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ON HADAMARD’S INEQUALITY FOR THE CONVEX MAPPINGS
DEFINED ON A BALL IN THE SPACE AND APPLICATIONS

S. S. DRAGOMIR

(communicated by T. Rassias)

Abstract. In this paper we point out an inequality of Hadamard’s type for triple integrals which
works for convex functions defined on a ball from the space. Some mappings naturally connected
with this inequality and related results are also pointed out.

1. Introduction

Let f : I C R — R be a convex mapping defined on the interval / of real numbers
and a,b € I with a < b. The following double inequality:

is known in the literature as Hadamard’s inequality for convex mappings. Note that
some of the classical inequalities for means can be derived from (1.1) for appropriate
particular selections of the mapping f.

In the paper [4] (see also [5] and [9]) is considered the following mapping naturally
connected to Hadamard’s result:

b
H:[0,1] - R H () = ﬁ f (tx—l—(l—t) ‘1;—1’) d.

The following properties are also proved:

(h) H is convex and monotonic nondecreasing.
(hh) One has the bounds

b
sup H(r) =H (1) = ! /f(x)dx

t€[0,1] b—a

and

inf H(1)=H(0)=f (““’).

€[0,1] 2
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Another mapping also closely connected to Hadamard’s inequality is the following
one [5] (see also [9]):

F:]0,1] - R,F(z) — //f (tx + (1 — 1) y) dxdy.

The properties of this mapping are the followmg ones:
(f) F is convex and monotonic nonincreasing on [0, %] and nondecreasing on

1
[5.1];
29 ’
. . . 1 .
(ff) F is symmetrical relating the element 5. That is,
F(t)=F(1—1) forallt € [0,1];
(fff) One has the bounds

b
sup F(t):F(O):F(l):b1 /f(x)dx

1€[0,1] —da

and

P 0= (5) = ot [ () a2 (52)

(ffff) The following inequality holds:

F(t) > max{H (t) ,H (1 —1)} forallt € [0,1].

In this paper we will point out a similar inequality to Hadamard’s one that will
work for convex mappings defined on a closed ball from the space R*>. We will also
consider some mappings similar in a sense to the mappings H and F and establish
their main properties.

For recent refinements, counterparts, generalizations and new Hadamard’s type
inequalities, see the papers [1]-[12] and [14]-[15] and the book [13].

2. Hadamard’s inequality

In this section we will point out some inequalities of Hadamard’s type for convex
functions defined on the ball B (C,R), where C = (a,b,c) € R*, R > 0 and

B(C,R) := {(x,y,z) eR’| (x— a)y +(—bY’+(z—¢) < Rz} .
The following theorem holds:

THEOREM 1. Let f : B(C,R) — R be a convex mapping on the ball B(C,R).
Then we have the inequality:

1
f(a,b,c) < W// E(C,R)f (x,y,2) dxdydz

1
S o (B(C,R)) /S(C,R)f (.7, 2)ds @1)
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where
S(CR) = { (0y,2) €R| (x = @) + (= b + (- o) = B}
and 3
v(B(C,R)) = 472R , 6(B(C,R)) = 4nR".

Proof. To prove the first inequality in (2.1), let us consider the transformation:
TR — R Ty (u,v,w) = 2a — u,2b —v,2c — w).
It is easy to see that the Jacobian of 7 is
-1 0 0
J(T)=det| 0 -1 0 |=-1,
0 0 -1

and T} is a one-to-one mapping which transforms the ball B (C, R) in itself. Then we
have the change of variable:

/// f (x,y,z)dxdydz = /// f a—u,2b—v,2c —w) |J(T1)| dudvdw

B(C.R) B(C.R)

/// f (2a—x,2b—y,2c—z)dxdydz. (2.2)
B(C.R)

Now, by the convexity of f on the ball B (C,R), we have:

1
E [f (%}%Z) +f (za_x>2b_}’>2C—Z)} >f (a,b,c)
forall (x,y,z) € B(C,R).

Integrating this inequality on B (C,R) and taking into account that the equality (2.2)
holds, we get

/ / /B (C’R)f (x,y,2) dxdydz > f (a, b, c) / / /B on dxdydz = v (B(C,R))f (a,b,c)

That is, the first inequality in (2.1).
To prove the second part of the inequality (2.1), let us consider the transformation
T, : R — R3 given by:

T (r,w,0) := (rcosycos @ + a,rcosysin@ + b, rsiny + c) .

It is well known that the Jacobian of 7> is

J(T») = r* cos y



180 S. S. DRAGOMIR

and T; is a one-to-one mapping defined on the interval of R?, [0, R] x [—%, %] x[0,2m],
with values in the ball B (C,R) from R3. Thus we have the change of variable:

I = /// f (x,y,2) dxdydz
B(C.R)

R rZ 2
= / / / [f (rcoswcos @+ a,rcosysin@ + b, rsiny + ¢)
o J-zJo
x 1% cos | drdydg.
Now, let us observe that for (r, w, ) € [0,R] x [—%, %] x [0,271] we have

f (rcosycos @+ a,rcosysin@ + b, rsiny + c)
=f [(1 - E’Z) (a,b,c) + E’Z (Rcos ycos® + a,Rcos ysin @ +b,Rsinl//+c)} .
Using the convexity of f on the ball B (C,R) we can state that
f [(lfﬁ) (a,b,c) +£ (R cos W cos @+a, R cos y sin ¢+b, R sin l//+c)}
< (17%2)]” (a,b,c) +£f (R cos y cos 9+a, Rcos v sin +b, Rsiny+c) (2.3)
forall (r,y,9) € [0,R] x [-%,%] x[0,27].

If we multiply this inequality with r*cosy > 0 for (r,y) € [0,R] x [—%,%] and
integrating the obtained inequality on [0, R] x [—%, 2] x [0,27] we derive:

R (Z 27 r
2
I<f (a,b,c)/ / / r*cos Y (1 - —) drdydg
o J-zJo R

1 R % 2n
+E/ / / [r3 cos yf (Rcosl//cos(p+a,Rcosl//sin(p+b,Rsinu/+c)] drdydo
o J-zJo
7R3
:Tf (a,b,c) +Ja (24)
where

R3 % 2n
J:= Z/ / cos yf (Rcosycos @ + a,Rcosysin@ + b, Rsiny + ¢) dyde.
—z Jy
2

Now, let us compute the surface integral of the first type

K= // F (63,2 dS,
S(C,R)

S(C,R) := {(x,y,z) €R3’(x—a)2+(yfb)2+(z—c)2:RZ}.

where
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If we consider the parametrization of S (C,R) given by:

x=Rcosycosp+a -
S(C,R):{ y=Rcosysing+b ;(y,¢)€ [—E,ﬂ x [0, 2]

z=Rsiny +c¢
and putting
o 2
A= %“v’ dgg = —R?cos’ y cos 0,
9 g
o o
B:=| % % | =R’ cos’ ysing,
a9 9
and
ox Oy
C:= %"; a:y = —R%siny cos y,
9 ¢

then we have that

A2+ B* + C* =R*cos’ y forall (v, ) € [77—;,%} x [0,2m] .

K = //S(C’R)f (x,y,2)dS

z 21
= /2 [f (Rcosycos@®+ a,Rcosysin@ + b, Rsiny + c)
><\/A2+BZ+C2} dydg

z 2
= Rz/ / cos Yf (Rcosycos® +a,Rcosysin@ + b, Rsiny + ¢) dydo.
—-ZJo
2

Consequently, using the above notations, we deduce: J = %K.
Now, using the inequality (2.4) we get

R3 R
I<£#m¢@+—// £ (x,,2) dS. (2.5)
3 4 JJscr

If we divide this inequality by v (B(C,R)) = @ , we get the following inequality
which is interesting in itself:

m ///B(Cﬂ)f (x, ¥, z) dxdydz

1 3 1
< Zf (a,b,c) + Z . m //S(C’R)f (X,y, Z) ds. (26)
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Now, taking into account that we proved the inequality
1
b,¢c) K —=—=5= ,¥,2) dxdydz,
f (a,b,c) VBC.R) /CR>f(xyZ) xdydz

then, from ( , we derive

3 // 3 1
f(x,y,2) dxdydz < = - —7/ f(x,y,2)dS
4 v( C R) B(CR) 4 o(B(C,R)) JJsccr ( )

That is, the second part of the inequality (2.1).
The proof of the theorem is thus completed.

3. Some mappings connected to Hadamard’s inequality

As above, assume that the mapping f : B (C,R) — R is a convex mapping on the
ball B(C,R) centered at the point C = (a,b,c) € R* and having the radius R > 0.
Consider the mapping H : [0, 1] — R associated with the function f and given by:

1
H([) = W ///B:(Cﬂ)f (l ()C,y,Z) + (1 — t) C) dxdydz

which is well defined for all ¢ € [0, 1].
The following theorem contains the main properties of this mapping.
THEOREM 2. With the above assumption, we have:
(i) The mapping H is convex on [0,1];
(ii) One has the bounds:

inf H (1) = H(0) = f (C) (3.1)
t€0,1]
and
1
ré%ﬁ]H(t) =H(1) = VIB(C.R) // B(C’R)f (x, ¥, 2) dxdydz; (32)

(iii) The mapping H is monotonic nondecreasing on [0, 1].

Proof. (i) Let 11,5, € [0,1] and a, > 0 with  + 8 = 1. Then we have:

H(at1+l3t2)
/// f (@l (ny.2) + (1-1)C]
CR
[ (x,y,2) + (1 — 12) C]) dxdydz

// £ (6 (x,32) + (1 — 1) C) ddydz
CR

B ///CRf b (%, 3,2) + (1 — 1) C) dxdydz

H(t1)+ﬁH(

//\
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which proves the convexity of f on [0, 1].
(if) . We will prove the following identity:

1
H(l) = W ///B(C’IR)f ()C,y,Z) dxdydz (33)

forall 7 € [0,1].
Fix ¢ in [0, 1] and consider the mapping g = (y, n, u) : R* — R? given by

¥ (x,y,2) =tx+ (1 —1)a
ny,2) =ty+(1=0b ,(xy2) R
wxyz)=1z+(1-1)c

We have:

‘D(w,n,u) 3

D(x,,2)
and g (B(C,R)) = B(C,R). Indeed

‘_t

2 2

(W—al + =6+ —cf =2 [(x—af + (b = b)’ + 2= o] < PR

which shows that (y,n,u) € B(C,R), and, conversely, for (y,n,u) € B(C,tR)
there exists (x,y,z) € B(C,R) such that g (x,y,z) = (w,n,u). So, g is a one-to-one
mapping and we have the following change of variable:

/// f (w,n,u)dydndu
B(C,tR)

_///B(C,R)f (‘I/()ﬁy,z),n(x7y7z)’“(x’y’z))’%
= ///B(C,R)f (t(x,y,2) + (1 — 1) C) Pdxdydz

and the equality (3.3) is proved.
Now, by the first inequality in (2.1) we get:

dxdydz

1
v(B(C.1R) /! /B<c,,R>f (.7, 2) dxdyds 2 f (C)

which givesus H (t) > f (C) forall ¢ € [0,1]. Since H (0) = f (C), we obtain the
bound (3.1).
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By the convexity of / on the ball B (C,R) we have:
HO) < S /// [ (x,3,2) + (1= 1)f (C)) dxdyds
- TEEE / | [ v ddsiz s (1 =01 (©)
I*t // Cfoy, 2) dxdydz

W// g(qR)f (x, ¥, 2) dxdydz.

1
H(l)= STBCED BCR) // B(C’R)f (x,y, z) dxdydz,

the bound (3.2) holds.
(iii) Let 0 < #; < 1 < 1. Thus, by the convexity of the mapping H we have

/N

As we have

H(n)—H(@n) _ H(n)—H(0)

> =0
h—0n 141

as we proved that H (¢;) > H (0) for all #; € [0, 1]; and the monotonicity of H is
established.
O

Further on, we shall introduce another mapping connected to Hadamard’s inequal-
ity:
1 .
—r s dsifr e (0,1)
h:[0,1] = R, A(t) :=q OBECHR) Hsem ! (y:2) ’
0.1 = R h (1) { f(0)ifr=0

where f : B(C,R) — R is a convex mapping on the ball B(C, R) centered at the point
C = (a,b,c) and having the radius R and S (C, R) is the sphere:

S(C,R) := {(x,y,z) R’ (x—a) '+ —b’+(z—c) = RZ} .
The main properties of this mapping are embodied in the following theorem:

THEOREM 3. With the above assumptions, one has:

(i) The mapping h:[0,1] — R is convex on [0,1];
(ii) One has the bounds:

teif(l)f”h(f) =h(0)=f(C) (3.4)
and
rgl[ga)l]h() A CR)/SCfoy7 (3-5)
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(iii) The mapping h is monotonic nondecreasing on [0,1];
(iv) We have the inequality:

H(t) < h(t) forallt € [0,1].
Proof. For afixed ¢ in (0, 1] consider the surface:

x =1tRcosycos@+a T
S(C,tR):{ y=1tRcosysinp+b ;(y,p)c {—5 —} [0,2m].
Z=1tRsiny +c¢

As in the proof of Theorem 1, we get the equality:
- [[ s
S(CtR)
= R?
2
/ / cos Yf (fRcos ycos @ + a,tRcos ysin @ + b, tRsin ¥ + ¢) dyde.
z Jo
2

Thus,

1
h = —
(x) 422 R2 //s(c,tR)f (.7, 2)dS

1 % 2
i / / cos yf (¢ (Rcos ycos @, Rcos ysin @, Rsiny) + C)dyd
—z Jo
2

forall r € (0,1].
Using this representation of the mapping & we can prove the following statements:
(i) Let t1,1, € [0,1] and o, B > O with o + 8 = 1. Then, by the convexity of

f, we get that:
h (Ofll + 5l1)

2n
/ / f o (t (Rcosycos @, Rcosysin@,Rsiny) + C)

5

B (2 (Rcos u/ cos @, R cos v sin @, Rsin ) + C)] cos wdydo

%
—/ f t1 (R cos y cos @, R cos y sin @, Rsin ) + C] cos wdyde

2
+p - i / f [t2 (Rcos ycos @, Rcos ysin @, Rsin y) + C| cos wdydo
- Jo
2
=ah(t1) + Bh (1)

which proves the convexity of 4.
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(iv) In the above theorem we proved between other, that

1
10 = Sty e 0040

forall 7 € (0,1].
By Hadamard’s inequality (2.1) applied for the ball B (C tR) we have:

m ///B(C,tR)f (82,2) dudydz < C IR) //cm (x,7,2)dS

from where we get the inequality
H(t) < h(r) forallt € (0,1].
(0

As it is easy to see that H (0) = h (0) = f (C), the statement is thus proved.
(ii) The bound (3.4) follows by the above considerations and we shall omit the

details.
By the convexity of f on the ball B (C,R) we have:

1 z 2
h(t)zﬁ/l/o f (#[(Rcos y cos @, Rcos y sin @, Rsin y) + C]
2
+ (1 — 1) C) cos ywdydg

z 2

l‘ 2

—/ f (Rcosycos @+ a,Rcosysin@ + b, Rsiny + ¢) cos ydydo
—z Jo

1 % 2
+(1-0f (C)E/n/o cos wdyd
—2

z 2n
:L/ f (Rcosycos @+ a,Rcosysin@ + b, Rsiny + ¢) cos ydyde
-z Jo
+ ({1 =0f(C)
th()+(1—0)f (C)<th(1)+ (1 —1)h (1) =h(1)

as f (C) < h(r) forall r € [0,1]. Thus, the bound (3.5) is proved.
(iii) Follows as in the proof of Theorem 2, and we omit the details.
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