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ON AN OSTROWSKI TYPE INEQUALITY FOR A RANDOM VARIABLE

I. BRNETIĆ AND J. PEČARIĆ

(communicated by B. Mond)

Abstract. An Ostrowski’s type inequality for a random variable is improved and one application
is given.

The following theorem was proved by S. S. Dragomir, N. S. Barnett and S. Wang
([1]):

THEOREM A. Let X be a random variable with the probability density function
f : [a, b] ⊂ R → R+ and with cumulative distributive function F(x) = Pr(X � x) . If
f ∈ Lp[a, b] , p > 1 , then we have the inequality:

|Pr(X � x) − b − E(X)
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� q
q + 1

||f ||p(b − a)
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for all x ∈ [a, b] , where 1
p + 1

q = 1.

Here we shall show that the following stronger result can be obtained from the
Fink’s generalization of Ostrowski’s inequality ([2]):

Theorem 1. Let the assumptions of Theorem A be fulfilled. Then,

|Pr(X � x) − b − E(X)
b − a

| �
(

(x − a)q+1 + (b − x)q+1

(q + 1)(b − a)q

) 1
q

· ||f ||p (2)

for all x ∈ [a, b] .

Proof. The following result is a special case of a more general result obtained
by A. M. Fink (see also [3], p.471). Let g be absolutely continuous on [a, b] with
g′ ∈ Lp[a, b] . Then, for 1 < p < ∞ , 1

p + 1
q = 1 ,

|g(x) − 1
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∫ b

a
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The inequality (3) is the best possible in the strong sense that for any x ∈ [a, b]
there is a function g for which equality holds. If we put g = F in (3), by using
E(X) = b − ∫ b

a F(t)dt , we obtain the desired inequality (2).

Let’s show that (2) is the stronger inequality than the first inequality in (1). Firstly,
by the well known inequality for power sum we obtain

((x − a)q+1 + (b − x)q+1)
1
q � (x − a)

1+q
q + (b − x)

1+q
q . (4)

On the other hand, by the weighted arithmetic-geometric mean inequality we have
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From (4) and (5) we have(
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which shows the improvement of the result of Theorem A.
The improvement of other results in [1] can be done by using Theorem 1. Here, we

shall establish only one more result. First, let’s remind that the Beta random variable
with parameters (s, t) ∈ Ω = {(s, t) : s, t > 0} has the probability density function

f (x, s, t) =
xs−1(1 − x)t−1

B(s, t)
, 0 < x < 1,

where B(s, t) is Beta function. Also, as it is noted in [1], for p > 1

||f (., s, t)||p =
1

B(s, t)
(
B(p(s − 1) + 1, p(t − 1) + 1)

) 1
p

provided s > 1 − 1
p and t > 1 − 1

p .
So, by using Theorem 1 we can obtain the following result

Corollary 1. Let p > 1 and X be a Beta random variable with parameters (s, t) ,
s > 1 − 1

p , t > 1 − 1
p . Then we have the inequality

|Pr(X � x) − t
s + t

| �
(

x1+q + (1 − x)1+q

1 + q

) 1
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1
p

B(s, t)
for all x ∈ [0, 1] .

Particulary, we have
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2
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