked for condition (ii) as
shown in the following.

THEOREM 3.2. Suppose x̃ = x̃i1ei1 + · · · + x̃ipeip ∈ Pn with x̃ik > 0 for all
1 � k � p is an equilibrium genotype of the evolutionary game (A, At) . If x ∈ Pn is
such that x �= x̃ and the i1, . . . , ip entries of x are all positive, then x cannot satisfy
condition (ii) and hence is not an ESS.

Proof. Suppose x and x̃ satisfy the hypotheses of the theorem. If Ax = (c1, . . . , cn)t

is an equilibrium genotype, then ci1 = · · · = cip � cj for any 1 � j � n . Thus
x̃tAx = xtAx . However, since x̃ is also an equilibrium genotype, it is impossible to
have xtAx̃ > x̃tAx̃ , and thus condition (ii) does not hold. �

Now, suppose x =
∑p

k=1 xikek is an equilibrium genotype with xik > 0 for all
k such that no other equilibrium genotype x̃ has supports lying in {i1, . . . , ip} . For
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simplicity, we let (i1, . . . , ip) = (1, . . . , p) . Otherwise, we may permute the rows and
the corresponding columns of A to achieve that. [Note that for a general bimatrix game,
we may replace (A, B) by (RAS, RBS) for suitable permutation matrices R and S . For
an evolutionary game (A, At) one should use (RARt, RAtRt) for a suitable permutation
matrix R to preserve the structure.] To check whether condition (ii) holds for such an
x , let Ax = (c1, . . . , cn)t . Since x is a equilibrium point, c1 = · · · = cp � ci for all i .
It is possible that there are j > p such that cj = cp . Again, we may apply a permutation
to rows and the corresponding columns of A and assume that c1 = · · · = cq > cj for
all j > q . Standard method (e.g., see [5, Chapter 8]) of testing ESS requires checking
(x−y)tA(x−y) > 0 for all x = (x1, . . . , xp, 0, . . . , 0)t, y = (y1, . . . , yq, 0, . . . , 0)t ∈ Pn .
If q � p + 1 , this can be done effectively (e.g., see [5, Problems 8.3 - 8.4]). However,
if q > p + 1 , there is no easy theoretical technique or computer package to test this
condition. We obtain another result that helps study this problem.

THEOREM 3.3. Suppose x = (x1, . . . , xp, 0, . . . , 0)t is an equilibrium genotype of
the evolutionary game (A, At) such that Ax = (c1, . . . , cn)t satisfies c1 = · · · = cq > cj

for j > q . Let C = B + Bt , where B is the leading principal q × q submatrix of
(ext − In)A . Then x is an ESS if and only if ytCy > 0 for any y ∈ IRq with nonnegative
entries that sum up to 1.

Proof. By the given condition, y ∈ Pn satisfies xtAx = ytAx if and only if y is of
the form (y1, . . . , yq, 0, . . . , 0)t . For such a y , we need to check whether

0 < xtAy − ytAy = ytextAy − ytAy = yt[(ext − In)A]y.

Since y only has support at the first q positions, and ztXz = zt(X + Xt)z/2 for any
X ∈ IRn×n and z ∈ IRn . We get the desired conclusion. �

More techniques are available in studying the condition in Theorem 3.3. For
example, the linear programming package LINDO can solve the optimization problem

min ytCy subject to y ∈ Pn.

Furthermore, a real symmetric matrix C satisfying ytCy > 0 for all nonzero nonnega-
tive vector y is known as a copositive matrix, and is quite well-studied in matrix theory
literature (see e.g. [1] and its references).

4. Auction games

Auction games, in which one or more objects are sold to the highest bidder(s),
present another opportunity to apply Theorem 2.1, as well as to investigate the special
structure of the auction payoff matrices. In this section, we assume that only one object
is sold under Dutch auction rules. That is, the auctioneer starts the bidding at a high
price (far higher than the expected selling price) and lowers the price until someone
agrees to buy the object at the current price. In effect, therefore, the highest bidder
gets the object at a price equal to the highest bid. In our model, there are two bidders
who value the object at v1 > 0 and v2 > 0 respectively. We further specify that v1
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and v2 are integers, and that v1 � v2 . We assume that if both players bid the same
amount, then they each have a 1

2 chance of getting the object. Finally, we only allow
integer bids. This last restriction is reasonable because any real-world auction must set
a minimum allowable increment for bids. Even in the most extreme case, the minimum
increment is one cent.

Each player has (b + 1) pure strategies, where the k -th pure strategy is to bid
(k−1) dollars. Note that k = 1, . . . , b+1 , where b is the price at which the auctioneer
starts the bidding. It has been pointed out, however, that we only need concern ourselves
with bids less than or equal to v1 , as neither player will bid more than this amount. See
[5, p.102] for a proof. Thus, the payoff matrices A and B are (v1 + 1) × (v1 + 1) ,
where the (i, j) entry is the payoff from I bidding (i − 1) and II bidding (j − 1) .

In the following, we shall use {e0, . . . , ev1} to denote the standard basis for
IRv1+1 , and always assume x = (x0, . . . , xv1)t, y = (y0, . . . , yv1)t ∈ Pv1+1 to be the
mixed strategies of the auctioneers. We shall use A (x, y) and B(x, y) to denote the
payoff of the auctioneers using the mixed strategies x and y , respectively.

THEOREM 4.1. If v1 � v2 + 2 , then equilibrium pairs (x, y) of the form x =
xi1ei1 + · · ·+xipeip ∈ Pv1+1 , with xik > 0 for all k , and y = yj1ej1 + · · ·+yjqejq ∈ Pv1+1 ,
with yjl > 0 for all l , satisfy one of the following:

0 < i1 < · · · < ip � jq + 1 � v2 (5a)
x = xv2ev2 or xv2ev2 + xv2+1ev2+1, and jq � v2 (5b)

x = xi1ei1 with i1 > v2, and jq � i1 − 1. (5c)

Proof. The payoff matrices A and B are

A =

⎛
⎜⎜⎜⎜⎜⎝

v1
2 0 · · · 0 0

(v1 − 1) (v1−1)
2 · · · 0 0

...
...

. . .
...

...
1 1 · · · 1

2 0
0 0 · · · 0 0

⎞
⎟⎟⎟⎟⎟⎠

,

B =

⎛
⎜⎜⎜⎜⎜⎝

v2
2 (v2 − 1) · · · (v2 − v1 + 1) (v2 − v1)
0 (v2−1)

2 · · · (v2 − v1 + 1) (v2 − v1)
...

...
. . .

...
...

0 0 · · · (v2−v1+1)
2 (v2 − v1)

0 0 · · · 0 (v2−v1)
2

⎞
⎟⎟⎟⎟⎟⎠

.

We can immediately eliminate from consideration the last two strategies (bid v1 and
v1 − 1 ) for player II, as well as the last strategy (bid v1 ) for player I, as they are
strictly dominated. Specifically, B(x, y0e0) > B(x, yv1ev1) for all mixed strategies x .
Once y0e0 is removed, A (xv1−1ev1−1, y) > A (xv1ev1 , y) for all y . Once xv1ev1 is also
removed, B(x, y0e0) > B(x, yv1−1ev1−1) for all x , and we can remove yv1−1ev1−1 as
well. When strictly dominated strategies are thus removed, the equilibrium pairs of
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the reduced game are identical to the equilibrium pairs of the original game. See for
example, [5, p. 83] for a proof. In other words, ip � v1 − 1 and jq � v1 − 2 .

Now, we observe that

Ay =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c0

c1
...

cjq
cjq+1

cjq+2

...
cv1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

v1

v1 − 1
...

v1 − jq
v1 − jq − 1
v1 − jq − 2

...
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

◦

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

y0

2
y0 + y1

2
...

y0 + · · · + yjq
2

y0 + · · · + yjq

y0 + · · · + yjq
...

y0 + · · · + yjq

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where ◦ denotes the Schur (entrywise) product. Note that c0 is never the largest
entry in Ay : If y0 = 0 , then there is some other yk > 0 for 0 < k � jq ; in this
case, ck > c0 . If y0 > 0 , then c1 > c0 as long as v1 > 2 , which always holds
if v1 � v2 + 2 . Note also that cjq+1 > cjq+k for all k > 1 . Thus, equilibrium
pairs of the form x = xi1ei1 + · · · + xipeip ∈ Pv1+1 , with xik > 0 for all k , and
y = yj1ej1 + · · · + yjqejq ∈ Pv1+1, with yjl > 0 for all l , must satisfy

0 < i1 < · · · < ip � jq + 1 and 0 � j1 < · · · < jq � v1 − 2. (6)

Player II’s situation presents the following analysis:
(a) If i1 < v2 , then xtB = (d0, . . . , dv1) satisfies dv2−1 > dv2 = 0 . So we have jq <

v2 . Substituting into the first part of (6) yields 0 < i1 < · · · < ip � jq + 1 � v2 .
Obviously, this result corresponds to (5a) above.

(b) If i1 = v2 , then xtB = (d0, . . . , dv1) satisfies d0 = · · · = dv2 = 0 > dv2+1 ,
which implies that jq � v2 . Substituting into the first part of (6) gives v2 =
i1 < ip � jq + 1 � v2 + 1 . Hence, equilibrium pairs satisfy x = xv2ev2 or
x = xv2ev2 + xv2+1ev2+1 , and jq � v2 . This result corresponds to (5b) above.

(c) If i1 > v2 , then xtB = (d0, . . . , dv1) satisfies d0 = · · · = di1−1 = 0 > di1 .
Therefore, jq � i1 − 1 . From the first part of (6) , we have ip � jq + 1 � i1 ,
which implies p = 1 and i1 = jq + 1 . Thus, equilibrium pairs satisfy x = xi1ei1

and jq � i1 − 1 , which corresponds to (5c) above. �

EXAMPLE 4.2. Let v1 = 4 and v2 = 2 . Then Theorem 4.1 tells us that all
equilibrium pairs of the form x = xi1ei1 + · · ·+ xipeip ∈ P5 , with xik > 0 for all k , and
y = yj1ej1 + · · ·+ yjqejq ∈ P5 , with yjl > 0 for all l , must satisfy one of the following:
(a) x1 + x2 = 1 and y0 + y1 = 1 ;
(b) x = x2e2 or x = x2e2 + x3e3 and

∑2
j=0 yj = 1 ;

(c) x = x3e3 and
∑2

j=0 yj = 1.

We can use Theorem 2.1 on the reduced sets P and Q to find the equilibrium pairs
(a) x = x2e2 and y = yj1ej1 + · · · + yjqejq such that

∑2
j=0 yj = 1 and y2 + y1

2 � y0 ;
(b) x = xi1ei1 + · · · + xipeip such that x2 + x3 = 1 and y = y2e2 .
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Theorem 4.1 can be extended to the case where v1 = v2 + 1 ; however, it is no
longer very helpful. First, (6) must be modified to include jq = v1 − 1 , as this strategy
is no longer strictly dominated. Thus, (6) becomes

0 < i1 < · · · < ip � jq + 1 and 0 � j1 < · · · < jq � v1 − 1. (6′)

Assuming that v1 > 2 , we can substitute into (5a) to obtain

0 < i1 < · · · < ip � jq + 1 � v1 − 1

But this result is not much more helpful than the initial result in (6′) . (If v1 � 2 ,
then (6′) must be further expanded to consider i1 = 0 .) For completeness, we note
that if v1 = v2 + 1 , case (b) ( i1 = v2 ) reduces to x = xv2ev2 and j � v2 , since
x = xv2+1ev2+1 is strictly dominated. Furthermore, case (c) ( i1 > v2 ) never occurs for
the same reason.

For the case where v1 = v2 , Theorem 4.1 still holds. However, the theorem is not
very useful, as there are no strictly dominated strategies to remove. Thus, the results of
this section are more useful when there is a relatively large gap between v1 and v2 . If
the gap is relatively small, then case (a) ( i1 < v2 ) still contains most of the (x, y) that
were under consideration before the application of Theorem 4.1.
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