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THE EULER FORMULÆ AND CONVEX FUNCTIONS

LJ. DEDIĆ, C. E. M. PEARCE AND J. PEČARIĆ

(communicated by B. Mond)

Abstract. The Euler midpoint and Euler–Simpson formulæ are used with functions possessing
various convexity and concavity properties to derive inequalities pertinent to numerical integra-
tion.

1. Introduction

One of the cornerstones of nonlinear analysis is the Hadamard inequality, which
states that if [a, b] (a < b) is a real interval and f : [a, b] → R a convex function, then

f

(
a + b

2

)
� 1

b − a

∫ b

a
f (x)dx � f (a) + f (b)

2
. (1.1)

Recently, Dragomir and Agarwal [3] considered the trapezoid formula for numer-
ical integration for functions such that |f ′|q is a convex function for some q � 1 .
Their approach was based on estimating the difference between the two sides of the
right–hand inequality in (1.1). Improvements of their results were obtained in [5]. In
particular, the following tool was established.

Suppose f : I0 ⊆ R → R is differentiable on I0 and that |f ′|q is convex on [a, b]
for some q � 1 , where a, b ∈ I0 (a < b ). Then∣∣∣∣∣ f (a) + f (b)

2
− 1

b − a

∫ b

a
f (x)dx

∣∣∣∣∣ � b − a
4

[ |f ′(a)|q + |f ′(b)|q
2

]1/q

. (1.2)

Some generalizations to higher–order convexity and applications of these results are
given in [2].
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In this paper we consider further related results. The most natural nexus for these
developments would appear to be the well–known Euler formula

f (x) =
1

b − a

∫ b

a
f (t)dt +

n−1∑
k=1

(b − a)k−1

k!
Bk

(
x − a
b − a

)[
f (k−1)(b) − f (k−1)(a)

]

− (b − a)n−1

n!

∫ b

a
f (n)(t)

[
B∗

n

(
x − t
b − a

)
− B∗

n

(
x − a
b − a

)]
dt (1.3)

(see [4, p. 17]), which holds for every x ∈ [a, b] and every function f : [a, b] → R
with n � 2 continuous derivatives. Here Bk(·) k � 0 is the k th Bernoulli polynomial
and Bk = Bk(0) = Bk(1) ( k � 0 ) the k th Bernoulli number. We denote by B∗

k (·)
( k � 0 ) the function of period one with B∗

k (x) = Bk(x) for 0 � x � 1 .
For x = b and n = 2r , (1.3) becomes

f (b) =
1

b − a

∫ b

a
f (t)dt + [f (b) − f (a)] B1

+
2r−1∑
k=2

(b − a)k−1Bk

k!

[
f (k−1)(b) − f (k−1)(a)

]

− (b − a)2r−1

(2r)!

∫ b

a
f (2r)(t)

[
B∗

2r

(
b − t
b − a

)
− B2r

]
dt.

Since B1 = 1/2 and B2j+1 = 0 for j � 1 , this may be rearranged, after a change of
variable to s = (t − a)/(b − a) in the final term, as

f (a) + f (b)
2

=
1

b − a

∫ b

a
f (t)dt +

r−1∑
j=1

(b − a)2j−1B2j

(2j)!

[
f (2j−1)(b) − f (2j−1)(a)

]

− (b − a)2r

(2r)!

∫ 1

0
f (2r)(a + s(b − a)) [B2r (1 − s) − B2r] ds.

Here as subsequently an empty sum (in this case for r = 1 ) is interpreted as zero.
Further, B2r(1−s) = B2r(s) , so we may write this as the Euler trapezoidal formula

∫ b

a
f (x)dx =

b − a
2

[f (a) + f (b)] −
r−1∑
k=1

(b − a)2kB2k

(2k)!

[
f (2k−1)(b) − f (2k−1)(a)

]

+ (b − a)2r+1
∫ 1

0
P2r (s) f

(2r)
(a + s (b − a)) ds,

where Pk(s) := [Bk(s) − Bk] /k! ( k � 1 ). See [1, p. 274].
This has many applications and was the starting point of the analysis in [2], where it

was used to prove some integral inequalities germane to numerical integration. Analysis
based on the trapezoidal formula devolves eventually on finding a method for handling
the uncompromising–looking final term.
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A natural quantity in the analysis in [2] is

Ir := (−1)r

{∫ b

a
f (x)dx − b − a

2
[f (a) + f (b)]

+
r−1∑
k=1

(b − a)2kB2k

(2k)!

[
f (2k−1)(b) − f (2k−1)(a)

]}
.

The results of [2] include in particular the following.

THEOREM 1. Suppose f : [a, b] → R is (2r + 2)–convex. Then

(b − a)2r+1 |B2r|
(2r)!

f (2r)
(

a + b
2

)
� Ir � (b − a)2r+1 |B2r|

(2r)!
f (2r)(b) + f (2r)(a)

2
. (1.4)

If f is (2r + 2)–concave, the inequality is reversed.

THEOREM 2. Suppose f : [a, b] → R is (2r)–times differentiable. If
∣∣f (2r)

∣∣q is
convex for some q � 1 , then

|Ir| � (b − a)2r+1 |B2r|
(2r)!

[∣∣f (2r)(a)
∣∣q +

∣∣f (2r)(b)
∣∣q

2

]1/q

.

If
∣∣f (2r)

∣∣ is concave, then

|Ir| � (b − a)2r+1 |B2r|
(2r)!

∣∣∣∣f (2r)
(

a + b
2

)∣∣∣∣ .
The displayed inequalities are manifestly higher–order cousins of (1.2)
In the next section we take a different path from (1.3), one leading to the Euler

midpoint formula instead of the Euler trapezoidal formula. In place of the function P2r

of the trapezoidal formula, it turns out that we shall have recourse to

p2r(t) = B∗
2r

(
a + b − 2t
2(b − a)

)
− B2r

(
1
2

)
.

We note that this does not change sign on the interval [a, b] and that it is symmetric
about t = (a + b)/2 . Further

(−1)r−1p2r(t) � 0 for t ∈ [a, b].

In Section 3 we explore briefly a third path, one that is associated with the Euler–
Simpson formula.

The reader will have noted an asymmetry between the conditions applying in the
convex and concave cases of Theorem 2. The reason is that if |f (2r)|q is concave for
some q � 1 , then |f (2r)| must also be concave (see [2]). The omission of the index
q in the concave case thus allows a weaker assumption to be made. This motif occurs
also in the present paper.
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2. The Euler midpoint formula

Put x = (a + b)/2 and n = 2r in (1.3). Since B2j+1(1/2) = 0 for j � 0 , we
obtain the Euler midpoint formula

f

(
a + b

2

)
=

1
b − a

∫ b

a
f (t)dt +

r−1∑
k=1

(b − a)k−1

(2k)!
B2k

(
1
2

)[
f (2k−1)(b) − f (2k−1)(a)

]

− (b − a)2r−1

(2r)!

∫ b

a
f (2r)(t)p2r(t)dt. (2.1)

Note that B2k(1/2) = (1 − 21−2k)B2k .
For the sequel we shall utilise

I∗r (a, b) :=(−1)r−1

{ b∫
a

f (x)dx − (b − a)f
(

a + b
2

)

−
r−1∑
k=1

B2k(b − a)2k

(2k)!

(
1 − 1

22k−1

)[
f (2k−1)(b) − f (2k−1)(a)

]}
,

which serves the role assumed by Ir in [2]. Where a fixed interval is understood, we
drop the argument from I∗r .

THEOREM 3. Suppose f : [a, b] → R is (2r + 2)–convex. Then

(b − a)2r+1 |B2r|
(2r)!

(
1 − 1

22r−1

)
f (2r)

(
a + b

2

)

� I∗r � (b − a)2r+1 |B2r|
(2r)!

(
1 − 1

22r−1

)
f (2r)(b) + f (2r)(a)

2
. (2.2)

If f is (2r + 2)–concave, the inequality is reversed.

Proof. We have from (2.1) that

I∗r =(−1)r−1 (b − a)2r

(2r)!

b∫
a

f (2r)(t)p2r(t)dt

=
(b − a)2r

(2r)!

b∫
a

f (2r)(t) |p2r(t)| dt

=
(b − a)2r

(2r)!

b∫
a

f (2r)
(

b − t
b − a

a +
t − a
b − a

b

)
|p2r(t)| dt. (2.3)
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Using the discrete Jensen inequality for the convex function f (2r) , we have

b∫
a

f (2r)
(

b − t
b − a

a +
t − a
b − a

b

)
|p2r(t)| dt

� f (2r)(a)

b∫
a

b − t
b − a

|p2r(t)| dt + f (2r)(b)

b∫
a

t − a
b − a

|p2r(t)| dt.

= f (2r)(a)K1 + f (2r)(b)K2, say. (2.4)

Since p2r(t) is symmetric about t = (a + b)/2 and has constant sign on [a, b],
we have K1 = K2 . On the other hand

K1 + K2 =

b∫
a

|p2r(t)| dt

= (−1)r−1

b∫
a

p2r(t)dt

= (−1)r−1
(
1 − 21−2r

)
(b − a)B2r

=
(
1 − 21−2r

) |B2r| (b − a),

so that

K1 = K2 =
1
2

(
1 − 21−2r

) |B2r| (b − a). (2.5)

The second inequality in (2.2) follows at once from (2.3)–(2.5).
By Jensen’s integral inequality

b∫
a

f (2k)
(

b − t
b − a

a +
t − a
b − a

b

)
|p2r(t)| dt

�

⎛
⎝ b∫

a

|p2r(t)| dt

⎞
⎠ f (2k)

⎛
⎜⎜⎜⎝

b∫
a

(
b−t
b−aa + t−a

b−ab
)
|p2r(t)| dt

b∫
a
|p2r(t)| dt

⎞
⎟⎟⎟⎠

=
(

1 − 1
22r−1

)
|B2r| (b − a)f (2k)

(
a + b

2

)
. (2.6)

The first inequality in (2.2) now derives from (2.3), (2.5) and (2.6).
�

The proof of the following theorem is similar to that of the theorem above and to
that of [2, Theorem 2].
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THEOREM 4. Suppose f : [a, b] → R is (2r) -times differentiable.
(a) If |f (2r)|q is convex for some q � 1 , then

|I∗r | � (b − a)2r+1 |B2r|
(2r)!

(
1 − 1

22r−1

)[∣∣f (2r)(a)
∣∣q +

∣∣f (2r)(b)
∣∣q

2

]1/q

.

(b) If
∣∣f (2r)

∣∣ is concave, then

|I∗r | � (b − a)2r+1 |B2r|
(2r)!

(
1 − 1

22r−1

)∣∣∣∣f (2r)
(

a + b
2

)∣∣∣∣ .
To obtain appropriate results for numerical integration from the Euler midpoint

formula, we apply the results above to each interval of the subdivision

[a, a + b], [a + h, a + 2h], ..., [a + (n − 1)h, a + nh].

Let us denote

T(f ; h) := h

[
1
2
f (a) +

n−1∑
k=1

f (a + kh) +
1
2
f (a + nh)

]
,

M(f ; h) := h
n∑

k=1

f

(
a + kh − h

2

)

and

Hr :=(−1)r−1

{ a+nh∫
a

f (x)dx − M(f ; h)

−
r−1∑
k=1

B2kh2k

(2k)!

(
1 − 1

22k−1

)[
f (2k−1)(a + nh) − f (2k−1)(a)

]}
.

THEOREM 5. (a) If f : [a, a + nh] → R is (2r + 2)–convex, then

h2r |B2r|
(2r)!

(
1 − 1

22r−1

)
M
(
f (2r); h

)
� Hr � h2r |B2r|

(2r)!

(
1 − 1

22r−1

)
T
(
f (2r); h

)
.

(b) If f is (2r + 2)–concave, the inequalities are reversed.

Proof. The result is immediate from Theorem 3, since

Hr =
n∑

m=1

I∗r (a + (m − 1)h, a + mh).

�

THEOREM 6. Suppose f : [a, a + nh] → R is (2r)–times differentiable.
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(a) If
∣∣f (2r)

∣∣q is convex for some q � 1 , then

|Hr| � nh2r+1 |B2r|
(2r)!

(
1 − 1

22r−1

)
max

{∣∣∣f (2r)(a)
∣∣∣ , ∣∣∣f (2r)(a + nh)

∣∣∣} .

(b) If
∣∣f (2r)

∣∣ is concave, then

|Hr| � h2r |B2r|
(2r)!

(
1 − 1

22r−1

)
M
(∣∣∣f (2r)

∣∣∣ ; h) .

Proof.

|Hr| =

∣∣∣∣∣
n∑

m=1

I∗r (a + (m − 1)h, a + mh)

∣∣∣∣∣
�

n∑
m=1

|I∗r (a + (m − 1)h, a + mh)|

�
n∑

m=1

h2r+1 |B2r|
(2r)!

(1 − 21−2r)

[∣∣f (2r)(a + mh)
∣∣q +

∣∣f (2r)(a + (m − 1)h)
∣∣q

2

]1/q

by Theorem 4 applied to each interval [a + (m − 1)h, a + mh] . Hence

|Hr| � h2r+1 |B2r|
(2r)!

(1 − 21−2r)
n∑

m=1

max
{∣∣∣f (2r)(a + mh)

∣∣∣ , ∣∣∣f (2r)(a + (m − 1)h)
∣∣∣} .

The result of (a) now follows from the convexity of
∣∣f (2r)

∣∣q .
The proof (b) is similar.

�

3. The Euler–Simpson formula

If f is defined on an arbitrary finite segment [a, b] and has 2r continuous deriva-
tives there, then the Euler–Simpson formula (see, for example, [4, p. 221]) states
that

b∫
a

f (x)dx =
b − a

6

[
f (b) + 4f

(
a + b

2

)
+ f (a)

]

+
r−1∑
k=1

(b − a)2kB2k

3(2k)!
(
1 − 22−2k

) [
f (2k−1)(b) − f (2k−1)(a)

]

+
(b − a)2r+1

3(2r)!

1∫
0

f (2r)(a + u(b − a))F(u)du,
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where

F(u) = y2r(u) + 2

[
y∗2r

(
1
2
− u

)
− y2r

(
1
2

)]
,

y2r(u) = B2r(u) − B2r and y∗2r(u) = B∗
2r(u) − B2r .

It was proved in [4, p. 224] that F(1 − u) = F(u) and that (−1)r−1F(u) � 0.
Also,

1∫
0

|F(u)|du = (−1)r−1

1∫
0

F(u)du

= (−1)r−1

⎧⎨
⎩

1∫
0

y2r(u)du + 2

1∫
0

y∗2r

(
1
2
− u

)
du − 2y2r

(
1
2

)⎫⎬
⎭

= (−1)r−1

⎧⎨
⎩3

1∫
0

y2r(u)du − 2y2r

(
1
2

)⎫⎬
⎭

= (−1)r−1
{−3B2r + 4

(
1 − 2−2r

)
B2r
}

= (−1)r−1
(
1 − 22−2r

)
B2r

=
(
1 − 22−2r

) |B2r|

and
1∫

0

u|F(u)|du =

1∫
0

(1 − u) |F(u)| du =
1
2

(
1 − 22−2r

) |B2r| .

We can parallel the development of the previous section with the following two
theorems. Define

Lr :=(−1)r−1

{ b∫
a

f (x)dx − b − a
6

[
f (a) + 4f

(
a + b

2

)
+ f (b)

]

−
r−1∑
k=2

(b − a)2k

3(2k)!
(
1 − 22−2k

)
B2k

[
f (2k−1)(b) − f (2k−1)(a)

]}
.

THEOREM 7. If f : [a, b] → R is (2r + 2)–convex, then

(b − a)2r+1

(
1 − 22−2r

) |B2r|
3(2r)!

f (2r)
(

a + b
2

)
� Lr

� (b − a)2r+1

(
1 − 22−2r

) |B2r|
3(2r)!

f (2r)(a) + f (2r)(b)
2

.

If f is (2r + 2)–concave, the inequalities are reversed.
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THEOREM 8. Suppose f : [a, b] → R is (2r)–times differentiable.
(a) If

∣∣f (2r)
∣∣q is convex for some q � 1 , then

|Lr| � (b − a)2r+1

(
1 − 22−2r

) |B2r|
3(2r)!

[∣∣f (2r)(a)
∣∣q +

∣∣f (2r)(b)
∣∣q

2

]1/q

.

(b) If
∣∣f (2r)

∣∣ is concave, then

|Lr| � (b − a)2r+1 1 − 22−2r

3(2r)!

∣∣∣∣f (2r)
(

a + b
2

)∣∣∣∣ .
To obtain appropriate results for integration via the Simpson formula we apply the

above results to each interval of the subdivision

[a, a + 2h], [a + 2h, a + 4h], ..., [a + 2(n − 1)h, a + 2nh].

First we introduce

S(f ; h) :=
h
3

[
f (a) + f (a + 2nh) + 2

n−1∑
i=1

f (a + 2ih) + 4
n−1∑
i=1

f (a + (2i − 1)h)

]
,

Xr := (−1)r−1

{ a+2nh∫
a

f (x)dx − S(f ; h) −
r−1∑
k=2

(2h)2k

3(2k)!
(
1 − 22−2k

)

×B2k

[
f (2k−1)(a + 2nh)− f (2k−1)(a)

]}
.

The following theorems apply.

THEOREM 9. If f : [a, a + 2nh] → R is (2r + 2)–convex, then

(2h)2r |B2r|
(
1 − 22−2r

) |B2r|
3(2r)!

M
(
f (2r); 2h

)
� Xr � (2h)2r

(
1 − 22−2r

)
3(2r)!

T(f (2r); 2h).

If f is (2r + 2)–concave, the reverse inequalities hold.

THEOREM 10. Suppose f : [a, a + 2nh] → R is (2r)–times differentiable.
(a) If

∣∣f (2r)
∣∣q is convex for some q � 1 , then

|Xr| � (2h)2r+1|B2r|
(
1 − 22−2r

)
3(2r)!

×
n∑

m=1

[∣∣f (2r)(a + 2mh)
∣∣q +

∣∣f (2r)(a + 2(m − 1)h)
∣∣q

2

]1/q

� n(2h)2r+1|B2r|
(
1 − 22−2r

)
3(2r)!

max
{∣∣∣f (2r)(a)

∣∣∣ , ∣∣∣f (2r)(a + 2nh)
∣∣∣} .
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(b) If
∣∣f (2r)

∣∣ is concave, then

|Xr| � (2h)2r+1|B2r|
(
1 − 22−2r

)
3(2r)!

M
(∣∣∣f (2r)

∣∣∣ ; 2h
)

.

The resultant formulæ in Theorems 7–10 when r = 2 and the sums in Lr and Xr

are empty are of special interest and we isolate them as corollaries.

COROLLARY 1. If f : [a, b] → R is 6 –convex, then

(b − a)5

2880
f (4)
(

a + b
2

)
� b − a

6

[
f (a) + 4f

(
a + b

2

)
+ f (b)

]
−

b∫
a

f (x)dx

� (b − a)5

2880
f (4)(a) + f (4)(b)

2
.

If f is 6 –concave, the reversed inequalities apply.

COROLLARY 2. Suppose f : [a, b] → R is 4 –times differentiable.
(a) If

∣∣f (4)
∣∣q is convex for some q � 1 , then

∣∣∣∣∣∣
b∫

a

f (x)dx − b − a
6

[
f (a) + 4f

(
a + b

2

)
+ f (b)

]∣∣∣∣∣∣
� (b − a)5

2880

[∣∣f (4)(a)
∣∣q +

∣∣f (4)(b)
∣∣q

2

]1/q

.

(b) If
∣∣f (4)

∣∣ is concave, then

∣∣∣∣∣∣
b∫

a

f (x)dx − b − a
6

[
f (a) + 4f

(
a + b

2

)
+ f (b)

]∣∣∣∣∣∣
� (b − a)5

2880

∣∣∣∣f (4)
(

a + b
2

)∣∣∣∣ .
COROLLARY 3. If f : [a, a + 2nh] → R is 6 –convex, then

(2h)4

2880
M
(
f (4); 2h

)
� S(f , h)−

a+2nh∫
a

f (x)dx � (2h)4

2880
T
(
f (4); 2h

)
.

If f is 6 –concave, the inequalities are reversed.

COROLLARY 4. Suppose f : [a, a + 2nh] → R is 4 –times differentiable.
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(a) If
∣∣f (4)

∣∣q is convex for some q � 1 , then∣∣∣∣∣∣
a+2nh∫
a

f (x)dx − S(f ; h)

∣∣∣∣∣∣
� (2h)5

2880

n∑
m=1

[∣∣f (4)(a + 2nh)
∣∣q +

∣∣f (4)(a + 2(m − 1)h)
∣∣q

2

]1/q

� n(2h)5

2880
max

{∣∣∣f (4)(a)
∣∣∣ , ∣∣∣f (4)(a + 2nh)

∣∣∣} .

(b) If If
∣∣f (4)

∣∣ is concave, then∣∣∣∣∣∣
a+2nh∫
a

f (x)dx − S(f ; h)

∣∣∣∣∣∣ �
n(2h)5

2880
M
(∣∣∣f (2r)

∣∣∣ ; 2h
)

.
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