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DIFFERENTIAL AND INTEGRAL f –MEANS

AND APPLICATIONS TO DIGAMMA FUNCTION

NEVEN ELEZOVIĆ AND JOSIP PEČARIĆ

(communicated by A. Laforgia)

Abstract. Some basic comparaison theorems between two elementary means — differential and
integral f -mean are obtained. This theorems are applied to digamma function.

1. Introduction

Let I ⊂ R be an open interval, f : I → R convex (or concave) differentiable
function, s, t ∈ I . Then there exists the unique α ∈ [s, t] for which

f ′(α) =
f (t) − f (s)

t − s
.

α is called differential f -mean of s and t , and denoted by

Df = Df (s, t) := (f ′)−1

(
f (t) − f (s)

t − s

)
. (1)

If f : I → R is (strictly) monotone, then there exists the unique β ∈ [s, t] for
which

1
t − s

∫ t

s
f (u)du = f (β).

β is called integral f -mean of s and t , and denoted by

If = If (s, t) = f −1

(
1

t − s

∫ t

s
f (u)du

)
. (2)

Obviously, for convex (or concave) differentiable function f , it holds

If ′ = Df . (3)
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EXAMPLE 1. For the convenience of the reader let us give some example of differ-
ential and integral f -means.

f (x) = x, Ix(s, t) =
s + t

2
= A(s, t),

f (x) =
1
x
, D1/x(s, t) =

√
st = G(s, t),

f (x) =
1
x
, I1/x(s, t) =

s − t
log s − log t

= L(s, t),

f (x) = log x, Ilog(s, t) =
1
e

(
tt

ss

) 1
t−s

= I(s, t),

f (x) = xr−1, r �= 1 Dxr−1(s, t) =
(

tr − sr

r(t − s)

) 1
r−1

= Lr(s, t),

where A , G , L , I and Lr are arithmetic, geometric, logarithmic, identric and gener-
alized logarithmic mean.

From the first example it is clear that differential and integral f -means are quite
elementary. But, it seems that their properties are not studied in details, and some of the
known results are obtained rather as special cases of more general results. The purpose
of this elementary note is to give a general view to the connection between differential
and integral means.

Integral f -mean (in our notation) is a special case of M -quasi arithmetic mean
defined in [3] by

M−1

(∫
M(f (u))dμ(u)

)
,

where function M being specified, to be (say) M(x) = 1/x , r -th power, logarithmic
function etc. We shall instead regard this mean for general function M and f (x) = x .

We shall derive some monotonicity properties and elementary comparaison the-
orem between D and I . General theorems will be applied to the case of digamma
function. The apeareance of this paper is motivated by theorems given in [5] in the same
journal.

2. Comparaison theorems

We start with the following theorem which is well known (see e.g. [4]), and its
proof is an easy consequence of Jensen inequality.

THEOREM A. Let f , g : I → R be strictly monotonic. If
(i) f is increasing, and
(ii) f ◦ g−1 is convex, then

Ig � If . (5)
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REMARK 1. If (ii) is satisfied, then one says that f is convex with respect to
g [4]. If one of the conditions (i) or (ii) changes to the opposite property, then the
inequality sign in (5) also changes. Therefore, if (ii) is satisfied and f is decreasing,
then Ig � If . Also, (5) holds for decreasing function f for which f ◦ g−1 is concave,
etc.

H. Alzer [2] proved that for strictly increasing function g such that 1/g−1 is
convex, it holds

g(L(a, b)) � 1
b − a

∫ b

a
g(x)dx.

It is obvious that this result follows from Lemma A by choosing f (x) = 1/x , since for
this function we have

Lf (a, b) =
[

1
b − a

∫ b

a

1
x
dx

]−1

= L(a, b).

In [6] generalization of this result is proved for identric and generalized logarithmic
mean: if x �→ f (x1/(r−1)) is convex, then

f (Lr(s, t)) � 1
t − s

∫ t

s
f (u)du,

and if x �→ f (ex) is convex, then

f (I(s, t)) � 1
t − s

∫ t

s
f (u)du.

Both inequalities are straighforward applications of Theorem A.
Obviously, one can derive a scale of analogous results for various means by choos-

ing some simple elementary functions. For example,

f (x) = x,
a + b

2
� Ig(a, b), if g−1 is convex,

f (x) = 1/x,
a − b

log a − log b
� Ig(a, b), if 1/g−1 is convex,

f (x) =
1√
x
,

(√
a +

√
b

2

)2

� Ig(a, b), if (g−1)−1/2 is convex,

f (x) = log x,
1
e

(
bb

aa

)1/(b−a)

� Ig(a, b), if log(g−1) is convex,

f (x) = xr−1 (r > 1),
(

br − ar

b − a

)1/(r−1)

� Ig(a, b), if (g−1)r−1 is convex,

etc. Here and elsewhere in this article g−1 denotes the inverse to g .
Another scale of analogous results follows if we specify function g . Let us

note some of them. Suppose f is increasing (the opposite inequalities holds if f is
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decreasing):

g(x) = x,
a + b

2
� If (a, b), if f is convex,

g(x) = 1/x, L(a, b) � If (a, b), if f (1/x) is convex,

g(x) = log x,
1
e

(
bb

aa

)1/(b−a)

� If (a, b), if f (ex) is convex,

g(x) = xr−1 (r > 1),
(

br − ar

r(b − a)

)1/(r−1)

� If (a, b), if f (x1/(r−1)) is convex.

It is interesting to derive an elementary criterion for convexity of f ◦ g−1 . The
following theorem is a slight generalization of Theorem 1. [4]:

THEOREM 1. Let f , g ∈ C(2)(I) . Suppose:
(i) g is decreasing,
(ii) g′/f ′ is increasing.

Then f is convex with respect to g .

Proof. For the function h = f ◦ g−1 we have

h′′(x) =
1

g′(g−1(x))

(
f ′(g−1(x))
g′(g−1(x))

)′

and theorem follows.

Adequate statement holds if some of the properties from (i)– (ii) changes to the
opposite one.

In [4] it is additionally supposed that f is increasing function.

Using Theorem A, we can compare integral means:

THEOREM 2. Let f , g ∈ C(2)(I) , f and g be monotone functions. Suppose:
(i) f is increasing,
(ii) g is decreasing,
(iii) g′/f ′ is increasing.

Then
Ig � If . (6)

The choice g = f ′ leads to the comparaison theorem between differential and
integral f -mean.

THEOREM 3. Let f ∈ C(2)(I) satisfies
(i) f is increasing,
(ii) f is concave,
(iii) f ′′/f ′ is increasing.

Then
Df � If . (7)

EXAMPLE. It holds Dcos � Icos , Dsin � Isin , Dlog � Ilog .
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3. Monotonicity results

We shall give a brief motivation. Let us take f (x) = 1/x , x > 0 . Then

f (t) − f (s)
t − s

= f ′(Df ) =⇒ Df =
√

st = G(s, t),

and
1

t − s

∫ t

s
f (u)du = f (If ) =⇒ If =

t − s
log t − log s

= L(s, t).

Since f is decreasing and convex, and f ′′(x)/f ′(x) = −2/x is increasing on (0,∞) ,
by Theorem 3 it follows Df � If . But, it is known that

G(x + s, x + t) ↑ A(x + s, x + t) as x → ∞,

hence
G(x + s, x + t) − x � L(x + s, x + t) − x ↑ A(s, t).

Therefore one may ask when this property holds in general?

THEOREM 4. Let f ∈ C(2)(I) and
(i) f is increasing,
(ii) f ′ is decreasing,
(iii) f ′′/f ′ is increasing.

Then x �→ If (x + s, x + t) − x is increasing.

Proof. Let us denote

h(x) = f −1

(
1

t − s

∫ x+t

x+s
f (u)du

)
− x.

Then

h′(x) =
[
f ′

(
f −1

(
1

t − s

∫ x+t

x+s
f (u)du

))]−1 1
t − s

∫ t

s
f ′(x + u)du − 1

Since f ′ is positive and decreasing, h′(x) > 0 is equivalent to

(f ′)−1

[
f (x + t) − f (x + s)

t − s

]
� f −1

[
1

t − s

∫ x+t

x+s
f (u)du

]

i.e. Df � If , which is true by Theorem 3.

THEOREM 5. Suppose f : I → R satisfies
(i) f is increasing,
(ii) f ′ is decreasing,
(iii) f ′′ is increasing,
(iv) f ′′/f ′ , f ′′′/f ′′ are increasing.
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Then x �→ If (x + s, x + t) is concave.

Proof. Let us denote

I(g) =
1

t − s

∫ t

s
g(x + u)du

and
h(x) = If (x + s, x + t) = f −1(I(f )).

Then

h′ =
1

f ′(h)
· I(f ′),

h′′ = − 1
f ′(h)2

· f ′′(h) · 1
f ′(h)

· I(f ′) +
1

f ′(h)
· I(f ′′)

=
1

f ′(h)3

[
f ′(h)2I(f ′′) − f ′′(h)I(f ′)2

]

Since f is increasing, h′′ � 0 is equivalent to

I(f ′′)
I(f ′)2

� f ′′(h)
f ′(h)2

By Theorem 3, we have Df ′ � If ′ = Df and Df � If . Since f ′′ , f ′′/f ′ and 1/f ′

are increasing,
f ′′(If ′′)
f ′(I′f )2

=
f ′′(Df ′ )
f ′(Df )2

� f ′′(Df )
f ′(Df )2

� f ′′(If )
f ′(If )2

which has to be proved.

COROLLARY 1. Let f : I → R be increasing function such that f ′ is completely
monotonic. Then x �→ If (x + s, x + t) − x is increasing and concave.

Proof. By assumption, properties (i)– (iii) of Theorems 4 and 5 are satisfied. If
ϕ is completely monotonic on I , then

ϕ(k+1)(x)ϕ(k−1)(x) � ϕ(k)(x)2, ∀x ∈ I, k = 1, 2, . . .

and (iv) of Theorem 5 follows.

4. Applications to digamma function

Let us apply preceeding theorems to the digamma function

ψ(x) =
Γ′(x)
Γ(x)

.
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It is known that ψ is increasing concave function. It has the following representation
[1], p. 259:

ψ(x) = −γ +
∞∑

n=0

[
1
n
− 1

n + x − 1

]
, x �= 0,−1,−2, . . .

and it follows
(−1)(k+1)ψ (k)(x) � 0, k = 1, 2, . . .

therefore, ψ ′ is completely monotonic. Hence, ψ ′′/ψ ′ and ψ ′′′/ψ ′′ are increasing.
By Theorem 1, it follows that ψ ◦ (ψ ′)−1 is convex, hence, by Theorem 2,

Dψ � Iψ .

LEMMA 1. We have, for all s, t > 0

ψ
(

t − s
log t − log s

)
� 1

t − s

∫ t

s
ψ(u)du.

Proof. It holds L(s, t) = I1/x(s, t) . Using Theorem A, it is sufficient to prove that
h(x) = ψ(1/x) is convex. We have, for u > 0

1
u3

h′′
(1

u

)
= uψ ′′(u) + 2ψ ′(u) = −2

∞∑
n=0

u
(x + u)3

+ 2
∞∑

n=0

1
(x + u)2

> 0

and Lemma follows.

Hence, we can conclude the following properties of digamma function:

THEOREM 6. For x > 0 digamma function ψ has the properties:
(i) Dψ � Iψ ,
(ii) x �→ Iψ(x + s, x + t) − x is increasing concave function, and

Iψ (x + s, x + t) − x ↑ A(s, t) as x → ∞.

Proof. We have proved that

G(s, t) � L(s, t) � Iψ(s, t).

The statements follows by Corollary 1, and the fact that G(x+s, x+t) ↑ A(x+s, x+t) =
x + A(s, t) as x → ∞ .
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[3] P. S. BULLEN, D. S. MITRINOVIĆ, P. M. VASIĆ, Means and Their Inequalities, D. Reidel Publishing

Company, Dordrecht, 1988.
[4] G. T. CARGO, Comparable means and generalized convexity, J. Math. Anal. Appl. 12 (1965), 387–392.



196 N. ELEZOVIĆ AND J. PEČARIĆ
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