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WEIGHTED INEQUALITY FOR SOME

CLASSICAL INTEGRAL OPERATORS: 0 < p < 1
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(communicated by L. Maligranda)

Abstract. Suppose 0 < p < 1 and 0 < q < ∞ . In this note, we prove that the weighted (p, q)
inequality (∫ ∞

0
(Tf (x))qw(x)dx

)1/q
� C

(∫ ∞

0
(f (x))pv(x)dx

)1/p

has no nontrivial solution if Tf is a Hardy type operator, the Hardy-Littlewood maximal operator
or an one-sided maximal operator.

1. Introduction

We are interested in weighted norm inequalities for the integral operators defined
as follows.

DEFINITION 1. (see [1]) The Hardy type operator T is defined by

Tf (x) =
∫ x

0
K(x, y)f (y)dy, (x > 0),

where the kernel K(x, y) on R+ × R+ satisfies
(i) K(x, y) > 0 if x > y ;
(ii) K(x, y) is nondecreasing in x and nonincreasing in y ;
(iii) There exists a constant D > 0 such that

K(x, y) � D(K(x, z) + K(z, y))

for all 0 � y � z � x .

DEFINITION 2. (see [17]) Suppose f is locally integrable on Rn . The Hardy-
Littlewood maximal operator Mf is given by

Mf (x) = sup
Q�x

1
|Q|

∫
Q
|f (y)|dy,

where the supremum is taken over all cubes Q , containing x .
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DEFINITION 3. Given a positive and locally integrable function g(x) on (−∞,∞) .
Define the one-sided maximal operator M+

g f as the following:

M+
g f (x) = sup

h>0

1
g(x, x + h)

∫ x+h

x
|f (y)|g(y)dy,

for all locally integrable f , where g(x, x + h) =
∫ x+h

x g(y)dy . (see [11], [22])

In past decades, weighted norm inequalities for these operators have been intensely
investigated.

For example, suppose 1 � p < ∞ , 0 < q < ∞ and Tf is a Hardy type operator.
Let w and v be weight functions, that is, nonnegative and measurable functions. The
characterizations of weight functions (w, v) for which the weighted (p, q) inequality

(∫ ∞

0
(Tf (x))qw(x)dx

)1/q
� C

(∫ ∞

0
(f (x))pv(x)dx

)1/p
(1)

is satisfied have been established. (see [1], [2], [10], [14], [15], [16], [23], [24]).
Let Tf be the Hardy-Littlewood operator or an one-sided maximal operator. The

weight conditions for the weighted (p, q) inequality (1) have been obtained in the index
range 1 � p � q < ∞ and 1 < p < ∞ , 0 < q < p . For these two operators, the
weak type (p, q) inequality

[λ qw({x : |Tf (x)| > λ})]1/q � C
(∫

Rn
|f (x)|pv(x)dx

)1/p

have been characterized in the case 1 � p < ∞ , 0 < q < ∞ . (see [3], [17], [18], [21],
[26], [11], [22], [9].)

In order to complete these weighted (p, q) inequalities, it is interesting to provide
the answers to the case 0 < p < 1 , 0 < q < ∞ . That is the purpose of this note. It
turns out that the weighted (p, q) inequality for these three operators has no non-trivial
solution in the case 0 < p < 1 , 0 < q < ∞ .

The idea stems from the classical Day’s theorem. He proved in [4] that if μ is a
nonatomic measure and 0 < p < 1 , then there is no nonzero bounded linear funcional
on Lp(μ) (cf. [8], [12]). Later on, completing a partial result of Williamson [27],
Pallaschke [20] and Turpin [25] showed that there is no compact endomorphism T :
Lp(μ) → Lp(μ) other than zero. Further investigations in this direction can be found
in [6], [7] and many others. In [12, p. 150] there is a proof of the following result:
If (Ω,Σ,μ) is a nonatomic measure, ν is another measure, T : Lp(μ) → Lq(ν) is a
bounded linear operator and 0 < p < 1 , p < q � ∞ , then T = 0 .

Recently, Maligranda extended the above result and Turpin’s work [25] and had
the following general theorem.

THEOREM. ([13]) If (Ω,Σ,μ) is a nonatomicmeasure space and (K,Γ, ν) another
measure space. Let 0 < p < 1 and p < q � ∞ . Then there is no nozero bounded
sublinear operator from Lp(μ) into Lq(ν) .
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Instead of the general operators, we focus on these three specific operators, there-
fore our results cover more general range, and our theorem 2 and 3 work on weighted
weak type inequalities. The proofs are based on the classical Day’s theorem.

For a weight function w and a measurable set E , we write w(E) =
∫

E w(x)dx ,
and w(a, b) = w((a, b)) for E = (a, b) . The Lebesgue measure of E is denoted by
|E| , and the characteristic function of E by χE . We shall adopt the conventions of
arithmetic operations in R∪{∞} : t ·∞ = ∞· t = ∞ ( for t ∈ (0,∞] ), 0 ·∞ = ∞·0
= 0 , 1

∞ = 0 and 1
0 = ∞ .

2. Theorems and proofs

If w(x) ≡ 0 a.e. or v(x) ≡ ∞ a.e. , the weighted (p, q) inequality (1) holds
automatically. In addition, suppose Tf is a Hardy type operator or an one-sided
maximal operator, the weighted inequality (1) is satisfied trivially, provided that there
is a number c ∈ (0,∞) such that w(x) ≡ 0 a.e. on (0, c) and v(x) ≡ ∞ a.e. on
(c,∞) . These are trivial solutions for the weighted inequality (1).

THEOREM 1. Suppose 0 < p < 1 , 0 < q < ∞ , and Tf is a Hardy type operator
associated with kernel K and w , v are weight funcitons. There is no nontrivial solution
for the weighted (p, q) inequality (1).

Proof. Let
c = inf {τ : w(x) ≡ 0 a.e.x ∈ (τ,∞)}.

The trivial case c = 0 should be excluded. When c = ∞ . It is easy to see that for
any b ∈ (0,∞) there exists b < c < ∞ such that w(b, c) > 0 , and the following
argument applies to this case obvoiusly. Now, suppose c ∈ (0,∞) . Then w(x) ≡ 0 in
(c,∞) and w(b, c) > 0 , for any b ∈ (0, c) . We shall prove that the weight inequality
(1) forces v(x) ≡ ∞ for x ∈ (0, c) .

First of all, we may assume v(x) > 0 a.e. on (0, c) . Indeed, suppose |{x ∈
(0, c) : v(x) = 0}| = |E| > 0 . Then x0 = ess inf {xχE(x)} < c . Set f (x) = χE(x) .
We have Tf (x) > 0 on (x0,∞) and the right side of the weighted inequality is zero.
This fact forces w(x) = 0 on (x0,∞) , which contradicts to the definition of c .

Given 0 < p < ∞ and a measure space (X,μ) . Define

Np(f ) =
(∫

X
|f (x)|pdμ

)1/p

and

N ′
p (g) = sup{|

∫
X

f (x)g(x)dμ| : Np(f ) � 1}.
These notations will be used throughout. We shall not specify the (X,μ) in each case,
and it wouldn’t cause any ambiguity.

We claim that for each interval (a, b) with 0 � a < b < c , N ′
p ( χ(a,b)(·)

v(·) ) < ∞ .
Otherwise, assume there exist {f n} of nonnegative functions such that Np(f n) � 1 and

∫ b

a
f n

1
v
v =

∫ b

a
f n > n.
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It follows from the weighted (p, q) inequality (1) that

C � C
(∫ ∞

0
f p
n v

)1/p
�

(∫ ∞

0
(Tf )qw

)1/q

�
(∫ c

b
(
∫ b

a
f n)qK(x, b)qw(x)dx

)1/q
> n

(∫ c

b
K(x, b)qw(x)dx

)1/q
.

This is a contradiction, since w(b, c) > 0 , and K(x, b) is positive for x ∈ (b, c) .

N ′
p ( χ(a,b)(·)

v(·) ) < ∞ means that f �→ ∫ b
a f 1

v v determines a continuous linear func-
tional on the topological vector space Lp(v) . It must be zero functional (see [4] or [8]).
That happens only if v ≡ ∞ on (a, b) , since v > 0 . This proves Theorem 1.

REMARK 1. In the proof of Theorem 1, the condition (iii) in the definition of Hardy
type operator is not used.

THEOREM 2. Let 0 < p < 1 and 0 < q < ∞ . Then the weak type (p, q) inequality

[w({x ∈ Rn : Mf (x) > λ})λ q]1/q � C
(∫

Rn
|f (x)|pv(x)dx

)1/p
(2)

has no nontrivial solution.

Proof. With some obvious modifications, the argument in [5] (p. 388) shows that
the weak type (p, q) inequality (2) implies that v(x) > 0 a.e. unless w(x) ≡ 0 a.e..

Our argument is based on a simple fact:

Q ⊂ {x : Mf (x) > λ0} for any λ0 < 1
|Q|

∫
Q |f (y)|dy .

Suppose w(x) is not equivalent to 0 . Choose Q0 such that w(Q0) > 0 . Following

the same idea as in Theorem 1, we need only prove N ′
p ( χQ(·)

v(·) ) < ∞ for all Q ⊃ Q0 .
To make a contradiction, assume for some Q ⊃ Q0 there exist {f n � 0} such that

Np(f n) � 1 and ∫
Q

f n
1
v
v =

∫
Q

f n > n.

Then the weak type inequality (2) yields

w(Q) � w({Mfn >
n
|Q| }) � C|Q|

n
Np(f n) � C|Q|

n
.

This is a contradiction, since w(Q) > 0 . The proof of Theorem 2 is completed.

THEOREM 3. Let 0 < p < 1 and 0 < q < ∞ . Then the weak type (p, q) inequality

[w({x ∈ (−∞,∞) : M+
g f (x) > λ})λ q]1/q � C

(∫ ∞

−∞
|f (x)|pv(x)dx

)1/p
(3)

has no nontrivial solution.
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Proof. As in Theorem 1, suppose there is a ∈ (−∞,∞] such that w(x) ≡ 0 on
(−∞, a) and w(a, b) > 0 for any b > a .

We shall use the elementery estimate:

(a, b) ⊂ {x : M+
g f (x) > λ0} for all λ0 < 1

g(a,c)

∫ c
b |f |g ,

for arbitrary a < b < c .
Once again, the weak type inequality (3) implies v(x) > 0 a.e. on (a,∞) .

Otherwise, let |E| = |{x ∈ (a,∞) : v(x) = 0}| > 0 . Then c = esssup{x : xχE(x)}
> a . Choose b ∈ (a, c) , we have |S| = |E ∩ (b, c)| > 0 . Set f (x) = χS(x) in the
weighted weak type inequality (3), it is easy to see that

g(S)
g(a, c)

w(a, b)1/q � Cv(S)1/p = 0,

which impies w(a, b) = 0 , since |S| > 0 and g is positive. This violates our choice of
a . Therefore, v(x) must be positive on (a,∞) .

Now we prove N ′
p ( g(·)χ(b,c)(·)

v(·) ) < ∞ for all intervals (b, c) with a < b . Similar
to the argument in Theorem 2, suppose we can choose {f n} , which satisfy Np(f n) � 1
and ∫ c

b
f ng

1
v
v =

∫ c

b
f ng > n.

Then it follows from the weak type inequality (3) that

w(a, b) � w({x : M+
g f n(x) >

n
g(a, c)

}) � Cg(a, c)
n

Np(f n) � Cg(a, c)
n

.

This is a contradiction, and Theorem 3 is proved.
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