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ON HADAMARD’S INEQUALITY FOR THE CONVEX MAPPINGS

DEFINED ON A BALL IN THE SPACE AND APPLICATIONS

S. S. DRAGOMIR

(communicated by T. Rassias)

Abstract. In this paper we point out an inequality of Hadamard’s type for triple integrals which
works for convex functions defined on a ball from the space. Some mappings naturally connected
with this inequality and related results are also pointed out.

1. Introduction

Let f : I ⊆ R → R be a convexmapping defined on the interval I of real numbers
and a, b ∈ I with a < b . The following double inequality:

f

(
a + b

2

)
� 1

b − a

∫ b

a
f (x) dx � f (a) + f (b)

2
(1.1)

is known in the literature as Hadamard’s inequality for convex mappings. Note that
some of the classical inequalities for means can be derived from (1.1) for appropriate
particular selections of the mapping f .

In the paper [4] (see also [5] and [9]) is considered the following mapping naturally
connected to Hadamard’s result:

H : [0, 1] → R, H (t) =
1

b − a

∫ b

a
f

(
tx + (1 − t)

a + b
2

)
dx.

The following properties are also proved:

(h) H is convex and monotonic nondecreasing.
(hh) One has the bounds

sup
t∈[0,1]

H (t) = H (1) =
1

b − a

∫ b

a
f (x) dx

and

inf
t∈[0,1]

H (t) = H (0) = f

(
a + b

2

)
.
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Anothermapping also closely connected toHadamard’s inequality is the following
one [5] (see also [9]):

F : [0, 1] → R, F (t) :=
1

(b − a)2

∫ b

a

∫ b

a
f (tx + (1 − t) y) dxdy.

The properties of this mapping are the following ones:
(f ) F is convex and monotonic nonincreasing on

[
0, 1

2

]
and nondecreasing on[

1
2 , 1

]
;

(f f ) F is symmetrical relating the element 1
2 . That is,

F (t) = F (1 − t) for all t ∈ [0, 1] ;

(f f f ) One has the bounds

sup
t∈[0,1]

F (t) = F (0) = F (1) =
1

b − a

∫ b

a
f (x) dx

and

inf
t∈[0,1]

F (t) = F

(
1
2

)
=

1

(b − a)2

∫ b

a

∫ b

a
f

(
x + y

2

)
dxdy � f

(
a + b

2

)
;

(f f f f ) The following inequality holds:

F (t) � max {H (t) , H (1 − t)} for all t ∈ [0, 1] .

In this paper we will point out a similar inequality to Hadamard’s one that will
work for convex mappings defined on a closed ball from the space R

3. We will also
consider some mappings similar in a sense to the mappings H and F and establish
their main properties.

For recent refinements, counterparts, generalizations and new Hadamard’s type
inequalities, see the papers [1]-[12] and [14]-[15] and the book [13].

2. Hadamard’s inequality

In this section we will point out some inequalities of Hadamard’s type for convex
functions defined on the ball B̄ (C, R) , where C = (a, b, c) ∈ R

3, R > 0 and

B̄ (C, R) :=
{

(x, y, z) ∈ R
3
∣∣ (x − a)2 + (y − b)2 + (z − c)2 � R2

}
.

The following theorem holds:

THEOREM 1. Let f : B̄ (C, R) → R be a convex mapping on the ball B̄ (C, R) .
Then we have the inequality:

f (a, b, c) � 1
ν (B̄ (C, R))

∫∫∫
B̄(C,R)

f (x, y, z) dxdydz

� 1
σ (B̄ (C, R))

∫∫
S(C,R)

f (x, y, z) ds (2.1)
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where

S (C, R) :=
{

(x, y, z) ∈ R
3
∣∣ (x − a)2 + (y − b)2 + (z − c)2 = R2

}

and

ν (B̄ (C, R)) =
4πR3

3
, σ (B̄ (C, R)) = 4πR2.

Proof. To prove the first inequality in (2.1) , let us consider the transformation:

T1 : R
3 → R

3, T1 (u, v, w) = (2a − u, 2b− v, 2c − w) .

It is easy to see that the Jacobian of T1 is

J (T1) = det

∣∣∣∣∣∣
−1 0 0
0 −1 0
0 0 −1

∣∣∣∣∣∣ = −1,

and T1 is a one-to-one mapping which transforms the ball B̄ (C, R) in itself. Then we
have the change of variable:
∫∫∫

B̄(C,R)
f (x, y, z) dxdydz =

∫∫∫
B̄(C,R)

f (2a − u, 2b − v, 2c − w) |J (T1)| dudvdw

=
∫∫∫

B̄(C,R)
f (2a − x, 2b − y, 2c− z) dxdydz. (2.2)

Now, by the convexity of f on the ball B̄ (C, R) , we have:

1
2

[f (x, y, z) + f (2a − x, 2b − y, 2c − z)] � f (a, b, c)

for all (x, y, z) ∈ B̄ (C, R) .
Integrating this inequality on B̄ (C, R) and taking into account that the equality (2.2)
holds, we get

∫∫∫
B̄(C,R)

f (x, y, z) dxdydz � f (a, b, c)
∫∫∫

B̄(C,R)
dxdydz = ν (B̄ (C, R)) f (a, b, c)

That is, the first inequality in (2.1) .
To prove the second part of the inequality (2.1) , let us consider the transformation
T2 : R

3 → R
3 given by:

T2 (r,ψ ,ϕ) := (r cosψ cosϕ + a, r cosψ sinϕ + b, r sinψ + c) .

It is well known that the Jacobian of T2 is

J (T2) = r2 cosψ
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and T2 is a one-to-onemapping defined on the interval of R
3, [0, R]×[− π

2 , π
2

]×[0, 2π] ,
with values in the ball B̄ (C, R) from R

3. Thus we have the change of variable:

I :=
∫∫∫

B̄(C,R)
f (x, y, z) dxdydz

=
∫ R

0

∫ π
2

− π
2

∫ 2π

0
[f (r cosψ cosϕ + a, r cosψ sinϕ + b, r sinψ + c)

× r2 cosψ
]
drdψdϕ.

Now, let us observe that for (r,ψ ,ϕ) ∈ [0, R] × [− π
2 , π

2

] × [0, 2π] we have

f (r cosψ cosϕ + a, r cosψ sinϕ + b, r sinψ + c)

= f
[(

1 − r
R

)
(a, b, c) +

r
R

(R cosψ cosϕ + a, R cosψ sinϕ + b, R sinψ + c)
]
.

Using the convexity of f on the ball B̄ (C, R) we can state that

f
[(

1− r
R

)
(a, b, c)+

r
R

(R cosψ cosϕ+a, R cosψ sinϕ+b, R sinψ+c)
]

�
(
1− r

R

)
f (a, b, c)+

r
R

f (R cosψ cosϕ+a, R cosψ sinϕ+b, R sinψ+c) (2.3)

for all (r,ψ ,ϕ) ∈ [0, R] × [− π
2 , π

2

] × [0, 2π] .
If we multiply this inequality with r2 cosψ � 0 for (r,ψ) ∈ [0, R] × [− π

2 , π
2

]
and

integrating the obtained inequality on [0, R] × [− π
2 , π

2

] × [0, 2π] we derive:

I� f (a, b, c)
∫ R

0

∫ π
2

− π
2

∫ 2π

0
r2 cosψ

(
1 − r

R

)
drdψdϕ

+
1
R

∫ R

0

∫ π
2

− π
2

∫ 2π

0

[
r3 cosψ f (R cosψ cosϕ + a, R cosψ sinϕ + b, R sinψ + c)

]
drdψdϕ

=
πR3

3
f (a, b, c) + J, (2.4)

where

J :=
R3

4

∫ π
2

− π
2

∫ 2π

0
cosψ f (R cosψ cosϕ + a, R cosψ sinϕ + b, R sinψ + c) dψdϕ.

Now, let us compute the surface integral of the first type

K :=
∫∫

S(C,R)
f (x, y, z) dS,

where

S (C, R) :=
{

(x, y, z) ∈ R
3
∣∣ (x − a)2 + (y − b)2 + (z − c)2 = R2

}
.
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If we consider the parametrization of S (C, R) given by:

S (C, R) :

⎧⎨
⎩

x = R cosψ cosϕ + a
y = R cosψ sinϕ + b
z = R sinψ + c

; (ψ ,ϕ) ∈
[
−π

2
,
π
2

]
× [0, 2π]

and putting

A :=

∣∣∣∣∣
∂y
∂ψ

∂z
∂ψ

∂y
∂ϕ

∂z
∂ϕ

∣∣∣∣∣ = −R2 cos2 ψ cosϕ,

B :=

∣∣∣∣∣
∂x
∂ψ

∂z
∂ψ

∂x
∂ϕ

∂z
∂ϕ

∣∣∣∣∣ = R2 cos2 ψ sinϕ,

and

C :=

∣∣∣∣∣
∂x
∂ψ

∂y
∂ψ

∂x
∂ϕ

∂y
∂ϕ

∣∣∣∣∣ = −R2 sinψ cosψ ,

then we have that

A2 + B2 + C2 = R4 cos2 ψ for all (ψ ,ϕ) ∈
[
−π

2
,
π
2

]
× [0, 2π] .

Thus,

K =
∫∫

S(C,R)
f (x, y, z) dS

=
∫ π

2

− π
2

∫ 2π

0
[f (R cosψ cosϕ + a, R cosψ sinϕ + b, R sinψ + c)

×
√

A2 + B2 + C2
]
dψdϕ

= R2
∫ π

2

− π
2

∫ 2π

0
cosψ f (R cosψ cosϕ + a, R cosψ sinϕ + b, R sinψ + c) dψdϕ.

Consequently, using the above notations, we deduce: J = R
4 K.

Now, using the inequality (2.4) we get

I � πR3

3
f (a, b, c) +

R
4

∫∫
S(C,R)

f (x, y, z) dS. (2.5)

If we divide this inequality by ν (B̄ (C, R)) = 4πR3

3 , we get the following inequality
which is interesting in itself:

1
ν (B̄ (C, R))

∫∫∫
B̄(C,R)

f (x, y, z) dxdydz

� 1
4
f (a, b, c) +

3
4
· 1
σ (B̄ (C, R))

∫∫
S(C,R)

f (x, y, z) dS. (2.6)
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Now, taking into account that we proved the inequality

f (a, b, c) � 1
ν̄ (B̄ (C, R))

∫∫
B̄(C,R)

f (x, y, z) dxdydz,

then, from (2.6) , we derive

3
4
· 1
ν (B̄ (C, R))

∫∫∫
B̄(C,R)

f (x, y, z) dxdydz � 3
4
· 1
σ (B̄ (C, R))

∫∫
S(C,R)

f (x, y, z) dS.

That is, the second part of the inequality (2.1) .
The proof of the theorem is thus completed.

�

3. Some mappings connected to Hadamard’s inequality

As above, assume that the mapping f : B̄ (C, R) → R is a convex mapping on the
ball B̄ (C, R) centered at the point C = (a, b, c) ∈ R

3 and having the radius R > 0 .
Consider the mapping H : [0, 1] → R associated with the function f and given by:

H(t) :=
1

ν (B̄ (C, R))

∫∫∫
B̄(C,R)

f (t (x, y, z) + (1 − t) C) dxdydz

which is well defined for all t ∈ [0, 1] .
The following theorem contains the main properties of this mapping.

THEOREM 2. With the above assumption, we have:
(i) The mapping H is convex on [0, 1] ;
(ii) One has the bounds:

inf
t∈[0,1]

H (t) = H (0) = f (C) (3.1)

and

sup
t∈[0,1]

H (t) = H (1) =
1

ν̄ (B̄ (C, R))

∫∫∫
B̄(C,R)

f (x, y, z) dxdydz; (3.2)

(iii) The mapping H is monotonic nondecreasing on [0, 1] .

Proof. (i) Let t1, t2 ∈ [0, 1] and α, β � 0 with α + β = 1. Then we have:

H (αt1 + β t2)

=
1

ν (B̄ (C, R))

∫∫∫
B̄(C,R)

f (α [t1 (x, y, z) + (1 − t1) C]

+ β [t2 (x, y, z) + (1 − t2) C]) dxdydz

� α · 1
ν (B̄ (C, R))

∫∫∫
B̄(C,R)

f (t1 (x, y, z) + (1 − t1) C) dxdydz

+β · 1
ν (B̄ (C, R))

∫∫∫
B̄(C,R)

f (t2 (x, y, z) + (1 − t2) C) dxdydz

= αH (t1) + βH (t2)
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which proves the convexity of f on [0, 1] .
(ii) . We will prove the following identity:

H (t) =
1

t3ν (B̄, C)

∫∫∫
B̄(C,tR)

f (x, y, z) dxdydz (3.3)

for all t ∈ [0, 1] .
Fix t in [0, 1] and consider the mapping g = (ψ ,η,μ) : R

3 → R
3 given by

⎧⎨
⎩

ψ (x, y, z) = tx + (1 − t) a
η (x, y, z) = ty + (1 − t) b
μ (x, y, z) = tz + (1 − t) c

, (x, y, z) ∈ R
3.

We have: ∣∣∣∣D (ψ ,η,μ)
D (x, y, z)

∣∣∣∣ = t3

and g (B̄ (C, R)) = B̄ (C, R) . Indeed

(ψ − a)2 + (η − b)2 + (μ − c)2 = t2
[
(x − a)2 + (y − b)2 + (z − c)2

]
� t2R2

which shows that (ψ ,η,μ) ∈ B̄ (C, R) , and, conversely, for (ψ ,η,μ) ∈ B̄ (C, tR)
there exists (x, y, z) ∈ B̄ (C, R) such that g (x, y, z) = (ψ ,η,μ) . So, g is a one-to-one
mapping and we have the following change of variable:

∫∫∫
B̄(C,tR)

f (ψ ,η,μ) dψdηdμ

=
∫∫∫

B̄(C,R)
f (ψ (x, y, z) ,η (x, y, z) ,μ (x, y, z))

∣∣∣∣D (ψ ,η,μ)
D (x, y, z)

∣∣∣∣ dxdydz

=
∫∫∫

B̄(C,R)
f (t (x, y, z) + (1 − t) C) t3dxdydz

and the equality (3.3) is proved.
Now, by the first inequality in (2.1) we get:

1
ν (B̄ (C, tR))

∫∫∫
B̄(C,tR)

f (x, y, z) dxdydz � f (C)

which gives us H (t) � f (C) for all t ∈ [0, 1] . Since H (0) = f (C) , we obtain the
bound (3.1) .
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By the convexity of f on the ball B̄ (C, R) we have:

H (t) � 1
ν (B̄ (C, R))

∫∫∫
B̄(C,R)

[tf (x, y, z) + (1 − t) f (C)] dxdydz

=
t

ν (B̄ (C, R))

∫∫∫
B̄(C,R)

f (x, y, z) dxdydz + (1 − t) f (C)

� t
ν (B̄ (C, R))

∫∫∫
B̄(C,R)

f (x, y, z) dxdydz

+
1 − t

ν (B̄ (C, R))

∫∫∫
B̄(C,R)

f (x, y, z) dxdydz

=
1

ν (B̄ (C, R))

∫∫∫
B̄(C,R)

f (x, y, z) dxdydz.

As we have

H (1) =
1

ν (B̄ (C, R))

∫∫∫
B̄(C,R)

f (x, y, z) dxdydz,

the bound (3.2) holds.
(iii) Let 0 � t1 < t2 � 1. Thus, by the convexity of the mapping H we have

H (t2) − H (t1)
t2 − t1

� H (t1) − H (0)
t1

� 0

as we proved that H (t1) � H (0) for all t1 ∈ [0, 1] ; and the monotonicity of H is
established.

�
Further on, we shall introduce another mapping connected to Hadamard’s inequal-

ity:

h : [0, 1] → R, h (t) :=
{ 1

σ(B̄(C,tR))

∫∫
S(C,tR) f (x, y, z) dS if t ∈ (0, 1]

f (C) if t = 0

where f : B̄ (C, R) → R is a convex mapping on the ball B̄ (C, R) centered at the point
C = (a, b, c) and having the radius R and S (C, R) is the sphere:

S (C, R) :=
{

(x, y, z) ∈ R
3
∣∣ (x − a)2 + (y − b)2 + (z − c)2 = R2

}
.

The main properties of this mapping are embodied in the following theorem:

THEOREM 3. With the above assumptions, one has:

(i) The mapping h : [0, 1] → R is convex on [0, 1] ;
(ii) One has the bounds:

inf
t∈[0,1]

h (t) = h (0) = f (C) (3.4)

and

sup
t∈[0,1]

h (t) = h (1) =
1

σ (B̄ (C, R))

∫∫
S(C,R)

f (x, y, z) dS; (3.5)
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(iii) The mapping h is monotonic nondecreasing on [0, 1] ;
(iv) We have the inequality:

H (t) � h (t) for all t ∈ [0, 1] .

Proof. For a fixed t in (0, 1] consider the surface:

S (C, tR) :

⎧⎨
⎩

x = tR cosψ cosϕ + a
y = tR cosψ sinϕ + b
z = tR sinψ + c

; (ψ ,ϕ) ∈
[
−π

2
,
π
2

]
× [0, 2π] .

As in the proof of Theorem 1, we get the equality:

K =
∫∫

S(C,tR)
f (x, y, z) dS

= t2R2

×
∫ π

2

− π
2

∫ 2π

0
cosψ f (tR cosψ cosϕ + a, tR cosψ sinϕ + b, tR sinψ + c) dψdϕ.

Thus,

h (t) =
1

4t2π2R2

∫∫
S(C,tR)

f (x, y, z) dS

=
1
4π

∫ π
2

− π
2

∫ 2π

0
cosψ f (t (R cosψ cosϕ, R cosψ sinϕ, R sinψ) + C) dψdϕ

for all t ∈ (0, 1� .
Using this representation of the mapping h we can prove the following statements:

(i) Let t1, t2 ∈ [0, 1] and α, β � 0 with α + β = 1. Then, by the convexity of
f , we get that:

h (αt1 + β t1)

=
1
4π

∫ π
2

− π
2

∫ 2π

0
f [α (t1 (R cosψ cosϕ, R cosψ sinϕ, R sinψ) + C)

+ β (t2 (R cosψ cosϕ, R cosψ sinϕ, R sinψ) + C)] cosψdψdϕ

�α · 1
4π

∫ π
2

− π
2

∫ 2π

0
f [t1 (R cosψ cosϕ, R cosψ sinϕ, R sinψ) + C] cosψdψdϕ

+β · 1
4π

∫ π
2

− π
2

∫ 2π

0
f [t2 (R cosψ cosϕ, R cosψ sinϕ, R sinψ) + C] cosψdψdϕ

=αh (t1) + βh (t1)

which proves the convexity of h.
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(iv) In the above theorem we proved between other, that

H (t) =
1

ν (B̄ (C, tR))

∫∫∫
B̄(C,tR)

f (x, y, z) dxdydz

for all t ∈ (0, 1] .
By Hadamard’s inequality (2.1) applied for the ball B̄ (C, tR) we have:

1
ν (B̄ (C, tR))

∫∫∫
B̄(C,tR)

f (x, y, z) dxdydz � 1
σ (B̄ (C, tR))

∫∫
S(C,tR)

f (x, y, z) dS

from where we get the inequality

H (t) � h (t) for all t ∈ (0, 1] .

As it is easy to see that H (0) = h (0) = f (C) , the statement is thus proved.
(ii) The bound (3.4) follows by the above considerations and we shall omit the

details.
By the convexity of f on the ball B̄ (C, R) we have:

h (t)=
1
4π

∫ π
2

− π
2

∫ 2π

0
f (t [(R cosψ cosϕ, R cosψ sinϕ, R sinψ) + C]

+ (1 − t) C) cosψdψdϕ

� t
4π

∫ π
2

− π
2

∫ 2π

0
f (R cosψ cosϕ + a, R cosψ sinϕ + b, R sinψ + c) cosψdψdϕ

+ (1 − t) f (C)
1
4π

∫ π
2

− π
2

∫ 2π

0
cosψdψdϕ

=
t

4π

∫ π
2

− π
2

∫ 2π

0
f (R cosψ cosϕ + a, R cosψ sinϕ + b, R sinψ + c) cosψdψdϕ

+ (1 − t) f (C)
= th (1) + (1 − t) f (C) � th (1) + (1 − t) h (1) = h (1)

as f (C) � h (t) for all t ∈ [0, 1] . Thus, the bound (3.5) is proved.
(iii) Follows as in the proof of Theorem 2, and we omit the details.

�
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